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Convex-hull based two-phase algorithm to
solve capacitated vehicle routing problem

M. Afsharirad*, and A. Hashemi Borzabadi

Abstract

The goal of this paper is to present a two-phase convex hull-based algorithm
for the capacitated vehicle routing problem (CVRP), consisting of cluster-
ing and routing phases. First, a K-means-based algorithm is proposed for
the clustering phase, where the centroids are updated according to the
convex hull of the assigned points. Furthermore, a convex-hull-based algo-
rithm is suggested for the routing phase, which iteratively inserts unrouted
points into the convex hull. To improve the routes, an ant colony optimiza-
tion algorithm is applied. It is shown that the proposed method has a time
complexity of order o(n2 logn), where n is the number of customers. For
performance evaluation, we utilize CVRP benchmark samples and compare
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the results to those of other two-phase CVRP algorithms. The proposed
clustering method combined with common routing techniques, as well as
the K-means clustering method paired with the proposed routing approach,
yields highly favorable results in some instances. Moreover, the proposed
two-phase method outperforms other approaches in certain instances.

AMS subject classifications (2020): Primary 90C27; Secondary , 90C59.

Keywords: Capacitated vehicle routing problem, K-means algorithm, Con-
vex hull, Ant colony optimization

1 Introduction

The vehicle routing problem (VRP) is one of the most well-known problems
in combinatorial optimization due to its wide applicability in fields such as
public transportation, waste collection, and drone routing. In its typical form,
the VRP involves finding routes for a fleet of vehicles with limited capacity to
serve customers. These routes start from a central node called the “depot”,
return to it after visiting customers (within vehicle capacity constraints), and
aim to optimize an objective function—commonly minimizing total distance
or total service time.

CVRP might be divided into two phases, the first phase is “clustering”,
in which customers are assigned to vehicles. The second phase is “routing”,
which determines the optimal route of all vehicles in their cluster. It is
clear that the second phase is the well-known traveling salesman problem
(TSP). Since CVRP contains TSP and Bin packing problem as its special
case, therefore it is classified as an NP-hard problem.

A two-phase convex-hull based (CHB) heuristic method is provided in
this paper. First, customers are clustered by a convex-hull based K-means
(CH-means) algorithm. Since the length of the whole TSP tour should be
minimized in CVRP, in CH-means algorithm, the centers are updated as
the mean point of the convex hull of the points assigned to each cluster.
Accordingly, any cluster contain all points on the line segment joining any
two points in it. However adding points in any step is the same with the
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3 Convex-hull based two-phase algorithm to solve capacitated vehicle routing problem

K-means algorithm and is based on the minimum distance from the center,
but since closest points to the center are located inside the respective convex
hull, they will be assigned to that cluster.

Furthermore, the fitness of any step’s solution is calculated by a pro-
posed routing algorithm, and it is saved. At the end of the clustering phase,
the best found solution is chosen for improvement, which is not necessarily
the last solution found. This increases the computational complexity of the
algorithm, but it allows the selection of the best clustering.

The routes are built by the proposed convex-hull based routing algorithm
(CH-Insertion). Our idea for routing is to construct the convex hull of the
points and to insert unassigned points by breaking an edge of the polygon
into two edges. This is based on the well known property for Euclidean TSP:
The order in which the points appear in an optimal TSP tour must be the
same as the order in which these points appear on the convex hull, [30].
Finally, the routes are improved with a meta-heuristic algorithm. Ant colony
optimization algorithm has been chosen, due to its satisfactory performance
on TSP.

The paper is organized as follows: The literature is reviewed in Section 2
in three categories: Variations, applications and approaches. The problem is
defined in Section 3. Section 4 is devoted to the two-phase CHB heuristic.
In its first subsection, the CH-means algorithm is presented, and the second
subsection explains the CH-insertion algorithm. The last subsection discusses
ant colony optimization algorithm. Finally, Section 6 presents numerical
results and concludes the paper.

2 Related works

The problem was first introduced by Dantzig and Ramser [15]. They applied
the problem to petrol deliveries and proposed the first approximation algo-
rithm based on matching. In the following, we review related literature in
three categories. First, we state variations of the problem. Then we list the
most major applications of VRP. Finally, we discuss different approaches of
the problem in literature.
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2.1 Variations of VRP

Numerous variations have been provided by researchers for VRP due to its
variety of applications. Some famous variations are as follows:

Capacitated vehicle routing problem (CVRP) is the most closely related
version to the original VRP in which a positive number is assigned to each
customer as its capacity or quantity of its demand, see [57].

The VRP with time windows (VRPTW) is a variation of CVRP in
which serving any customer must be done within a determined time inter-
val, [52, 53]. There is also another closely related variation of VRP, dealing
with online real-time demands. A hybrid meta-heuristic algorithm based on
genetic algorithm and tabu search for on-line VRP, is provided in [31].

The VRP with profits (VRPP) is a maximization problem, where all
customers do not have to be serviced. The problem is to visit all customers
at most once in order to maximize the sum of collected profits according to
a vehicle time limitation, [25].

Open VRP (OVRP) is another variation of the problem in which vehicles
do not have to return to the depot at the end of their route, [48].

