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Abstract A major challenge in machine learning and 

data science is feature selection. Feature selection 

involves selecting the optimal (or suboptimal) subset of 

features to derive useful conclusions from a dataset based 

on the relevant information contained in those features. 

The Flower Pollination Algorithm (FPA) is a 

metaheuristic algorithm developed recently based on 

flower pollination. In this paper, we propose a new type of 

binary FPA, called the Filter-Wrapper Modified Binary 

FPA (FWMBFPA), which aims to improve convergence 

rate and solution quality by combining filter and wrapper 

advantages. Using FWMBFPA, the exploration process is 

directed toward specific search areas by extracting the 

features of existing solutions. 18 UCI datasets are used to 

evaluate the performance of the method. FWMBFPA 

generally performs better than the other algorithms in 

terms of average classification accuracy. FWMBFPA 

achieves the highest classification accuracy with the 

smallest number of selected features when compared to 

other algorithms when dealing with datasets with a large 

number of features. 

Key Words Feature selection, Flower Pollination 

Algorithm, Filter, Wrapper 
 

1. INTRODUCTION 
A broad range of fields can now access large amounts of 

data thanks to the advanced tools for collecting data. Data 

mining and machine learning tasks are greatly affected by 

data dimensionality [1].  Features increase in number as 

data dimensions increase. Thus, feature selection is used 

for selecting the optimal feature subset [2]. Data is reduced 

in dimensionality through a preprocessing step called 

Feature Selection (FS), which decreases learning times and 

eliminates irrelevant or redundant data points. The 

performance of supervised and unsupervised FS is 

degraded by redundant and irrelevant features, both of 
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which add complexity [3], [4], [5]. A feature selection 

process can generally be divided into four steps: 

generation, evaluation, stopping conditions, and 

verification. It is crucial to evaluate the subset of features 

effectively [6]. The first step involves generating a subset 

of candidate features. In the second step, an evaluation 

indicator is used to assess the quality of the feature subset. 

When the process stops at step three, a feature subset 

meeting the stop criteria is output. FS does not directly 

involve the last step, but checks that the final feature subset 

is valid [7]. 

 Researchers have been studying FS methods for 

decades. The methods are broadly categorized into four 

types: filter models, wrapper models, embedded models, 

and hybrid models [8], [9]. It does not require a learning 

algorithm to evaluate the filter model because it is based 

on the features' properties. The process is quicker and more 

efficient. However, since the filter model doesn't take into 

account the learning algorithm, some irrelevant features 

could be deleted, while some redundant ones would be 

retained. Filter approaches generally don't provide as high 

a classification accuracy as wrappers, so their feature 

subsets are generally less accurate. The wrapper model 

uses the classification algorithm for evaluating the results, 

which increases accuracy. Classification algorithms will 

need to be learned and verified. A large amount of data has 

a limited amount of running time, so the algorithm cannot 

evaluate each combination of features exhaustively. For 

this reason, heuristic optimization algorithms must be 

applied to help select feature subsets [10]. By using the 

original data directly for training, the embedded model 

constructs a classifier using only the optimal subset of 

features.  These methods, however, take time and require 

knowledge of background parameters. To balance the 

algorithm's performance and time, the hybrid model 

combines the advantages of filter and wrapper models. It 
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makes sense to develop a hybrid-based FS algorithm [11]. 

 It is challenging to find a subset that is (nearly) optimal 

from the original set. In the past two decades, 

metaheuristics have proved to be highly reliable solutions 

to a wide range of optimization problems, including 

engineering design, machine learning, data mining, 

scheduling, and production problems [12]. Researchers 

have investigated metaheuristics in the field of feature 

selection [13]. It is NP-hard to solve FS with N features 

since there are 2N solutions to consider. When it comes to 

FS methods, there are three main search strategies: 

 A complete (brute-force) search that generates all 

possible solutions before selecting the best 

 Choosing subsets randomly and hoping to find 

the best subset 

 Random search methods guided by heuristic 

information. 

 It is impractical to use complete and random methods 

with FS when dealing with medium- and large-scale 

datasets, and a random search becomes more complete 

when dealing with such datasets. By combining local and 

global search methods, heuristic search methods produce 

good (not always best) solutions within a reasonable 

timeframe [14]. It has become more common to use 

metaheuristic algorithms to mimic the evolution of living 

creatures. It is possible to find optimal global solutions 

using metaheuristic methods. They are more efficient than 

classical algorithms at solving complex, nonlinear, and 

indeterminate problems. When new data enters or the 

environment changes, metaheuristic algorithms don't have 

to restart.  

 Simple, independent of the problem, flexible, and 

gradient-free characteristics are some of the advantages of 

meta-heuristics. Physical phenomena, animal behavior, 

and evolutionary concepts are common inspirations for 

meta-heuristics. Additionally, meta-heuristics are 

independent of the problem's nature, since they use a 

stochastic approach, which means they don't require 

derivative information. Unlike mathematical 

programming, which requires detailed knowledge about 

the mathematical problem, this program requires no prior 

knowledge. Because of their independence from the nature 

of the problem, they are a suitable tool for solving 

optimization problems without being concerned about the 

nonlinearity of the search space. Additionally, the 

algorithms' flexibility allows them to solve virtually any 

optimization problem without changing their structure 

significantly. This feature allows them to be a potential 

candidate for a user-friendly optimizer since they approach 

the problem as a black box with input and output states. 

Furthermore, they are mainly based on stochastic 

operators, unlike mathematical methods, which are 

deterministic. Therefore, conventional deterministic 

methods are less likely to lead to local optima. Their 

independence from the initial guess also enables them to 

be more flexible. Selecting features based on evolutionary 

algorithms can reduce the amount of time consumed and 

make classifications more accurate. Any problem that can 

be formulated can be solved using them when they are 

integrated with other optimization techniques. While these 

algorithms use mathematical formulas to solve problems, 

they are very fast and accurate [5], [15], [16]. 

 Metaheuristic algorithms have two core concepts: 

exploration and exploitation. In exploration, the problem 

space is searched without concern for the results, while in 

exploitation, the focus is on the results. These capabilities 

need to be balanced to perform optimally in problem-

solving [17], [18]. The exploration phase generally 

benefits from population-based algorithms. In addition, 

local search algorithms are typically used during the 

exploitation phase, since they can condense and find the 

most suitable solutions close to the original ones [19]. The 

purpose of this study is to combine the benefits of both a 

filter method and a wrapper method by using a modified 

flower pollination optimizer. 

 This study proposes a hybrid approach to address the 

crucial challenge of feature selection. This paper makes the 

following contributions: 

 Proposing a novel FWMBFPA that effectively 

combines the advantages of filter and wrapper 

methods to improve feature selection 

performance. 

 Developing a modified binary version of the 

flower pollination algorithm specifically tailored 

for feature selection problems, enhancing its 

search capabilities and convergence properties. 

 Integrating a two-phase filtering mechanism 

based on Spearman correlation and relevance to 

efficiently reduce the dimensionality of the 

dataset and eliminate redundant and irrelevant 

features before the wrapper phase. 

 Conducting extensive experiments on 18 diverse 

UCI datasets to demonstrate the superior 

performance of the proposed FWMBFPA in 

terms of average classification accuracy and 

achieving a significantly smaller number of 

selected features compared to several state-of-

the-art metaheuristic algorithms. 

 The remainder of the article is organized as follows. An 

overview of flower pollination algorithms is provided in 

Section 2. Related works are highlighted in Section 3. 

Section 4 presents the proposed method. A comparison 

and evaluation of the proposed method is presented in 

Section 5, and the conclusion and future work are provided 

in Section 6. 

