
 

An Assessment of the Potential of Multispectral Sentinel-2 Satellite Imagery for 

Detecting Dubas Bug Infestations in Date Palm Cultivation Regions 

  
H. Karimi1*, M. J. Assari2, H. Zohdi2, F. Ranjbar-Varandi3 

1- Agricultural Engineering Research Department, Kerman Agricultural and Resource Research and Education Center, 
AREEO, Kerman, Iran 
2- Plant Protection Research Department, Kerman Agricultural and Natural Resources Research and Education Center, 
AREEO, Kerman, Iran 
3- Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran 
(*- Corresponding Author Email: h_karimi@areeo.ac.ir) 
https://doi.org/10.22067/jam.2025.90276.1297 

 
Abstract 

The Dubas bug (Ommatissus lybicus) poses a significant threat to agriculture in the Middle East by 
weakening palm trees and reducing fruit production. Effective pest control depends on accurate and timely 
localization of the infestation. However, regular field inspections are difficult and time-consuming, especially for 
large areas. This research investigates the potential of Sentinel-2 satellite imagery for detecting Dubas bug 
infestations. The aim is to improve monitoring capabilities, accelerate intervention strategies, and mitigate the 
associated economic impact. The field trial to assess the infestation occurred in May 2023, coinciding with the 
peak of the pest outbreak. The severity of the infestation was assessed through pest counts conducted in date 
palm groves within the urban area of Bam, Iran. Sentinel-2 multispectral images of a specific area were acquired 
and processed for correction, raw data preparation, and information extraction. The Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes (FLAASH) method was used for the atmospheric correction of 
the acquired images. The Nearest Neighbor Interpolation method was used to resample satellite images, 
standardizing all bands to a uniform 10-meter resolution. Following the pre-processing phase, the KD-tree-based 
K-Nearest Neighbor classifier model was selected to develop a model specifically designed for identifying areas 
infested by the Dubas bug. For training, 70% of the measured field data were used, including uninfested areas 
and areas with three levels of infestation from light to heavy, as well as other land features such as buildings, 
roads, etc. The remaining 30% of the data was utilized to evaluate the trained model, using the correct prediction 
rate as the assessment criterion. The trained classifier, validated against the ground truth data, achieved an 
accuracy of approximately 83% on the test dataset. This accuracy highlights the ability of Sentinel-2 
multispectral imagery and machine learning to detect Dubas bug infestations in date palm groves and can 
facilitate targeted and sustainable pest management strategies. 
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Introduction 

Ommatissus lybicus de Bergevin 
(Hemiptera: Tropiduchidae), commonly 
known as the date palm dubas bug, is a major 
pest that has a detrimental effect on date fruit 
production in many countries (Khalifa M Al-
Kindi, Kwan, Andrew, & Welch, 2017; 
Khalifa Mohammed Al-Kindi, Kwan, Andrew, 
& Welch, 2019; Khan et al., 2020). The 
decline in date fruit yields caused by 
infestations of the date palm Dubas bug is a 
significant concern for farmers in the Middle 
East and North Africa (Al Sarai, 2015; Al 
Shidi, Kumar, Al-Khatri, Albahri, & Alaufi, 

2018). Pests like the Dubas bug can cause an 
economic loss of up to 28% in date fruit 
production. The insect feeds on the nutrient-
rich sap of palm trees, damaging palm trees 
(Shah et al., 2016). The consumption of palm 
sap by nymphs and adult insects results in the 
formation of honeydew on the leaf surface 
(Al-Khatri, 2004; Howard, 2001). Over time, 
dust accumulates on the honeydew, fostering 
the growth of black sooty mold on the leaves, 
which can impede the photosynthesis process 
of the date palm (Neteler, Roiz, Rocchini, 
Castellani, & Rizzoli, 2011; Shah, Naeem, 
Nasir, Irfan-ul-Haq, & Hafeez, 2012). This 
pest disrupts the plant's vital functions, 
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weakens the tree, and leads to poor fruit 
quality and considerable financial losses. 
Prolonged and severe infestations can also 
result in the deterioration and eventual 
destruction of the palm tree (Carpenter, 
McMillen, Wengert, & Elmer, 1978). This 
damage can be minimized if the Dubas bug is 
controlled. 