Multi-depot VRP (MDVRP) has multiple nodes as the depot, and the
problem is also to assign each vehicle to each depot, [34]. The classic form
of the MDVRP in which all vehicles start and end their route at the same
depot, is considered in [46].

The VRP with Drones (VRPD) is an extension of CVRP, where not only
trucks but also drones are used to service customers. One distinctive feature
of the VRPD is that a drone may travel with a truck, take off from its stop
to serve customers, and land at a service hub to travel with another truck as
long as the flying range and loading capacity limitations are satisfied, [19, 59]

For comprehensive reviews of VRP refer to [5, 4, 35].

2.2 Applications

Recent applications of the VRP have expanded into specialized domains.
Authors in [16] provided a comprehensive review of the police patrol rout-
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5 Convex-hull based two-phase algorithm to solve capacitated vehicle routing problem

ing problem, highlighting how VRP models ensure balanced patrol alloca-
tion while minimizing response times and workload disparities across patrol
zones. Their work underscores VRP’s flexibility in adapting to public-safety
contexts, where route equity and real-time adjustments are vital in urban
environments. A multi-objective VRP is applied in [36] to optimize real-
world postal delivery at scale. They balance delivery efficiency and service
fairness—incorporating objectives such as minimizing total distance and regu-
lating driver workload. Through meta-heuristics, they demonstrate substan-
tial cost savings while maintaining operational equity across a large delivery
network.

Unmanned aerial vehicle (UAV) applications are reviewed in [56], in VRP
contexts—emphasizing disaster relief, surveillance, and agricultural logistics.
Their meta-analysis captures how drone‑based VRPs address reach limita-
tions of ground fleets, introducing constraints like battery life and com-
munication reliability. This study solidified VRP’s extension into UAV-
coordinated systems.

Building on these foundations, recent work has advanced VRP in multi-
modal and uncertain environments. VRPD‑DT is introduced in [27], a
vehicle-and-drone routing framework that integrates dynamic traffic predic-
tion using machine learning. Their real-time VND heuristic outperformed
static models, showing improved delivery times under fluctuating conditions.
On the same front, authors in [14] survey truck‑drone cooperative VRPs, cate-
gorizing operational modes—from synchronous to independent operations—
and summarizing over 200 studies with implications for last‑mile delivery,
reconnaissance, and patrol. A PRISMA‑based review of satellite depots in
urban logistics is performed in [54], finding that roughly half of VRP designs
incorporate cross-docking via intermediate warehouses. Their review also
highlights significant gaps in stochastic and dynamic VRP modeling.

Together, these studies illustrate VRP’s evolution beyond classical deliv-
ery models toward multi-objective, multi-modal, and dynamic frameworks.
Integrating drones (see [27, 14]) and satellite depots (see [54]) supports gran-
ular, responsive logistics systems. In public-safety and postal services, VRP’s
ability to balance equity and efficiency remains critical, as demonstrated in
[16, 36]. The confluence of these advancements reflects VRP’s growing rel-
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evance in addressing complex, real-world routing challenges that demand
adaptability, real-time response capabilities, and multi-objective optimiza-
tion.

2.3 Approaches

VRP is the process of selecting feasible routes out of exponentially many
selections of any combination of customers with determined demands. There
exist three types of integer programming formulations in literature for VRP,
which are based on: Commodity flow formulations [10], vehicle flow models
[29], and set partition problem [1]. According to its NP-hardness, exact
methods are suitable for small instances only. Branch and bound, branch
and cut and dynamic programming algorithms are exact methods applied by
researchers. A comprehensive overview of exact methods for CVRP and its
other variations, is provided in [58].

The first algorithmic approach for VRP, has been provided in [15]. Their
algorithm was a simple matching-based heuristic. Afterwards, the Dantzig
and Ramser’s approach was improved by an effective greedy approach called
the savings algorithm, [12]. Generally heuristics for VRP are clustered into
two categories:

1. Constructive methods: In this type of methods, tours are constructed
gradually by adding nodes to them or by combining subtours in a way
not to exceed the capacity. Savings algorithm in [12] is the most famous
heuristic of this type.

2. Two-phase methods: These methods solve the problem in two phases,
the clustering phase and the routing phase. According to [50], there
are two types of two-phase methods, the cluster-first, route-second and
the route-first, cluster-second.

This paper suggests a second type heuristic in “cluster-first, route-second”
order. So we focus on the same two-phase algorithms in literature. Clustering
phase might be done by different approaches. A sweep algorithm is proposed
in [22]. The authors consider the depot as the origin of the plane and order
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7 Convex-hull based two-phase algorithm to solve capacitated vehicle routing problem

customer points according to their argument in polar coordination system.
Then the points are assigned respectively to vehicles up to fulfilling its ca-
pacity. In the second phase, they propose an iterative procedure to improve
the route of any vehicle. Sweep algorithm has been widely used for the first
phase of the algorithm.