 

2. PRELIMINARIES 
In this section, the concepts used are explained. 

2.1. Flower Pollination in Optimization Context: 

Nature’s Inspiration 

The majority of plants around the world are flowering 

plants, where pollination is their primary means of 

reproduction. During pollination, pollen is transferred 

from one flower to another by wind, insects, butterflies, 

bees, birds, and bats. Several evolutionary processes have 

evolved to ensure pollination by producing nectar to attract 

pollinators. Additionally, some pollinators and plant 

species, such as hummingbirds and ornithophilous 

flowers, contribute to flower constancy in co-evolution.  
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There are two basic types of pollination: biotic and abiotic 

[20], [21]. 

 Biotic pollination: Pollination is primarily 

accomplished by biotic pollinators, such as insects, birds, 

and others. Pollination of flowering plants by this method 

is used by almost 90% of them. Pollen can travel a long 

distance as pollinators move at different paces and speeds. 

It is also possible to consider pollination with such 

properties to be global pollination. This action can be 

equated to a global search if pollen is encoded as a solution 

vector. 
 Abiotic pollination: In addition to pollination by 
pollinators, abiotic pollination is also called self-
pollination. This form of pollination is estimated to be used 
by about 10% of floral plants. In local and self-pollinated 
plants, pollination is usually achieved by wind and 
diffusion. This type of motion is typically short in distance, 
making it suitable for use in local searches. 
 Flower constancy: A partnership between plants and 
pollinators, such as hummingbirds, can be beneficial for 
both parties to save energy and achieve success. The result 
is flower constancy. A flower plant evolves so that 
pollinators are rewarded with nectar from a fixed set of 
flower types, while pollinators spend no energy exploring 
new flower types. To maximize pollinator reproduction by 
encouraging frequent visits by them [20], [21]. The flower 
pollination algorithm was developed using the main 
characteristics of pollination. 

2.2. Flower Pollination Algorithm 

Based on mimicking flower pollination, Yang [22] 
proposed the flower pollination algorithm as a 
metaheuristic optimization algorithm. 
 To ensure the quality of the search, FPA mixes 
exploitation and exploration randomly. As a result of FPA, 
the following idealized principles are followed [22]: 

 Rule 1: Through Lévy flight, biotic cross-
pollination acts as a global search. 

 Rule 2: Local searches are abiotic and self-
pollinated. 

 Rule 3: The similarity between two flowers can 
lead to flower constancy. 

 Rule 4: Local and global searches are switched 

randomly ∈ [0, 1]. 
 Initially, a random population is generated, and then the 
optimal solution is determined by evaluating the data. A 
new solution can be calculated by determining the 
pollination type according to a predetermined probability 
p (Rule 4). Assuming r is between 0 and 1, global 
pollination (Rule 1) and flower constancy (Rule 3) can 
occur as follows if r is less than p [22], [23], [24]: 
 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝑥𝑖
𝑡 − 𝑔𝑏𝑒𝑠𝑡)      (1) 

 

 Eq. (1) involves 𝑥𝑖
𝑡 as a solution, i at time t, gbest as the 

current best solution, γ as a scaling factor, and L as a step 

size [22], [23], [24]: 
 

𝐿(𝑠, 𝑐)~
𝜆Γ(𝜆) 𝑠𝑖𝑛(𝜋

𝜆

2
)

𝜋
.

𝑐

𝑠1+𝜆 , (𝑠 ≫ 𝑠0 > 0)   (2) 

 

 For large steps s > 0, the gamma function Γ(λ) is valid. 

The tail amplitude of the distribution is controlled by c, 

which is 1 in the proposed FPA. According to Rule 2, local 

pollination (Rule 2) and flower constancy can be expressed 

as follows [22], [23], [24]: 
 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜀(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 )    (3) 
 

 The pollens 𝑥𝑗
𝑡and 𝑥𝑘

𝑡 come from flowers of the same 

plant species. As a result, flowers remain constant in a 

limited area. 𝜀 comes from a uniform distribution in [0,1], 

𝑥𝑗
𝑡and 𝑥𝑘

𝑡   give a local random walk if they are from the 

same species. The pollination of flowers can take place 
locally as well as globally. A nearby flower patch or 
flowers in a neighboring neighborhood are more likely to 
be pollinated by local flower pollen than those far away. 
The switch probability (Rule 4) or proximity probability p 
is used to switch between intensive local pollination and 
common global pollination. To determine the most 
appropriate parameter range, it is possible to use p = 0.5 as 
an initial value and then do a parametric study to determine 
the most appropriate parameter range. Algorithm 1 shows 
the pseudo-code of the FPA [22]. 

 

3. RELATED WORKS 
In classification, feature selection is crucial. Recently, 
several algorithms have been developed for solving feature 
selection problems. General optimization problems benefit 
from swarm algorithms in terms of exploitation and 
exploration. It is still necessary to improve the accuracy of 
solution selection, the speed of time consumption, and the 
finding of global optimums in feature selection problems. 
To solve these drawbacks, there are many attempts in this 
direction.  
 The Salp Swarm Algorithm (SSA) is a bio-inspired 
algorithm designed to optimize a system using the 
swarming mechanisms of Salps [25]. Using Salp's swarm 
algorithm, Hegazy et al. [26] overcame the low 
convergence rate and avoided getting stuck in a local 
optimum. Twenty-seven datasets are used to evaluate the 
performance of CSSA when it is combined with the K-
nearest neighbor classifier to solve the feature selection 
problem. 
 Using a wrapper approach, Naik et al. [27] identified the 
relevant subset of features for machine learning tasks. The 
Binary Bat algorithm is used to select a set of features, and 
a novel fitness function is implemented using One-pass 
Generalized Classifier Neural Networks (OGCNN). This 
fitness function takes into account the entropy of 
sensitivity, specificity, classifier accuracy, and fraction of 
selected features. Using four classifiers (Radial Basis 
Function Neural Networks, Probabilistic Neural 
Networks, Extreme Learning Machines, and OGCNNs), 
fitness functions are also compared on six publicly 
available datasets. Using one-pass classifiers is more 
efficient from a computational standpoint. Results 
indicated that OGCNN performed well in most cases when 
combined with the novel fitness function. 
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Algorithm 1. Flower Pollination Algorithm Pseudo-Code 

1:   Objective min or max f(x), x = (x
1
, …, x

d
)

  

2:   Initialize a population of n flowers/pollen with random 
solutions 

3:   Find the best solution g
best

 in the initial population 

4:   Define a switch probability p ∈ [0, 1] 
5:   While (stopping criterion not satisfied) do 
6:         For i = 1: n (all n flowers in the population) 
7:               If rand () < p  
8:                     Draw a step vector L that obeys a Levy distribution 
9:                     Global 
pollination:  
10:              else 
11:                    Select two random 
solutions       and 
12:                    Local pollination:  
13:               end if 
14:               Evaluate new solutions 
15:               If new solutions are better, update them in the 
population 
16:         end for 
17:         Keep the current best solution 
18:   end while 
 

 
Gao et al. [28] presented two algorithms for optimizing 

binary balance and selecting the best feature subset for 
classification problems. Equilibrium optimizers (EOs) are 
optimization algorithms based on physics [15]. In order to 
estimate dynamic and equilibrium states, it is based on 
models of controlled volumetric mass balance. First, the 
BEO-S and BEO-V algorithms map continuous EOs to 
discrete types. To determine the position of the optimal 
solution, the position vector (BEO-T) is used. A 
comparison of the proposed algorithm with other advanced 
FS algorithms is conducted on 19 well-known UCI 
datasets. Experimental results proved that BEO-V2 
outperforms other state-of-the-art metaheuristic 
algorithms in terms of performance measures among the 
proposed binary EO algorithms. 
The Grasshopper Optimization Algorithm (GOA) is an 
algorithm that mimics grasshopper migration and hunting 
in nature [29]. As a result of the low diversity of agents, 
this method tends to stagnate or become immature. Using 
SCGOA, Zhao et al. [30] proposed  
a new GOA with exploration and exploitation features to 
improve GOA's ability to handle a wide variety of 
situations. As a first step, trigonometric substitution is used 
to disturb people's position vector updates (evolution) to 
balance the exploration and exploitation stages in the 
proposed SCGOA. A Cauchy mutation-based strategy 
increases the diversity of the locust population and 
prevents stagnation. The Cauchy mutation ensures the 
diversity of locust populations. A comparison of SCGOA 
with several well-known meta-heuristic algorithms was 
conducted using the latest IEEE CEC2017 benchmark 
functions. The proposed SCGOA is superior to its rivals 
based on some extensive analysis results. The results of the 
study demonstrated that SCGOA was superior to some 
existing algorithms when applied to four engineering 
design problems based on Cauchy mutations. Several 
feature selection datasets were also handled using the 
binary version of Cauchy mutation-based SCGOA. Binary 