Before addressing this pest issue, it is of 
utmost importance to accurately identify and 
pinpoint the location of the pest. Once this step 
is completed, farmers can implement various 
control measures and pest management 
techniques. A prevalent approach within this 
field involves the use of chemical insecticides, 
which can be applied through ground-based or 
aerial spraying methods (Al-Khatri, 2011). 
Identifying and localizing infestations through 
visual field inspection by farmers can be quite 
a challenge. This is mainly because the 
symptoms of the infestation can vary greatly 
depending on the tree species and the initial 
location of the infestation. Existing detection 
methods often prove ineffective when applied 
to large areas, as each tree must be examined 
individually (Wakil, Faleiro, & Miller, 2015). 
Human eye-based field inspections of 
extensive agricultural areas are limited by their 
high cost, complexity, time, and lack of 
precision (Pontius, Schaberg, & Hanavan, 
2020; Samuel Adelabu, Mutanga, & Cho, 
2012). Remote sensing has emerged as a 
critical tool for monitoring the health and 
condition of date palm plantations, offering a 
cost-effective and scalable alternative to 
traditional field inspections. Advances in this 
field have made this technology a promising 
option for detecting and mapping pests. Pests 
can cause considerable damage to plants, 
which manifests itself in a number of visible 
signs and symptoms. These signs can include a 
reduction in leaf size, loss of color, and 
changes in the overall layout of the plant 
canopy. These changes to the health and 
appearance of the plant can be attributed to the 
effects of the pests on the wavelengths of light 
reflected in the visible and near-infrared 
ranges (Silva, Olthoff, de la Mata, & Alonso, 
2013). 

The ability of remote sensing to detect 
changes in soil and vegetation provides 
valuable information for the implementation of 
site-specific management practices (Hicke & 
Logan, 2009; Weiss, Jacob, & Duveiller, 
2020). Hicke and Logan (2009) have shown 
that by using multispectral Quickbird satellite 
imagery with a spatial resolution of 2.4 m in 
conjunction with the maximum likelihood 
classification method, a map can be created 
depicting the mortality in whitebark pine 
caused by the mountain pine beetle outbreak. 
Oumar and Mutanga (2013) developed a 
model using Worldview-2 satellite data to 
assess its ability to predict the impact of the 
bronze beetle (Thaumastocoris peregrinus) on 
plantation forests. The monitoring model 
successfully predicted the extent of damage 
caused by the bronze beetle. It achieved a 
coefficient of determination of 65% and a root 
mean square error of 3.62 when tested with 
independent experimental data sets. In this 
investigation, the WorldView-2 sensor's red-
edge and near-infrared bands, along with 
specific pigment indices and red-edge indices, 
were found to play a critical role in accurately 
predicting damage. The characteristic leaf 
symptoms of Blumeria graminis, also known 
as surface powdery mildew, can be identified 
through the use of remote sensing technology. 
Zhang et al. (2014) attempted to create a 
distribution map of powdery mildew of winter 
wheat at the regional level using medium-
resolution satellite images (CCD sensor on the 
Huanjing satellite) using time series. The 
result of this study was an overall accuracy of 
78%. Yuan, Pu, Zhang, Wang, and Yang 
(2016) also investigated the use of high-
resolution (6 m) multispectral SPOT-6 satellite 
imagery to monitor the powdery mildew of 
winter wheat in an area of high disease 
incidence. They identified five key spectral 
features sensitive to the problem and 
developed a system to identify powdery 
mildew using the spectral angle mapping 
method. Validation with field data showed that 
the system achieved an accuracy of 78% and a 
kappa coefficient of 0.55. 