A popular two-phase algorithm is provided in [21]. The authors apply the
generalized assignment problem for clustering phase and find routes of any
cluster, using any TSP method. Sweep algorithm for clustering phase and
nearest neighbor approach for routing phase for public transportation prob-
lem is applied in [42], in which capacity of the vehicle may vary during their
tour, since some passengers may end their trip before the route is completed.
The problem of routing drones, in which the combination of sweep algorithm
and genetic algorithm is applied to solve VRPD, [19]. The original sweep al-
gorithm in [22] for VRPTW, is applied in [26]. Authors in [17] implemented
first-stage customer clustering, then second-stage routing subproblems sepa-
rately for conventional and electric fleets, enhancing mixed-fleet planning. A
two-stage approach is suggested in [32]: first, reduce the network using A*
shortest paths; second, route using an enhanced GA with large-neighborhood
search for vehicles with charging considerations. Moreover, a novel 2-phase
approach is suggested in [44], which strategically separates customer loca-
tion/routing decisions and operational routing, integrating a hybrid MILP
and MCDM approach for service-option VRPs.

Other commonly used methods for clustering are based on data-mining
algorithms. The K-means algorithm is a common procedure for the clustering
phase of CVRP. The goal is to divide data into K clusters, to minimize the
inner-group dissimilarity. Cluster’s dissimilarity is measured by the average
distance between cluster center and dataset points.

The multi-depot heterogeneous fleet VRPTW is provided in [18]. Authors
provide a 3-phase hierarchical procedure. In clustering as the first phase, a
heuristic is integrated into an optimization framework. Clusters of nodes are
defined first, then points of the clusters are sequenced on the related tours
and finally, the routing and scheduling for each tour are separately found,
in terms of the original nodes. A multi-phase algorithm based on K-means
clustering is developed in [33] for multi-depot VRP. The savings algorithm for
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the cumulative VRP with limited duration is developed in [11] where the load
is also considered in the objective function as well as distance. The authors
provide a K-means algorithm for clustering in which centroids are updated
iteratively, according to a square error function, based on the angle of the line
from the depot and any point of the cluster. The K-means method is used
for clustering in [38], in order to adjust size of the clusters, decide whether
to exchange points between two clusters or not, by calculate the value of the
objective function. The authors in [13] used three hierarchical algorithms:
K-means, K-medoids and DBScan. Generally, their clustering method is to
randomly determine the first K centers and then assign each customer point
to the closest center. New center of any cluster switch to the point possessing
the mean value of all objects in that cluster. The procedure repeats till center
points remain unchanged. Since clusters may not be feasible at the end,
capacity control of the clusters is done by an MILP to make them ready for
the routing phase.

Authors in [51] initialized a number of clusters and centroids manually
and assign any customer to the closest center and in any iteration update
centers as the mean value of the cluster. They also apply saving matrix
method in the routing phase. K-medoids clustering is evaluated for CVRP
in [6]. An existing meta-heuristic is applied for routing of each generated
cluster. Recently, the bi-objective green delivery and pick-up problem has
been considered in [20]. The authors used a K-means based algorithm for
clustering and a genetic algorithm, for routing phase.

An overview of papers targeting different variations of VRP with two-
phase methods is given in Table 1.

2.3.1 CHB approaches for routing phase

Since the order of nodes in the optimal tour of TSP with Euclidean distance,
is the same order in their convex-hull, there are plenty of algorithms in the
routing phase of VRP, based on convex-hull of the points. Accordingly, a
fast algorithm is proposed in [23], in which the convex hull of the points are
constructed and then for each point not contained in the convex-hull find the
edge of it, such that the saving introduced in [12] from the non-contained
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node is minimal. In this way, all non-contained nodes are assigned to an
edge of the convex-hull, and among them, a node with the minimum saving
number is added to the convex-hull. The procedure is repeated until all
nodes are covered. They also showed that the computational complexity of
the algorithm is of the order o(n2 logn), while its worst case is unknown. The
algorithm has been modified in [55] to improve the results.

Authors in [28] proposed a strange heuristic for TSP based on convex
hull. A blob is located over the set of nodes which are projected into the
lattice. The blob is gradually reduced until it passes all nodes in its edge.
The initial shape is the convex hull of the points. It is then shrunk by
systematically removing some of its constituent particle components. The
points act as attractants to the material, effectively “snagging” the material
at the locations of uncovered nodes and affecting its subsequent morphological
adaptation. As the material continues to shrink all data points, it is becoming
a concave area covering all nodes. The classic TSP solutions are enhanced
with a convex hull insertion method, in [24], by providing a systematic and
fast way to construct near-optimal tours. Authors in [41] enhanced classic
TSP solutions with a convex hull insertion method, providing a systematic
and fast way to construct near-optimal tours.

A CHB method has also been applied for VRP. The mathematical model
for CVRP is considered in [45]. Authors provide a decomposition algorithm
for capacity constraints and apply a separation problem to identify nodes
violating this constraint. They use convex hull of incidence vectors of all TSP
tours, and these tours are tested to find the violated capacity constraints. The
convex hull of the points is used in [43] to measure the visual attractiveness
of the solution. A saving based algorithm is applied to solve an extended
version of VRP. The min-max multi VRP is introduced in [39], in which
there are multiple depots, and the objective is to minimize the maximum
length of the tour traversed by vehicles. The author uses the convex hull of
all nodes containing customer and depot points to find the whole region at
hand and then applies Carlsson algorithm in [8] to partition the region for
multiple depots.