version of GOA outperforms original GOA and other 
optimization algorithms when it comes to classifying, 
having fewer errors, and fewer features. 
 In 2015, Duggan and Olmes [31] developed the Vortex 
Search Algorithm (VSA), a meta-heuristic algorithm 
based on the vortex phenomenon. Using chaos theory, 
Gharehchopogh et al. [32] overcome the entrapment of 
local optima, obtain the optimal feature set with maximum 
accuracy and minimum number of features. The proposed 
method considers various chaotic maps to improve the 
VSA operators and control both exploration and 
exploitation. Datasets from 24 UCI standards were used to 
evaluate this method's performance. This method was also 
evaluated as a Feature Selection (FS) approach. Based on 
simulation results, chaotic maps (especially the Tent map) 
can improve the performance of the VSA. In addition, it 
was demonstrated that the proposed method provided the 
best accuracy and the smallest number of features for 
determining the optimal feature subset. As compared to 
other algorithms, the proposed method performed better in 
the real application. 
 Using the firefly algorithm (FA) previously developed 
by Bacanin et al. [33], a new feature selection problem was 
addressed. Compared with the original FA, the proposed 
method performs much better in limited and practical 
terms. After validating the method on unconstrained 
benchmarks, 21 standard datasets from the University of 
California, Irvine (UCI) were used for feature selection. 
Furthermore, a new COVID-19 dataset was used in the 
present study to predict the health of patients, as well as a 
microcontroller microarray dataset. Based on the results of 
all practical simulations, we can certify the robustness and 
efficiency of the proposed algorithm when it comes to 
convergence, quality of solutions, and classification 
accuracy. In more detail, the proposed approach 
outperformed other competitor methods on 13 out of 21 
datasets.  

1 ( )t t t

i i i bestx x L x g   

t

jx
t

kx
1 ( )t t t t

i i j kx x x x   
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TABLE1   
Related works on feature selection 

 

Ref. Year FS method Advantages 
Dataset 

used 
Filter/Wrapper 

Hegazy et al. [26] 2019 CSSA Fewer parameters, simpler to implement 27 Wrapper 

Naik et al. [27] 2020 OGCNN 
Implementation using four classifiers, high 

accuracy 
6 Wrapper 

Gao et al. [28] 2020 
BEO-S  

 BEO-V 

Extensive exploration and exploitation 

ability to change the solution at random 
19 Wrapper 

Zhao et al. [30] 2022 SCGOA 
Enhance GOA's capability to handle diverse 

situations, avoid stagnation and laziness 
- Wrapper 

Gharehchopogh et al. [32] 2022 VSA 
Involving chaotic maps in VSA prevents 

local optima 
24 Wrapper 

Bacanin et al. [33] 2023 FA High convergence speed  22 Wrapper 

 
 

Although numerous metaheuristic algorithms have 
been used to select features, a critical review of existing 
literature reveals limitations and a research gap that this 
study aims to fill. The majority of previous studies used 
wrapper-based approaches (as summarized in Table 1), 
which, though often providing high accuracy, can be 
computationally expensive and suffer from scalability 
issues when dealing with high-dimensional datasets due to 
the lack of a feature reduction step at the outset. In these 
methods, feature subsets are evaluated using a learning 
algorithm, which becomes time-consuming as the number 
of features increases. 
 Additionally, purely filter-based methods are 
computationally efficient, but evaluate features 
independently or based on intrinsic properties, potentially 
overlooking feature interactions and their influence on 
specific learning algorithms. Despite the fact that hybrid 
methods combine filter and wrapper approaches, there is 
still a need for more efficient and robust hybrid algorithms 
that can effectively balance the computational speed of 
filters with the accuracy of wrappers, especially in 
complex, high-dimensional datasets. 
 It is therefore necessary to develop a hybrid filter-
wrapper feature selection algorithm that not only 
integrates the strengths of both paradigms but also 
enhances the optimization engine to ensure efficient 
exploration and exploitation of the search space. By 
introducing an initial filtering phase that handles high 
dimensionality and by integrating modifications to the 
Flower Pollination Algorithm's search mechanism within 
the wrapper phase, the FWMBFPA is proposed as a means 
of bridging this gap. 

 
4. PROPOSED METHOD 
The Flower Pollination Algorithm (FPA), introduced by 
Yang [22], is a nature-inspired metaheuristic algorithm 
that has demonstrated promising performance in solving 
various optimization problems. FPA is based on the 
fascinating process of flower pollination, incorporating 
both global pollination (biotic and cross-pollination via 
Lévy flight) and local pollination (abiotic and self-
pollination). As a result of this inherent duality, FPA is 
able to balance exploration (searching diverse areas of the 
search space) and exploitation (refining potential 

solutions). 
 In feature selection, the goal is to find a subset of 
features that maximizes classification accuracy while 
minimizing the number of selected features. This NP-hard 
problem is well suited to metaheuristic algorithms. The 
ability of FPA to balance global and local search makes it 
an ideal candidate for navigating the complex and high-
dimensional binary search space of feature selection. With 
its structure of updating based on the best solution and 
random interactions on the local level, it provides a solid 
foundation for adapting and modifying. Due to FPA's 
demonstrated effectiveness in optimization and its intrinsic 
mechanisms for exploration and exploitation, which are 
crucial for effectively searching the feature subset space, 
FPA was chosen for the wrapper phase. As a result, its 
structure allows for targeted modifications, such as the 
Modified FPA (MFPA) within our proposed FWMBFPA, 
that further enhance its performance. The framework of the 
proposed method is presented in this section, which is 
divided into two phases. 
 

4.1. Filter phase 

In order to handle high-dimensional data efficiently, the 
initial feature set needs to be reduced during this filter 
phase. This process begins with identifying and handling 
redundant features. 
 

4.1.1. Redundancy computation 

In the initial step of the filter phase, we address feature 
redundancy in order to reduce dimensionality. In order to 
accomplish this, the correlation between features is 
computed and analyzed. 
 In redundancy, two or more attributes are dependent on 
each other. MI measures how much a feature depends on a 
Subset (S) of features. Features that set symmetry, non-
linearity, non-negativeness, and non-decreasing properties 
are observable as features are added. This measure does 
not indicate which features of S are redundant. A Markov 
blanket and total correlation are both useful over time 
measures that reduce redundancy. To assess numerical 
characteristics and subject matter knowledge, data-driven 
correlation analysis is useful. Data-driven methodologies 
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can be used to calculate correlation coefficients between 
two features quickly. A highly correlated trait must have a 
correlation coefficient that exceeds a certain threshold to 
be eligible to calculate the Spearman correlation 
coefficient. Spearman correlation coefficients were used to 
estimate the correlation between two features. Correlation 
analysis uses Eq. (10) as an alternative stimulus condition. 
In addition to linear correlations, SCC can also measure 
nonlinear correlations. The SCC measures the degree to 
which two features are closely related. SCC values 
increase with stronger correlations. Feature fi and feature fj 
should not have an SCC greater than k1 when there is a 
high correlation between them [34], [35], [36]. 
 