Authors in [47] consider four criteria to measure visual attractiveness of
the routes containing “number of nodes belong to more than one convex hull”.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



11 Convex-hull based two-phase algorithm to solve capacitated vehicle routing problem

They propose a heuristic in which the farthest node from the depot is chosen
as the seed of a new route, then the surrounding nodes are added to it, until
the capacity limit is reached. The whole procedure is repeated until all nodes
are routed. After building routes, they find the nodes locating in the convex
hull of another route and apply a “Merge-And-Rebuild” process to fix it. In
a recent research, the convex hull of customer locations is applied to select
initial seed clients, followed by an exchange operator to improve solutions in
VRPTW, [49].

3 Problem statement

The problem addressed in this paper consists of designing efficient routes for
K identical vehicles to service a set of customers with known demands. More
precisely, CVRP is described as an undirected weighted graph G = (V,A, c),
where V = {0, 1, . . . , n} is the set of vertices, in which point 0 is the depot
point and {1, . . . , n} is the set of customers, and A = {(i, j) :) ∈ V ×V, i ̸= j}
shows the set of arcs. homogeneous vehicle fleets, each with capacity Q, start
their route from the depot and end to it after visiting a subset of customers
according to their limited capacity. Moreover, dij is the Euclidean distance
between nodes i and j, while qi > 0 shows the customer i’s demand. The
problem is solved under the following constraints:

1. Each customer is serviced only once by one vehicle.

2. Each vehicle must start and end its route at the depot.

3. Total demand met by each vehicle cannot exceed Q.

4 The two-phase CHB heuristic

CVRP is solved using a proposed two-phase CHB heuristic.

Clustering Phase: This phase is to assign customers to clusters.

• Customers are partitioned into K clusters using a novel CH-means al-
gorithm, where each cluster is assigned to a vehicle.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??
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• Cluster centroids are updated based on the convex hull of the nodes
within each cluster.

Routing Phase: This phase is to find efficient routes between nodes of
any cluster.

• Efficient routes between nodes in each cluster are constructed using the
proposed CH-insertion heuristic.

• The routing procedure is executed at the end of any iteration of the
clustering phase to retain the best solution by the end of Phase 1.

• The fitness of a solution is defined as the total length of all routes in
that solution.

• Finally, an ant colony optimization procedure refines the routes for
further improvement.

Algorithm 1 explains the CHB heuristic.

4.1 Clustering phase: CH-means method

A CH-means algorithm is provided here, while the number of clusters is
already known, and it is equal to the number of vehicles. Centroids are up-
dated after a complete iteration of the algorithm. The procedure is repeated
until the distance between centroids in two consecutive iterations in all clus-
ters, does not exceed a predetermined threshold. The steps of the CH-means
algorithm are described in the following.

Step 1: Create initial centroids and distance matrix

Initially, the whole region is divided into K regions by plotting K lines origi-
nating from depot. To do this, customer points are sorted according to their
arguments in polar coordination, where the depot is assumed as the origin.
The whole region containing customers is identified by polar coordination
[θmin, θmax]. The region is divided to K cones by K − 1 equidistant rays
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13 Convex-hull based two-phase algorithm to solve capacitated vehicle routing problem

Algorithm 1 Two-phase CHB algorithm for CVRP
Input: V = {0} ∪ {1, . . . , n} depot point and customer points, q demand

vector, Q vehicle capacity, [X,Y ] Cartesian coordination of vertices and
K: No. of vehicles, parameter ϵ.

Output: K routes start from and end to depot point 0 ∈ V , s.t. all customer
points exists in exactly one route and the sum of customer demands in
all routes do not exceed Q.

1: while The distance between centroids is more than ϵ do
2: Cluster customer points into K clusters clusj , j = 1, . . . ,K, by Algo-

rithm 2.
3: for j = 1, . . . ,K do
4: Find initial route of Clus = clusj ∪ {0} by Algorithm 3, call it

tourj .
5: end for
6: Calculate the fitness of Clus. Save it if it is the best clustering found

by now.
7: end while
8: Find the best clustering and its routing and call it tour∗.
9: Improve tour∗ by the ant colony optimization of Algorithm 4.

originating from depot. The middle points of cones r
2 far from the depot, are

forming initial centroids, where r is the half of the maximum distance from
depot. Figure 1 shows two different examples.

Distance matrix D is calculated with entities dij as the Euclidean distance
between customer point i and centroid j.

Step 2: Assign customers

The first assignment is related to the minimum entity of D, say dpq, if vehicle
q has enough empty capacity for customer p. This step is repeated till all
points are assigned.

Remark 1. In some cases, some points might be remained unassigned, while
no other cluster has enough empty capacity to meet their demand. There are
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Figure 1: Dividing the whole region byK rays, diamond black points are initial centroids.

few approaches in literature proposing some methods to convert uncapaci-
tated clusters to capacitated ones, [2, 7]. Most researches open a new cluster
for remained points, [40, 37]. Since with the proposed method, this case was
so rare, a new cluster is opened for these points instead of undertaking the
cost of cluster improving methods. However, this kind of samples will be
pointed out in Section 6.