𝑐𝑜𝑟𝑟(𝑓𝑖 , 𝑓𝑗) = |𝑆𝐶𝐶(𝑓𝑖, 𝑓𝑗)|, 𝑛 ≥ 𝑘1    (4) 

 
TABLE 2  

Levels of relevance for feature fi 

Relevance 

level 
Condition 

Probabilistic 

approach 

Mutual 

information 

approach 

Strongly 
relevant 

∄ 
𝑝(𝐶|𝑓𝑖 , ¬𝑓𝑖)
≠ 𝑝(𝐶|¬𝑓𝑖) 

𝐼(𝑓𝑖 ; 𝐶|𝑓𝑖) ≻ 0 

Weakly 
relevant 

 

∃𝑆 ⊂ ¬𝑓𝑖 

𝑝(𝐶|𝑓𝑖 , ¬𝑓𝑖) ≠
𝑝(𝐶|¬𝑓𝑖) ∧ 

𝑝(𝐶|𝑓𝑖 , 𝑆)
≠ 𝑝(𝐶|𝑆) 

𝐼(𝑓𝑖 ; 𝐶|𝑓𝑖) ≻ 0 

∧ 

𝐼(𝑓𝑖 ; 𝐶|𝑆) ≻ 0 

Irrelevant ∃𝑆 ⊂ ¬𝑓𝑖 
𝑝(𝐶|𝑓𝑖 , 𝑆)
≠ 𝑝(𝐶|𝑆) 

𝐼(𝑓𝑖 ; 𝐶|𝑆) ≻ 0 

 

4.1.2. Relevance computation 

Generally, an attribute is relevant if it provides information 
on a class tag attribute alone (C) or if it provides 
information when combined with another variable.  
 Weakly associated features, highly associated features, 
and unrelated features have been used to define 
associations. When a feature is strongly related to C, it 
cannot be replaced with another feature without removing 
its information. A weakly associated feature provides 
information about C, but can be replaced by another 
without losing any information. It is possible to lose 
information about C when you remove irrelevant features 
from it. In Table 2. the relevance levels of feature fi are 
shown [34], [35], [36]. 
4.2. Wrapper phase 
In the wrapper phase, the optimal feature subset is selected 
using a modified optimization algorithm, described in this 
subsection. In the wrapper phase, an evolutionary search 
approach is used to select the optimal subset based on the 
reduced and more relevant feature set obtained during the 
filter phase. The search is powered by a modified version 
of the flower pollination algorithm. 
 

4.2.1. Modified Flower Pollination Algorithm 

The selection of the optimal feature subset is based on an 
effective optimization algorithm, as described above in the 
wrapper phase description. For this essential search, the 
study uses an MFPA, described in this subsection. 
 Based on the clonal selection principle, the proposed 

MFPA modifies the standard FPA. According to 
experimental results, random walks produce faster 
convergent solutions than Levy flights in local pollination. 
Therefore, we replaced Levy flights with random walks. 
Using random uniform distributions in [0, 1], random 
walks are generated. A high-affinity solution is cloned 
proportional to its affinity before local pollination can be 
applied. To modify the local pollination, γ2 was introduced 
as a step-size scaling factor. In a preliminary parametric 
study, it was found that γ2= 3 is effective for all test cases. 
At iteration t, the MFPA selects the top 14 solutions from 
a population Pop and clones each solution proportionally 
based on its fitness. Cloned solutions are likely to be 
exploited, so to avoid getting stuck in local minima, the 
algorithm checks a value not greater than 10e^6 for 100 
successive iterations. In such a case, the entire population 
Pop is replaced by a new randomly generated one, while 
keeping the best solution gbest; this greatly increases 
exploration. The pseudo-code of the modified flower 
pollination algorithm can be seen in Algorithm 2. 
 

4.2.2 Fitness function 

In general, FS aims to minimize feature selection while 
maximizing classification accuracy. There is a conflict 
between these two objectives. It is possible to combine 
these two objectives into one objective problem by 
utilizing Eq. (5). 
 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝜔(1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) + (1 − 𝜔) × 𝐹  (5) 
 
 A ratio F is computed by dividing the number of 
features selected by the original dimension of the dataset. 
The classification error rate of the selected subset of 
features is (1-Accuracy). Weight (ω) is represented by the 
values 0 and 1. 

4.2.3. Filter-Wrapper Modified Binary Flower 
Pollination Algorithm (FWMBFPA) 

In Eq. (6), the binary version of the algorithm is converted 
using sigmoid functions. As a consequence, FS can only 
be solved with binary values between 0 and 1. There is a 
binary vector for every solution, where 1 indicates that the 
corresponding feature has been selected, and 0 indicates 
that it has not been selected.  

𝑇(𝑥) =
1

1+𝑒−𝑥                                                                 (6) 

 
 The flowchart in Fig. 1 illustrates the proposed method's 
overall flow. Fig. 1 shows two phases of the proposed 
method: filter and wrapper. Filtering is achieved using a 
combination of two filter methods, so that Spearman 
correlation between features is calculated first, a 
correlation limit of 0.8 is applied, and overly correlated 
features are discarded. By measuring the correlation 
between the category feature and other features, irrelevant 
features that were unrelated to the category feature were 
eliminated. Wrappers are provided with a bunch of normal, 
non-redundant features after the filter phase. The wrapping 
phase involved selecting an optimal set of features with 
maximum accuracy, based on the features of the modified 
flower pollination algorithm, which avoids the local 
optimum. 
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5. EXPERIMENTAL RESULTS AND DISCUSSION 
The purpose of this section is to present the experimental 
setup and datasets that were used to evaluate the proposed 
FWMBFPA. Several experiments were conducted to 
evaluate and compare the performance of the proposed 
FWMBFPA with existing methods. These experiments are 
described in more detail below. 

5.1. Experiment setup 

The purpose of this subsection is to provide specific details 
of the experimental setup used to conduct the evaluation. 
It includes the datasets, the data splitting strategy, as well 
as the configuration of the classifier. With the FS method, 
a subset of the entire dataset was selected to evaluate KNN 
classifier performance. According to [37], K=5 is the 
recommended value for KNN classifiers.  
 A training dataset contains 80% of cases, while a test 
dataset contains 20%. The proposed method is 
implemented using Python3 and Matplotlib. There was 18 
original UCI datasets evaluated in Table 3. Feature counts 
can be seen before filtering each dataset. Filtering is part 
of the detection phase, which detects redundancy among 
features, thus excluding duplicates, and ignoring features 
that are unrelated to category features. Additionally, the 
proposed method costs less to compute and can select a 
more accurate subset of features than existing methods. 
After applying the filter phase, Table 3. shows the dataset 
dimensions. The effect of the filter becomes more apparent 
on datasets with higher dimensions and more features, as 

shown in this table. 

5.2. Evaluation of FWMBFPA and FPA 

According to Table 4. BFPA and FWMBFPA were 
compared for classification accuracy and number of 
selected features across 18 datasets. As shown in Table 4, 
FPA had classification accuracy greater than 95% in 10 out 
of 18 data sets (55.55%), whereas FWMBFPA had 
classification accuracy greater than 95% in 12 out of 18 
data sets (66.66%). Further, FWMBFPA selects fewer 
features in 17 data sets than BFPA and achieves the same 
number of features in only one data set (Zoo). To improve 
the performance of BFPA, the modified method that uses 
both the filtering and wrapping advantages has been 
modified and combined with the wrapper advantages. It is 
shown in Fig. 2 that FWMBFPA is both more accurate and 
has a lower mean number of selected features than BFPA. 
 
5.3. Comparison and discussion 

In this section, the results of comparing the proposed 
method with BFPA and 9 Binary optimization methods 
including Whale Optimization Algorithm (WOA), Time-
Varying Salp Swarm Algorithm (TVSSA), Two-phase 
Mutation Gray Wolf Optimizer (TMGWO), Sine Cosine 
Algorithm (SCA), Jaya Algorithm (JA), Differential 
Evolution Algorithm (DEA), Cuckoo Search  Algorithm 
(CSA), Bat Optimization Algorithm (BAT) and Bare Bone 
Particle Swarm Optimization (BBPSO) are presented. 
 