Step 3: Calculate fitness

At the end of step 2, the fitness of the obtained clustering is calculated. This is
done by creating a route for any cluster according to the proposed procedure
in subsection 4.2. The fitness is saved and at the end of the whole algorithm,
the best solution is selected to be improved by an ant colony optimization
method.

Step 4: Update centroids and distance matrix

Centroids are updated, after a complete assignment. The centroid of any
cluster is the mean point of the vertices of the convex hull of all points as-
signed to that cluster. Subsequently, distance matrix D is updated according
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15 Convex-hull based two-phase algorithm to solve capacitated vehicle routing problem

to new centroids. Steps 2 and 3 are repeated until the distance between all
corresponding centroids in two consecutive iterations do not exceed a prede-
termined threshold. This is mentioned by approximately unchanged centroids
in Algorithm 2. This algorithm explains the whole procedure in CH-means
algorithm.

4.2 Routing phase: CH-insertion method

This section presents the CH-insertion algorithm for routing points within
a cluster, which is clearly a TSP. Firstly, the convex hull of the current
cluster’s points is computed to form the initial polygonal route. Afterwards,
for each unrouted point on that cluster say p, all polygon edges say (i, j) are
identified, for which the triangle i− p− j is acute. Next, any unrouted point
is assigned to its closest edge having this property. The insertion cost heightp
is calculated as the perpendicular height from p to edge (i, j), guaranteed to
lie within the triangle due to the acute angle condition. Among all unrouted
points p, the one, possessing minimum heightp is found and its associated
edge (i, j) is broken into two sides (i, p) and (p, j). The procedure is repeated
until all nodes are incorporated into the route. The complete algorithm is
formalized in Algorithm 3.

Figure 2 shows steps of Algorithm 3 for an instance. Part (a) is the initial
step in which the convex hull of the points is found. In the next step, distance
of any point in N̄ to its associated side is calculated, and the nearest one (E)
is selected and is added to the polygon. Point B is also added in the next
step. Part (f) shows the final rout. It should be noted that the clusters are
feasible at the beginning of the CH-insertion algorithm, since these points
are resulted from the previous clustering step.
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Algorithm 2 CH-means algorithm for clustering
Input: V = {0} ∪ {1, . . . , n} depot point and customer pints, q demand

vector, Q vehicle capacity, [X,Y ] Cartesian coordination of vertices, K
number of vehicles.

Output: Clusters clustj for j = 1, . . . ,K.
1: Set initial centroids as the middle point of cones r

2 far from the depot. ▷
r: half of the maximum distance from depot

2: Construct distance matrix D. Let best =∞ ▷ (Initialization)
3: Let capj = 0 for j = 1, . . . ,K. ▷ (capj is the occupied amount of

capacity of vehicle K).
4: while All centroids approximately remain unchanged do
5: let AC = ϕ. ▷ (AC is the set of assigned customers).
6: while AC ̸= {1, . . . , n} do
7: drp = min{dij , i = 1, . . . , n, j = 1, . . . ,K}.
8: if drp <∞ then
9: if capp + qr ≤ Q then

10: assign customer r to vehicle p: clustp = clustp ∪ {r},
11: capp ← capp+ qr ▷ (Update occupied capacity of vehicle p)
12: Let drj =∞, for j = 1, . . . ,K ▷ (Avoid reassigning

customer r)
13: Let AC ← AC ∪ {r},
14: else
15: Let drp =∞ ▷ (Avoid reconsidering customer r for vehicle

p)
16: end if
17: else
18: Open a new cluster clustK+1.
19: end if
20: end while
21: Find the convex hull of all clusters.
22: Update centroids of clusters as the mean value of vertices of their

convex hull.
23: Update distance matrix D, according to new centroids.
24: end while
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17 Convex-hull based two-phase algorithm to solve capacitated vehicle routing problem

Algorithm 3 CH-insertion algorithm for routing
Input: Clusters clustj for j = 1, . . . ,K. [X,Y ]: Cartesian coordination of

vertices.
Output: Tours tourj for j = 1, . . . ,K, each starts and end to depot.
1: for j = 1, . . . ,K do
2: Let H = the convex hull of points in clustj ,
3: let N be the points in H, N̄ = clustj \N . ▷ (Initialize routed and

unrouted points)
4: while N̄ ̸= ϕ do
5: for h ∈ N̄ do
6: Let (i, j)h = argmin(i,j) is a side of H{heightijh s.t. triangle i-h-j is acute}.
7: end for
8: Let heightp = min{height(i,j)hh , h ∈ N̄}.
9: Update H by breaking the side (i, j)p into two sides (i, p) and

(p, j).
10: Update N ← N ∪ {p} and N̄ = N̄ \ {p}.
11: end while
12: tourj is the set of ordered points in polygon H starting from 0.
13: end for

4.3 Computational complexity of the two-phase CHB
heuristic

This section shows that the complexity of the CHB algorithm is polynomial
in terms of the number of customers.

Lemma 1. The computational complexity of the proposed two-phase CHB
heuristic algorithm is O(n × IT log(n)), where IT is the maximum number
of iterations and IT ≈ γ 1

ϵ , with γ ∈ [5, 10] depending on the benchmark
samples used.

Proof. The computational complexity is analyzed in two phases:

Clustering Phase:
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Figure 2: Steps of CH-insertion Algorithm 3

• Constructing the distance matrix for n nodes and K clusters costs
O(nK).

• Finding the minimum element in the distance matrix, which contains
nK elements, requires O(nK log(nK)).

• Assigning nodes to vehicles until all points are assigned takes O(n).

Hence, the complexity of clustering in one iteration is O(nK log(nK)), which
simplifies to O(n2 log(n)) when K = O(n). At the end of any single itera-
tion of clustering, routing procedure is implemented. First, we compute the
number of computations in one single cluster.

Routing Phase:

• In one cluster, each vehicle serves approximately h = n
K customers.

• Constructing the convex hull of h points using standard algorithms
(e.g., CGAL or SciPy) costs O(h log(h))⋆.

• Calculating the distances of all inner points from all sides of the convex
polygon takes O(h2).

• Sorting these distances requires O(h2 log(h)).

⋆ Available at: https://www.scipy.org.
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The total complexity for routing a single cluster is O(h2 log(h) + h2) =

O(h2 log(h)). For K clusters, the overall complexity of the routing phase
is O(K · h2 log(h)), which reduces to O(n log(n)) when h ≈ n

K .

Overall Complexity:
The clustering and routing phases are repeated until the centroids’ displace-
ment across iterations does not exceed a threshold ϵ. Since IT denotes the
maximum number of iterations, the overall complexity of the two-phase CHB
algorithm is then O(n× IT log(n)).

5 Improving routes

To further improve the routes found by Algorithm 3, an ant colony optimiza-
tion method in [3] is followed. The difference here is that the initial routes
are the same routes found by CHB heuristic, rather than random ones. To
be more precise, the amount of initial pheromones are not random numbers.
The algorithm in [3] is provided to solve CVRP, while we apply it on any
single route as TSP.

Ant colony optimization algorithm has several parameters that should be
determined by user, and there is no deterministic certificate to show which
value is the best. In different applications, different values may behave better.
Table 2 introduces parameters of ant colony optimization algorithm.

Table 2: Parameters of ant colony optimization algorithm

Parameter Definition Parameter Definition
MaxIT Maximum no. of iterations α Pheromone importance
τ0 Initial pheromone on each arc β Distance importance
ηij Inverse of dij ρ Evaporation coefficient
τij Amount of pheromone on arc (i, j) r0 A constant
dij Distance between i and j a Index of ant, a ∈ {1, . . . ,m}
EP Arcs of tour P

It should be noted that the initial pheromone τ0 is usually supposed to be
the inverse of the best-known route distance found for that particular prob-
lem. Here τ0 is evaluated in a way to strengthen the arcs in the tour found
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by Algorithm 3. So initially, we set τ0 = 0.1 for arcs not included in the tour
and τ0 = 1 for arcs in it. Following steps explain ant colony method in details.

Algorithm 4 Ant colony optimization algorithm to improve routes of CHB
heuristic
Input: Tour P starts and ends to depot.
Output: Improved tour Besttour starts and ends to depot.
1: Initialize parameters according to Table 2, Best = inf. ▷ (Initialization)
2: Let τij = 1, for all (i, j) ∈ EP and τij = 0.1 for all (i, j) /∈ EP .
3: for Iter = 1, . . . ,MaxIT do
4: for a = 1, . . . ,m do
5: Locate ant a in depot. Let i = 0. ▷ (The first location of ant a)
6: Tour = {0}
7: while |Tath| < n+ 1 do
8: Choose random number r ∈ [0, 1] by uniform distribution.
9: if r ≤ r0 then
10: let j = a

u∈Tour
rgmax(τiu)α(ηiu)β ▷ (Choose the next node by

instinct)
11: else
12: For any unvisited customer w, let Piw =

(τiw)α(ηiw)β∑
u/∈Tour(τiu)α(ηiu)β

13: Choose next node j according to distribution function of P .
14: end if
15: Update Tour := [Tour, j]

16: Update pheromone on arc (i, j) by τij = (1− ρ)τij + ρηij

17: Let i = j ▷ (Update current node)
18: end while
19: Let Tour = [Tour, 0], La =sum of lengths of arcs in Tour.
20: if La < Best then
21: Best = La and BestTour = Tour

22: end if
23: end for
24: for (i, j) ∈ BestTour do
25: τij = (1− ρ)τij + ρ

∑m
a=1 ∆

a
ij , where ∆a

ij is obtained by (1) ▷ (Global
pheromone update)

26: end for
27: end for

The formula (1), globally updates the pheromone.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



21 Convex-hull based two-phase algorithm to solve capacitated vehicle routing problem

Figure 3: Performance heat map of α, β, and ρ.