 

Algorithm 2. Modified Flower Pollination Algorithm Pseudo-Code 

1:   Objective function f(x), where x= (x1,…,xD) is a binary vector of dimension D. 
2:   Initialize a population of n flowers/pollen with random solutions 
3:   Find the best solution g

best
 in the initial population 

4:   Define a switch probability p ∈ [0, 1] 
5:   While (stopping criterion not satisfied) do 
6:         If rand () < p  
7:               For i = 1: n (all n flowers in the population) 
8:               Draw a step length vector L from the Lévy distribution. 
9:               Global pollination:  
10:             End for 
11:       Else 
12:             Identify the best m solutions from the current population P 
13:             Solutions are cloned proportional to their fitness 
14:             For each solution in clone population 

15:                    Obtain a random value 𝛆  uniformly distributed between 0 and 1 

16:                    Randomly select two distinct solutions j and k from the population 
P 
17:                    Local pollination:  
18:             End for 
19:       End if 

20:       Select the best n solutions from the combined pool to form the new 
population 
21:       Update the current population P with the new population Pnew 
22:       Identify the best solution gbest in the current population P 
23:       If gbest doesn’t improve in 100 iterations by more than 10^-6, keep gbest and 
            Replace the population with a new, randomly generated binary solutions 
24:   End while 
25:   Print gbest 

1 ( )t t t

i i i bestx x L x g   

1 ( )t t t t

i i j kx x x x   
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 Fig. 1. Flowchart of proposed FWMBFPA 
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TABLE 3 

Description of datasets before and after the filter phase 

 

Dataset No. of sample 
No. of features 

before filter  

No. of features 

after filter 
No. of class Domain 

Algerian_forest_fires 244 14 8 2 Life 

BreastCancer 698 11 9 2 Life 

BreastEW 568 31 15 2 Life 

CongressEW 434 17 15 2 Social 

HeartEW 270 14 10 2 Life 

Ionosphere 351 35 13 2 Physical 

lung-cancer 32 57 28 2 Life 

Lymphography 148 19 12 4 Life 

M-of-n 1000 14 7 2 Life 

Pd-speach 756 755 82 2 Life 

penglung 73 326 148 7 Life 

sobar-72 72 20 16 2 Physical 

Sonar 208 61 35 2 Life 

SpectEW 267 23 14 2 Physical 

Vote 300 17 15 2 Social 

Wholesale customers data 440 8 4 2 Business 

Wine 178 14 12 3 Physical 

Zoo 101 17 10 2 Life 

 

 

TABLE 4 

Classification accuracy of BFPA and FWMBFPA with selected features 

 

 Dataset 

BFPA FWBMFPA 

Accuracy 
No. of 

Features 
Accuracy 

No. of 

features 

1 Algerian forest fires          98.64 3 100 2 

2 Breast cancer               100 3 100 2 

3 BreastEW 96.49 14 97.07 2 

4 CongressEW 96.94 7 99.23 4 

5 HeartEW 83.95 5 91.35 3 

6 Ionosphere 91.50 15 97.16 3 

7 lung-cancer 100 23 100 6 

8 Lymphography 91.11 9 93.33 5 

9 M-of-n 93 10 100 6 

10 Pd-speech-feature 77.53 353 84.14 14 

11 penglung 95.45 149 100 20 

12 Sobar72 100 4 100 3 

13 Sonar 90.47 30 92.06 9 

14 SpectEW 88.88 10 92.59 6 

15 Vote 97.77 8 98.88 2 

16 Wholesale customers data 94.69 4 94.69 1 

17 Wine 98.14 6 100 2 

18 Zoo 96.77 5 96.77 5 
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Fig. 2. Average accuracy and selected features obtained by FWMBFPA and BFPA. 

 
TABLE 5 

The worst fitness value achieved by FWMBFPA and other methods 
 

Dataset FWBMFPA BFPA BWOA TVSSA TMGWO BSCA BJA BDE BCSA BBAT BBPSO 

Algerian forest fires 0.0158 0.0210 0.0298 0.0462 0.0439 0.0581 0.0290 0.0321 0.0030 0.0179 0.0306 

Breast cancer 0.0251 0.0258 0.0380 0.0464 0.0370 0.0501 0.0332 0.0285 0.0322 0.0322 0.0144 

BreastEW 0.0520 0.0686 0.0516 0.0400 0.0410 0.0339 0.0577 0.0420 0.0539 0.0751 0.0608 

CongressEW 0.0420 0.0503 0.0421 0.0579 0.0396 0.0427 0.0346 0.0194 0.0346 0.0427 0.0673 

HeartEW 0.1655 0.2979 0.2001 0.1635 0.2482 0.1994 0.2841 0.1757 0.2482 0.2490 0.2834 

Ionosphere 0.0695 0.0884 0.1156 0.0975 0.0881 0.1071 0.1173 0.1345 0.0989 0.1270 0.1448 

lung-cancer 0.1026 0.2026 0.1052 0.2026 0.2040 0.2031 0.3018 0.2028 0.3016 0.2024 0.3009 

Lymphography 0.0723 0.1601 0.0907 0.2024 0.1573 0.2018 0.1364 0.1358 0.1798 0.1347 0.1810 

M-of-n 0.0100 0.1414 0.1795 0.1457 0.1894 0.1851 0.1612 0.1899 0.1670 0.1792 0.0960 

Pd-speech-feature 0.1701 0.2272 0.3101 0.2664 0.2886 0.2621 0.2229 0.2403 0.2321 0.2228 0.2362 

Penglung 0.0948 0.0948 0.0497 0.1849 0.0944 0.0050 0.1401 0.0946 0.0497 0.0499 0.0502 

Sobar72 0.0046 0.0486 0.0073 0.0513 0.0936 0.0492 0.0497 0.0497 0.0497 0.0497 0.0047 

Sonar 0.1484 0.2106 0.1146 0.1305 0.1300 0.1465 0.2082 0.1935 0.1312 0.1459 0.1628 

SpectEW 0.1146 0.1874 0.1512 0.1154 0.1629 0.1507 0.1666 0.1403 0.1385 0.1620 0.1629 

Vote 0.0401 0.0386 0.0606 0.0276 0.0697 0.0367 0.0496 0.0593 0.0483 0.0392 0.0600 

Wholesale 

Costomers data 
0.0474 0.0867 0.0642 0.0807 0.0717 0.0703 0.0596 0.1032 0.0792 0.0910 0.0657 

Wine 0.0054 0.0596 0.0412 0.0802 0.1520 0.0412 0.0596 0.0412 0.0405 0.1512 0.1489 

Zoo 0.0694 0.0719 0.1327 0.0701 0.0707 0.0375 0.1008 0.1327 0.0381 0.0056 0.0350 

 

5.3.1. Convergence rate of fitness value 

Tables 5, 6, and 7 show the worst, average, and best fitness 

values obtained from FWMBFPA and other methods. 

Based on Table 5, FWMBFPA has the lowest fitness value 

out of 10 datasets out of 18 (55.55%), and has the worst 

fitness value in 8 of the 18 datasets. Bold number in all 

Tables shows the best performance. After the proposed 

method, BWOA and TVSSA have a better fitness value in 

the two datasets. In the entire dataset, BFPA, TMGWO, 

and BJA have the worst performance and worst fitness 

values. Table 6 shows that the proposed FWMBFPA has a 

significant advantage over other methods in terms of 

average fitness value (83.33%) in 15 datasets. Thereafter, 

only BCSO, BBPSO, and TMGWO had optimal fitness 

values in equal than one dataset, whereas BFPA did not 

have an optimal fitness value in any dataset. The best 

fitness value in 12 data sets was obtained by FWMBFPA 

in Table 7. (66.66%) when compared to other methods. 