∆a
ij =

{
1
La

If ant a passes arc (i, j)

0 Otherwise
(1)

The ant colony optimization algorithm may not change the solution by
CHB heuristic, or even it may make it worse in some cases. However in most
cases it improves the solution. There exists 3 parameters in this algorithm
which should be initialized, α, performance importance, β, distance impor-
tance and ρ, evaporation coefficient. All test problems were solved with all
values α ∈ {0, 0.1, . . . , 1}, β ∈ {1, 2, . . . , 10} and ρ ∈ {0.1, 0.3, 0.5} for ten
times and the average value of the final objective function is the performance
of each triple (α, β, ρ). Figure 3 shows the results of these implementations.
Note that the value of the performance is the value of the objective function,
normalized between 0 and 1. Values 0 and 1 possess the lightest and the
darkest color, respectively.

It can be seen that (α, β, ρ) = (0.1, 5, 0.1) provides the best average perfor-
mance among all other choices. These values are fixed through all implemen-
tations.
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6 Computational experiments

The proposed method is implemented in MATLAB 2020, 64 bit, and is run
on Intel(R) Core(TM) i7-5500U CPU @ 2.4 GHz and 8 GB of RAM. We im-
plement the proposed CHB heuristic in this way: First, nodes are clustered
according to the CH-means algorithm 2, and find the respective routing by
applying the CH-insertion algorithm 3 in any iteration. Afterwards, the best
solution is improved by the ant colony algorithm 4 on CVRP benchmark
problems from CVRPlib⋆⋆.
We apply the CH-means method with other insertion methods in litera-
ture. Furthermore, we apply the K-means method with the proposed CH-
insertion method and compare the results. Table 3 explains all implemented
approaches in this section.

Table 3: Implemented approaches for comparison

Clustering CH-means K-means
Method:
Routing Clark Convex hull CH-insertion Clark Convex hull CH-insertion
Method: & Wright Nearest & Wright nearest
(insertion) insertion insertion insertion insertion
Name: CHmean- CHmean- CHmean- Kmean- Kmean- Kmean-

ClarkInsert NearestInsert CHInsert ClarkInsert NearestInsert CHInsert

The selection of K-means for comparison, is backed by its wide applicabil-
ity in clustering problems. Two insertion methods, Clark & Wright method
and convex hull nearest insertion method are also selected to be compared
to CH-insertion method, for the sake of their speed and accuracy in compare
with other insertion methods, [23]. All methods for TSP mentioned in [23]
were tested on samples, and these methods resulted in best solutions among
others. Therefore results show that Clark & Wright and convex hull nearest
insertion methods are appropriate methods to be compared to the proposed
CH-Insertion. First of all, we briefly explain the Clarke and Wright savings
method and convex hull nearest insertion.

⋆⋆ available at: https://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
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Clarke and Wright savings method

In the typical method in [12], savings sij = c1i + c1j − cij for all customer
points i and j are computed. Savings are ordered from largest to smallest.
Initially, subtours (0, i, 0) are formed for all customer points i. In any iter-
ation, two subtours containing (0, i) and (j, 0), are merged, possessing the
maximum amount of sij in the savings matrix. The new merged subtour
contains (i, j). The procedure is repeated until all points are routed.

Convex hull nearest insertion

In this method, the convex hull of nodes in the given cluster is formed as an
initial subtour, [55]. To each node d not yet contained, side (i, j) of the hull
is assigned if minimizes cdi + cdj − cij . Next, (i∗, d∗, j∗) is determined, which
minimizes (ci∗d∗ + cd∗j∗)/ci

∗j∗. Finally, node d∗ is inserted in the subtour
between nodes i∗ and j∗. The procedure is repeated until all points of the
cluster are routed.

We test the proposed CHB heuristic and the methods mentioned in Table
1, on three groups of benchmark problems: set A (Augerat, 1995), set E
(Christofides and Eilon, 1969) and set P (Augerat, 1995). Tables 4, 5, and
6 show the results for set A, set B and set C, respectively. The last column
of all tables show the optimal value. All optimal solutions and values are
accessible from CVRPlib. The underlined instances are those with remained
nodes without any enough capacity, left in vehicles as mentioned in Remark
1.

Based on the results in most instances, the proposed CHB heuristic is as
good as other methods. The CHB heuristic, in some instances such as A-
n44-k6 results in the worst cost, while in some other cases such as P-n76-k5
in both phases or in E-n101-k8 in routing phase, it achieves the best solution
among other approaches.

Figure 4 shows the results more clearly. Any point in this figure shows
the relative error of the corresponding method based on optimal value of the
corresponding instance. The black line in left-hand figures is related to the
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Table 4: Cost comparison of CVRP’s instances: Set A

CHmean- Kmean-
Benchmark Clark Nearest CH Clark Nearest CH Optimal
instance Insert Insert Insert Insert Insert Insert Value
A-n32-k5 934 928 928 872 872 872 784
A-n33-k6 834 834 834 807 807 807 742
A-n37-k6 1034 1034 1034 1029 1029 1029 949
A-n38-k5 825 825 825 853 853 856 730
A-n39-k6 857 857 857 905 905 905 831
A-n44-k6 1182 1114 1186 1011 1011 1011 937
A-n45-k7 1188 1188 1188 1245 1245 1245 1146
A-n46-k7 995 995 995 1025 1024 1024 914
A-n53-k7 1172 1171 1171 1109 1109 1190 1010
A-n60-k9 1623 1621 1625 1526 1529 1526 1354
A-n65-k9 1439 1437 1439 1415 1421 1415 1174
A-n69-k9 1350 1350 1351 1386 1388 1388 1159
A-n80-k10 2094 2089 2096 2000 1999 2039 1763

two-phase CHB method and the black line in right-hand figures is related
to K-means with CH-insertion method. It is clear that black line manages
to achieve the least relative error in some instances, both in right-hand and
left-hand figures. This means that the proposed two-phase CHB heuristic is
efficient in both predicting clusters and routing customers. Therefore, both
proposed phases are efficient to be combined with other methods and also to
be applied independently, as well.

Figure 5 also shows the percentage of obtaining the best cost solu-
tion among other approaches for different three sets A, E and P. In some
cases two approaches result in the same solution, such as CH-means clus-
tering with Clark routing and nearest insertion routing. This is shown by
phrase “CHmean-Clark & NearestInsert” in the figure. Moreover, the phrase
“CHmeans-Anycluster” means that all three methods for routing with CH-
means clustering, managed to achieve the best solution among other ap-
proaches. Based on Figure 5, the proposed CH-means method is successful
in instances of set A and P, while CH-insertion method behaves efficiently in
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Table 5: Cost comparison of CVRP’s instances: Set E

CHmean- Kmean-
Benchmark Clark Nearest CH Clark Nearest CH Best
instance Insert Insert Insert Insert Insert Insert Found
E-n23-k3 653 653 653 592 592 592 569
E-n30-k3 549 549 549 550 550 547 534
E-n33-k4 889 887 887 873 873 873 835
E-n51-k5 599 591 599 654 654 654 521
E-n76-k7 735 732 734 741 734 741 682
E-n76-k8 837 834 837 834 835 834 735
E-n76-k10 992 989 993 983 982 983 830
E-n101-k8 930 927 926 896 895 891 815
E-n101-k14 1298 1297 1299 1229 1224 1275 1067

instances of set E.

Finally, Figure 6 compares the proposed CH-means method to the K-
means method. Generally, it can be seen that the CH-means clustering
methods is better in instances of set E, while in other two sets its vice versa.

7 Conclusion

In this paper, a two-phase CHB heuristic method has been introduced for
CVRP, with computational complexity of o(n2 logn), where n is the number
of customers. Customers are first clustered by a CH-means algorithm. In
a typical K-means algorithm, points are clustered in order to minimize the
total dissimilarity between the points in a cluster. In CVRP, the length
of the whole TSP tour should be minimized, because finally a TSP will be
solved in any cluster. Hence, unlike typical K-means algorithm, in CH-means
algorithm, initial centers are set in equidistant locations inside the region
surrounded by customers. Moreover, the center of each cluster is updated
according to the convex hull of the points assigned to that cluster. The
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Table 6: Cost comparison of CVRP’s instances: Set P

CHmean- Kmean-
Benchmark Clark Nearest CH Clark Nearest CH Best
instance Insert Insert Insert Insert Insert Insert Found
P-n16-k8 460 460 460 451 451 451 450
P-n22-k2 217 217 217 245 244 246 216
P-n23-k8 591 591 591 596 596 596 529
P-n40-k5 479 479 479 508 507 508 458
P-n45-k5 553 549 552 553 549 552 510
P-n50-k10 797 797 797 836 836 836 696
P-n55-k15 1082 1082 1082 1071 1071 1071 989
P-n60-k15 1176 1176 1176 1144 1143 1143 968
P-n65-k10 885 885 885 909 908 910 792
P-n70-k10 976 976 976 933 933 933 827
P-n76-k5 713 713 712 741 737 770 627
P-n101-k4 746 746 751 746 755 749 681

new center is the mean point of that convex hull. The reason of this choice
for updating centroids, is to make any cluster contain all points on the line
segment joining any two points in it. However, adding points in any step is
the same with the K-means algorithm and is based on the minimum distance
from center, but since closest points to the center are located inside the
respective convex hull, they will be assigned to that cluster.

Compared to the typical two-phase algorithms for CVRP, the novelty of
CHB heuristic is that the fitness of any step’s solution is calculated by the
CHB routing algorithm, which is called CH-insertion, and it is saved. At the
end of the clustering phase, the best found solution is chosen for improvement,
which is not necessarily the last solution found. Although this increases the
computational complexity of the algorithm, but it allows the selection of the
best clustering.

The routes are built through the CH-insertion method. The idea for
routing is to construct the convex hull of the points and to insert unassigned
points by breaking an edge of the polygon into two edges. This is based on the
well-known property for Euclidean TSP by [30]. Finally, the routes are im-
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Figure 6: Percentage of achieving the best solution in approaches by CH-means cluster-
ing and K-means.

proved with a meta-heuristic algorithm. Ant colony optimization algorithm
has been chosen, by virtue of its satisfactory performance on TSP.

Implementing the CHB heuristic on benchmark samples and comparing
it to other two-phase heuristics show that the proposed two-phase CHB
heuristic is efficient in both clustering -even if combined with other rout-
ing methods- and routing -even if combined with other clustering methods.
Moreover, the proposed CHB heuristic results in the best solution among
other implemented methods in this paper.
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