The best fitness values in three datasets are obtained by 

BBAT and BBPSO, followed by TMGWO, BCSA, BDE, 

and BSCA, but BJA only in one dataset achieves the best 

value, while other methods like BFPA are not able to 

achieve the best value. Compared to the results derived 

from these three tables, FWMBFPA significantly 

improves BFPA's performance and is superior to other 

methods, and has a higher convergence rate. Fig. 3 

presents the fitness values obtained using FWMBFPA and 

other methods for a clearer understanding of the content. 

To improve clarity and identification, a circular legend 

highlights the proposed method, shown in blue. 

5.3.2. Evaluation of Classification accuracy and selected 

features 

The accuracy of classification and the number of selected 

features of FWMBFPA, BFPA, and nine other methods are 
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compared in this section. If the classification accuracy of a 

method is higher compared to other methods, it means that 

the method in question performed with better accuracy and 

had fewer errors. Among the 18 datasets analyzed in Table 

8, the FWMBFPA method had the best classification 

accuracy in 14 datasets (77.77%) and performed better 

than other methods, followed by BSCA and TMGWO in 8 

datasets (44.44%). Based on this Table, with better 

performance in two datasets, BFPA and BWOA perform 

the worst in terms of classification accuracy.

 
TABLE 6 

 The average fitness value achieved by FWMBFPA and other methods 
 

Dataset          FWBMFPA      BFPA BWOA TVSSA TMGWO BSCA BJA BDE BCSA BBAT BBPSO 

Algerian forest 

fires          
0.0027 0.0193 0.0155 0.0057 0.0054 0.0042 0.0061 0.0063 0.0028 0.0031 0.0112 

Breast cancer               0.0122 0.0209 0.0269 0.0295 0.0194 0.0333 0.0247 0.0221 0.0273 0.0221 0.0134 

BreastEW 0.0122 0.0448 0.0373 0.0397 0.0343 0.0310 0.0370 0.0337 0.0444 0.0560 0.0417 

CongressEW 0.0155 0.0375 0.0196 0.0362 0.0319 0.0265 0.0199 0.0183 0.0217 0.0229 0.0293 

HeartEW 0.1009 0.2101 0.1666 0.1593 0.1483 0.1405 0.1490 0.1284 0.1567 0.1491 0.1303 

Ionosphere 0.0387 0.0884 0.0822 0.0936 0.0467 0.0540 0.0658 0.0730 0.0827 0.0879 0.0849 

lung-cancer 0.0229 0.1313 0.1038 0.1666 0.1091 0.1029 0.0829 0.0479 0.1130 0.0484 0.0708 

Lymphography 0.0708 0.1362 0.0907 0.1679 0.1001 0.0990 0.0945 0.1124 0.1176 0.1247 0.1226 

M-of-n 0.0100 0.0789 0.0782 0.1055 0.0420 0.0316 0.0146 0.0414 0.0361 0.0379 0.0102 

Pd-speech-feature 0.1603 0.2271 0.2111 0.2118 0.1538 0.1817 0.2141 0.2301 0.2315 0.2267 0.2316 

Penglung 0.0143 0.0750 0.0479 0.1173 0.0486 0.0014 0.0184 0.0448 0.0395 0.0493 0.0488 

Sobar72 0.0022 0.0178 0.0027 0.0217 0.0240 0.0178 0.0078 0.0116 0.0297 0.0189 0.0035 

Sonar 0.0935 0.1118 0.0854 0.1176 0.0793 0.0817 0.0789 0.1067 0.0706 0.1056 0.0896 

SpectEW 0.0899 0.1400 0.1141 0.1098 0.0933 0.1067 0.1141 0.0931 0.1136 0.1110 0.1056 

Vote 0.0202 0.0274 0.0368 0.0262 0.0333 0.0286 0.0244 0.0383 0.0323 0.0245 0.0277 

Wholesale 

Costomers data 
0.0474 0.0867 0.0499 0.0770 0.0525 0.0505 0.0527 0.0670 0.0553 0.0688 0.0555 

Wine 0.0048 0.0538 0.0210 0.0633 0.0295 0.0215 0.0239 0.0228 0.0236 0.0358 0.0253 

Zoo 0.0387 0.0519 0.0419 0.0405 0.0191 0.0070 0.0115 0.0330 0.0152 0.0055 0.0144 

 

TABLE 7 
 The best fitness value achieved by FWMBFPA and other methods 

 

Dataset FWBMFPA BFPA BWOA TVSSA TMGWO BSCA BJA BDE BCSA BBAT BBPSO 

Algerian forest 

fires 
0.0025 0.0179 0.0149 0.0038 0.0015 0.0023 0.0030 0.0038 0.0023 0.0015 0.0015 

Breast cancer 0.0109 0.0174 0.0258 0.0218 0.0191 0.0322 0.0228 0.0218 0.0181 0.0191 0.0134 

BreastEW 0.0303 0.0394 0.0364 0.0370 0.0364 0.0303 0.0360 0.0316 0.0380 0.0438 0.0370 

CongressEW 0.0104 0.0346 0.0188 0.0333 0.0251 0.0251 0.0188 0.0169 0.0182 0.0176 0.0188 

HeartEW 0.0911 0.1260 0.1650 0.1497 0.1276 0.1367 0.1375 0.1260 0.1260 0.1252 0.1245 

Ionosphere 0.0321 0.0884 0.0764 0.0689 0.0379 0.0385 0.0604 0.0586 0.0689 0.0689 0.0578 

lung-cancer 0.0026 0.1036 0.1034 0.1031 0.1002 0.0012 0.0033 0.0035 0.0035 0.0051 0.0033 

Lymphography 0.0705 0.0930 0.0907 0.1144 0.0907 0.0918 0.0918 0.0913 0.0913 0.0913 0.1133 

M-of-n 0.0100 0.0358 0.0325 0.0729 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 0.0046 

Sobar72 0.0020 0.0057 0.0021 0.0042 0.0021 0.0036 0.0026 0.0042 0.0036 0.0047 0.0031 

Sonar 0.0838 0.0967 0.0822 0.0984 0.0665 0.0519 0.0511 0.0514 0.0360 0.0989 0.0820 

SpectEW 0.0779 0.1145 0.1027 0.1014 0.0891 0.1000 0.0928 0.0905 0.1023 0.1009 0.1000 

Vote 0.0145 0.0270 0.0361 0.0251 0.0276 0.0238 0.0232 0.0251 0.0245 0.0141 0.0232 

Wholesale 

Costomers data 
0.0474 0.0867 0.0492 0.0746 0.0492 0.0492 0.0521 0.0642 0.0521 0.0671 0.0553 

Wine 0.0036 0.0229 0.0206 0.0428 0.0046 0.0206 0.0229 0.0214 0.0214 0.0214 0.0198 

Zoo 0.0374 0.0381 0.0388 0.0356 0.0037 0.0050 0.0037 0.0050 0.0031 0.0050 0.0031 

Pd-speech-

feature 
0.1587 0.2271 0.2009 0.2099 0.1199 0.1664 0.2134 0.2182 0.2312 0.2225 0.2306 

Penglung 0.0006 0.0499 0.0464 0.0488 0.0463 0.0007 0.0048 0.0038 0.0045 0.0490 0.0479 
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Fig. 3. FWMBFPA fitness values compared to other methods with KNN classifier. 

 

TABLE 8 

 Classification accuracy obtained by FWMBFPA and other methods 
 

Dataset          FWBMFPA      BFPA BWOA TVSSA TMGWO BSCA BJA BDE BCSA BBAT BBPSO 

Algerian forest 
fires          

1 0.9864 0.9864 1 1 1 1 1 1 1 1 

Breast cancer               0.9952 0.9809 0.9714 0.9809 0.9904 0.9857 0.9857 0.9809 0.9857 0.9857 0.9904 

BreastEW 0.9707 0.9649 0.9649 0.9649 0.9707 0.9707 0.9649 0.9649 0.9649 0.9649 0.9649 

CongressEW 0.9923 0.9694 0.9847 0.9694 0.9770 0.9770 0.9847 0.9874 0.9847 0.9847 0.9847 

HeartEW 0.9135 0.8395 0.8395 0.8518 0.8765 0.8641 0.8641 0.8765 0.8765 0.8765 0.8765 

Ionosphere 0.9716 0.9150 0.9150 0.9339 0.9622 0.9622 0.9433 0.9433 0.9433 0.9339 0.9622 

lung-cancer 1 1 0.9000 1 1 1 1 1 1 1 1 

Lymphography 0.9333 0.9111 0.9111 0.8888 0.9111 0.9111 0.9111 0.9111 0.9111 0.9111 0.8888 

M-of-n 1 0.9300 0.9733 0.9333 1 1 1 1 1 1 1 

Pd-speech-feature 0.8414 0.7753 0.7973 0.8193 0.8810 0.8325 0.7885 0.7841 0.7709 0.7797 0.7709 

penglung 1 0.9545 0.9545 0.9545 0.9545 1 1 1 1 0.9545 0.9545 

Sobar72 1 1 1 1 1 1 1 1 1 1 1 

Sonar 0.9206 0.9047 0.9206 0.9047 0.9206 0.9365 0.9523 0.9523 0.9682 0.9523 0.9206 

SpectEW 0.9259 0.8888 0.9012 0.8888 0.9135 0.9012 0.9135 0.9135 0.9012 0.9012 0.9012 

Vote 0.9888 0.9777 0.9666 0.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9888 0.9777 

Wholesale 
customers data 

0.9469 0.9469 0.9545 0.9318 0.9545 0.9545 0.9545 0.9393 0.9545 0.9393 0.9545 

Wine 1 0.9814 0.9814 0.9814 1 0.9814 0.9814 0.9814 0.9814 0.9814 0.9814 

Zoo 0.9677 0.9677 0.9677 0.9677 1 1 1 1 1 1 1 
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Based on each method, Table 9. shows the number of 

features selected. FWMBFPA achieved the lowest number 

of selected features in all 18 datasets (100%), which is 

outstanding compared to other methods. Other methods 

have a percent superiority of less than 17% in the selected 

feature, and BFPA has selected the fewest features in only 

one data set, showing how much FWMBFPA has affected 

BFPA. Therefore, FWMBFPA has superior performance 

in both classification accuracy and number of selected 

features, while BFPA has improved its performance. As 

can be seen in Fig. 4, FWMBFPA selects features with an 

average accuracy, and other methods select features with 

an average feature selection. In the diagram, it is apparent 

that fewer features have been selected more accurately, 

improving BFPA's performance. 

 

 

TABLE 9 

  The number of selected features by FWMBFPA and other methods 

 
 

Dataset          FWBMFPA    BFPA BWOA TVSSA TMGWO BSCA BJA BDE BCSA BBAT BBPSO 

Algerian forest 

fires          
2 3 3 3 2 3 2 2 3 2 2 

Breast cancer               4 4 3 3 4 3 6 3 4 5 4 

BreastEW 2 14 5 7 4 4 4 5 9 11 7 

CongressEW 4 7 6 5 8 6 6 3 5 4 5 

HeartEW 3 5 8 4 7 3 3 4 5 4 3 

Ionosphere 3 15 4 12 5 4 15 9 16 12 8 

lung-cancer 6 23 9 22 38 7 16 16 20 24 15 

Lymphography 5 9 5 7 5 7 7 6 10 6 5 

M-of-n 6 10 8 9 6 6 6 6 6 6 6 

Pd-speech 14 353 22 74 165 57 307 357 339 337 265 

penglung 20 149 48 116 25 25 159 125 147 131 96 

Sobar72 3 4 4 5 4 4 5 4 4 4 4 

Sonar 9 30 22 25 14 10 29 19 28 27 17 

SpectEW 4 10 11 7 5 5 10 11 10 7 5 

Vote 2 8 4 4 2 2 2 3 4 5 2 

Wholesale 

customers data 
1 4 3 4 3 3 3 3 3 2 5 

Wine 2 6 3 3 6 3 4 4 4 4 3 

Zoo 5 5 6 6 6 8 6 7 5 6 5 

 

 

 

 
 

Fig. 4. Average accuracy and average selected features by FWMBFPA and the other methods 
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5.3.3. Statistical Analysis 

In order to rigorously assess the statistical significance of 
the observed performance differences between the 
compared feature selection algorithms across the 18 
datasets, a non-parametric statistical analysis was carried 
out. A Friedman test was performed independently on the 
classification accuracy results (Table 8) and the number of 
selected features results (Table 9), which are suitable non-
parametric alternatives to ANOVA for comparing multiple 
groups over multiple test conditions. The Friedman test 
yielded a statistic of 65.0219 with a corresponding p-value 
of 0. Since the p-value (p<0.05), which is less than the 
significance level α=0.05, the null hypothesis is rejected. 
There is a statistically significant difference in 
classification accuracy among the algorithms evaluated. 
For the number of selected features, the Friedman test 
yielded a statistic of 61.8933 with a p-value of 0. This p-
value is also less than α=0.05, leading to the rejection of 
the null hypothesis and confirming a statistically 
significant difference in the number of features selected by 
the algorithms. 

 Since the Friedman test showed significant differences 

for both evaluation metrics, the Nemenyi post-hoc test was 

conducted to determine which specific pairs of algorithms 

performed statistically significantly differently. Nemenyi 

tests compare the average ranks of algorithms across 

datasets. In Table 10, the average ranks for classification 

accuracy as well as the number of selected features are 

sorted by the average rank for accuracy. The Nemenyi test 

determines statistically significant differences between 

algorithms when their average rank differences exceed the 

Critical Difference (CD). The calculated CD value for 

comparing 11 algorithms over 18 datasets at a significance 

level of α=0.05 is approximately CD≈3.345. 
 Table 10. shows that the proposed FWMBFPA achieved 
the lowest average rank for classification accuracy 
(3.3889) and the lowest average rank for the number of 
selected features (1.8889). For classification accuracy, 
FWMBFPA's average rank (3.3889) is lower than all other 
algorithms. Comparing FWMBFPA to other algorithms 
using the CD (3.345): 

 FWMBFPA's average rank is significantly lower than 
algorithms whose average rank is greater than 
3.3889+3.345=6.7339. Based on Table 10, 
FWMBFPA shows a statistically significantly higher 

accuracy compared to BWOA (8.0556), TVSSA 
(8.2500), and BFPA (8.6111), as their average ranks 
are greater than 6.7339. 

 For the remaining algorithms (TMGWO, BSCA, BJA, 
BDE, BCSA, BBAT, BBPSO), the difference in 
average rank compared to FWMBFPA is less than or 
equal to the CD, indicating no statistically significant 
difference in accuracy compared to FWMBFPA at the 
0.05 significance level. However, FWMBFPA holds 
the best average rank among all. 

 For the number of selected features, FWMBFPA 
obtained an outstanding average rank of 1.8889. 
Comparing FWMBFPA's rank to others using the CD 
(3.345): 

 FWMBFPA's average rank (1.8889) is significantly 
lower than all other algorithms, whose average rank is 
greater than 1.8889+3.345=5.2339. Based on Table 10, 
FWMBFPA selects a statistically significantly lower 
number of features compared to TMGWO (5.3889), 
BWOA (5.6111), BDE (5.6667), TVSSA (6.7222), 
BJA (6.8333), BCSA (7.3889), BBAT (6.5000), and 
BFPA (8.8889). 

 The difference in average rank between FWMBFPA 
(1.8889) and BSCA (4.2222) is 

∣1.8889−4.2222∣=2.3333, which is less than the CD 
(3.345). 

 The difference in average rank between FWMBFPA 
(1.8889) and BBPSO (4.4444) is 

∣1.8889−4.4444∣=2.5555, which is less than the CD 
(3.345). Therefore, there is no statistically significant 
difference in the number of selected features between 
FWMBFPA and BSCA or BBPSO, although 
FWMBFPA still has the lowest average rank. 

 Based on the statistical analysis, the proposed 
FWMBFPA achieved not only the best average rankings 
for classification accuracy and feature selection but also 
demonstrated statistically significant superiority in 
accuracy over several algorithms as well as a statistically 
significant ability to select fewer features than most of the 
algorithms evaluated. Statistical evidence supports the 
effectiveness of the proposed method based on these 
results. 

 Fig. 5 and 6 provide a visual representation of these 

comparisons.

TABLE 10 

Average Ranks of Algorithms on 18 Datasets (Lower Rank is Better) 

Algorithm Avg. Rank (Accuracy) Rank (Accuracy) Avg. Rank (Features) 

FWMBFPA 3.3889 1 1.8889 

TMGWO 4.5278 2 5.3889 

BSCA 5.0833 3 4.2222 

BJA 5.1944 4 6.8333 

BCSA 5.3611 5 7.3889 

BDE 5.4167 6 5.6667 

BBAT 5.8333 7 6.5000 

BBPSO 6.2778 8 4.4444 

BWOA 8.0556 9 5.6111 

TVSSA 8.2500 10 6.7222 

BFPA 8.6111 11 8.8889 

Critical Difference (CD) for 

Nemenyi Test (α=0.05α=0.05) 
≈ 3.345   
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Fig. 5. CD diagram showing the average ranks for Classification Accuracy. The red bar indicates the Nemenyi Critical Difference 

(α=0.05) 

 
Fig. 6. CD diagram showing the average ranks for the Number of Selected Features. The red bar indicates the Nemenyi Critical 

Difference (α=0.05) 

TABLE 11 

Time complexity analysis 

Algorithm Type Representative Algorithms Theoretical Time 

Complexity 

Wrapper-based 

Metaheuristics 

BFPA, BWOA, TVSSA, TMGWO, BSCA, BJA, BDE, BCSA, 

BBAT, BBPSO 

O(T×P×N×D) 

Hybrid Filter-Wrapper 

(Proposed) 

FWMBFPA O(D2×N+T×P×N×D′) 

 

5.3.4. Time Complexity Analysis 

This section analyzes the theoretical time complexity of 

the proposed FWMBFPA and compares it with the general 

complexity of wrapper-based metaheuristic algorithms. 

The time complexity of a typical population-based 

metaheuristic is primarily determined by the number of 

iterations (T), the population size (P), and the cost of 

evaluating the fitness function for each solution in every 

iteration. In feature selection using a classifier like KNN, 

the fitness evaluation for a subset of F features on N 

samples has a complexity of approximately O(N×F). Thus, 

a standard wrapper-based metaheuristic operating on the 

original D features has a theoretical complexity of 

O(T×P×N×D). The proposed FWMBFPA, being a hybrid 

approach, includes an initial filter phase. This phase 

involves calculating pairwise Spearman correlations 

among D features, which takes about O(D2×N), and 

assessing feature relevance, which is O(D×N). This filter 

phase is performed only once. The subsequent wrapper 

phase then operates on the reduced set of D′ features. The 

fitness evaluation in this phase has a complexity of 

O(N×D′). Therefore, the complexity of the wrapper phase 

is O(T×P×N×D′). The total theoretical complexity of 

FWMBFPA is the sum of the complexities of the two 

phases: O(D2×N+T×P×N×D′). 

 Table 11. summarizes this comparison. Theoretically, 

FWMBFPA introduces an initial cost (O(D2×N)) that is 

absent in pure wrapper methods. However, for datasets 

with a large number of original features (D) where the 

filter phase effectively reduces the feature space to a much 
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smaller number of features (D′≪ D), the cost per iteration 

in the wrapper phase O(N×D′) becomes significantly 

lower than O(N×D). If the total number of fitness 

evaluations (T×P) is sufficiently large, the cumulative 

savings in the wrapper phase can potentially outweigh the 

initial filter cost, making FWMBFPA theoretically more 

efficient for high-dimensional problems with high 

redundancy/irrelevance. This aligns with our experimental 

results showing significant feature reduction on such 

datasets. 

 This analysis provides an asymptotic upper bound. 

Several variables can influence the empirical runtime, such 

as implementation details, hardware specifications, and 

constant factors hidden in the Big O notation. For high-

dimensional feature selection problems, the theoretical 

comparison highlights the structural advantage of 

incorporating a filter phase. 

5.3.5. Discussion on Observed Performance and 

Potential Limitations 

The experimental results presented in Tables 4, 8, and 9. 

show that the proposed FWMBFPA exhibits significant 

improvements in performance compared to BFPA and 

several other metaheuristic algorithms, especially in 

achieving higher classification accuracy with a 

substantially reduced number of selected features on many 

datasets. In particular, datasets like 'Pd-speech-feature' and 

'penglung' show dramatic feature reductions and 

significant improvements in accuracy. 

 This magnitude of improvement, especially when 

combined with substantial feature reduction and increased 

accuracy, may seem unusual, raising concerns about 

dataset bias. The validity of our experimental setup and 

results has been thoroughly reviewed. For reducing 

random effects, experiments were run using a standard 

method, using an 80/20 train/test split and the 

recommended K-nearest neighbor classifier (K=5). 

 In FWMBFPA, the observed performance is primarily 

the result of the synergistic effects of the integrated filter 

and wrapper phases. Spearman correlation and relevance 

measures are used in the initial filter phase to eliminate 

highly redundant and irrelevant features before the search 

process even begins. Preprocessing reduces the search 

space and provides the wrapper phase with a more refined, 

less noisy set of candidate features. Therefore, the 

Modified Binary Flower Pollination Algorithm in the 

wrapper phase can better explore and exploit this reduced, 

relevant feature space to identify a truly optimal or near-

optimal subset. As a result of this two-stage approach, 

FWMBFPA avoids becoming trapped in local optima 

caused by irrelevant or redundant features and focuses 

instead on choosing the discriminative subset, which 

results in both higher accuracy and a significantly smaller 

feature set on certain datasets, particularly those with very 

high initial dimensionality and presumably a high 

percentage of irrelevant/redundant features. 

 However, it is important to consider potential 

limitations of FWMBFPA, even though it has shown good 

performance across the evaluated UCI datasets. The filter 

phase's effectiveness is determined by the dataset's 

characteristics, namely its redundancy and irrelevance. In 

datasets with highly interacting features or less clear-cut 

redundancy, the initial reduction may be less drastic. The 

performance of metaheuristic algorithms can also be 

influenced by parameter tuning and stochasticity. In the 

future, the method should be evaluated on a wider range of 

dataset types and its robustness should be enhanced by 

exploring adaptive thresholds. 

 

6. CONCLUSION AND FUTURE WORK 
Dimensionality reduction is essential in many fields 

because of big data. In this work, a hybrid version of the 

modified flower pollination algorithm inspired by nature 

was presented. To reduce the computational overhead and 

costs associated with the dataset, two filter methods were 

applied in the first step. In the wrapping step, an optimal 

set of features has been selected by the modified flower 

pollination algorithm after redundant and irrelevant 

features have been discarded. Besides FPA and 

FWMBFPA, nine other algorithms were evaluated using 

18 standard UCI datasets. A KNN classifier was used to 

learn classification rules. FWMBFPA significantly 

improved classification accuracy as well as feature 

selection over FPA. A robust and stable approach is also 

demonstrated using standard evaluation criteria. 

FWMBFPA has shown superior performance in terms of 

accuracy and feature reduction on the evaluated datasets, 

particularly as a result of the efficient pre-processing by 

the filter phase. However, the degree of improvement may 

vary depending on the characteristics of the dataset. To 

further enhance its robustness and generalizability, this 

framework will be applied to a wider variety of real-world 

problems, adaptive filter thresholds explored, and its 

performance examined on datasets with different feature 

dependency structures. In the future, parallel processing 

will speed up the training of classifiers since many feature 

vectors constitute a computational bottleneck. 
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