Using hyperspectral data, S. Adelabu, 
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Mutanga, Adam, and Sebego (2014) 
conducted a study on the degree of forest 
canopy cover change due to insect defoliation. 
The classification accuracy of the model 
created using the random forest algorithm was 
found to be 82.42%. The leaf loss in plants 
caused by the eucalyptus weevil (Gonipterus 
scutellatus) showed a strong relationship with 
the vegetation indices (VIs) calculated from 
the red edge bands of the WorldView-2 
satellite images (Lottering & Mutanga, 2016). 
A study Haghighian, Yousefi, and Keesstra 
(2022) investigated the performance of 
Sentinel-2 imagery in detecting oaks infested 
by T. viridana in the Zagros forest habitat. VIs 
were derived from T. viridana infested and 
non-infested areas. The results of this study 
revealed significant differences in VIs between 
infested and non-infested zones within the 
study site, with a confidence level of 99%. Al 
Shidi, Kumar, and Al-Khatri (2019) conducted 
a study on the detection of date palm Dubas 
bug infestation by analyzing the changes in 
reflectance at different degrees of infestation. 
They used high-resolution multispectral 
images from the WorldView-3 satellite to 
capture images of infested areas. The 
researchers identified 32 vegetation indicators 
and found that reflectance in the red and near-
infrared edge bands decreased with higher 
infestation levels. They also observed 
significant differences in the red edge, NIR1, 
and NIR2 spectral bands in high-infested areas 
compared to uninfested, low-infested, and 
medium-infested areas. 

While accessibility and affordability have 
been challenges, the Sentinel-2 A + B satellites 
from the European Space Agency have 
addressed these issues by offering free 
enhanced resolution and frequent revisits to 
monitor fields effectively. The spectral 
resolution of the data captures a wide range of 
bands crucial for assessing vegetation health, 
making it a valuable tool in various 
agricultural applications (Segarra, Buchaillot, 
Araus, & Kefauver, 2020). The timely 
identification of date palm infestation with the 
Dubas bug can be greatly supported by 
analyzing multispectral satellite images. This 

method offers a significant advantage in 
controlling the spread of the infestation. 
However, there is a notable absence of 
documented cases where researchers have 
used the readily available and free 
multispectral data from the Sentinel-2 satellite 
to detect date palm infestations. Every year, 
more than 200,000 tonnes of dates are 
harvested from groves in the eastern province 
of Kerman, Iran, and Dubas bugs infest 
between 2,000 and 3,000 hectares of these 
groves in the northern part of this province. 
The findings of Rostami, Assari, Pejman, and 
Shaker (2019) indicate that the majority of 
palm groves surveyed for Dubas bug pest 
density in Bam, Kerman Province, Iran, 
showed moderate to high levels of damage. In 
particular, over 69% of the orchards had 
moderate, high, or very high infestation 
densities. Consequently, more than 69% of the 
groves in the region require urgent 
intervention. Due to the significant presence of 
the Dubas bug in the area, the current study 
focuses on determining the possibility of 
detecting date Dubas bug infestation in the 
urban area of Bam by analyzing changes in 
reflectance at different levels of infestation 
using multispectral images from the Sentinel-2 
satellite. 

 
Materials and Methods 

Research site 

The palm groves in the urban area in the 
Iranian province of Kerman were selected as 
the study area (Fig. 1). The study area is 
located at approximately 29.00° north latitude 
and 58.30° east longitude and is characterized 
by its pronounced desert climate, which falls 
under the Köppen climate classification. This 
climate is characterized by very hot summers, 
during which temperatures can rise 
considerably, and mild winters, starkly 
contrasting to the summer months' heat. In 
addition, the region has low annual rainfall, 
which further determines the region's 
environmental conditions and affects the 
growth and survival of palm trees in urban 
groves. The first generation of Dubas bug in 
urban groves typically first appears in April. 
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The pest infestation peak occurs during the 
most nourishing period of the insect's life 
cycle, precisely in May, when the nymph is in 
its third and fourth stages of growth (Al Sarai, 
2015; Mahmoudi, Gheybi, & Khoshnoud, 
2020). Therefore, field and satellite 

measurements from the research site were 
conducted in May. The date palms in the urban 
area of Bam were divided into grids. Within 
each grid, a focal point was designated for 
collecting information, conducting training, 
and evaluating the classification model.  

 

 
Fig. 1. An aerial photo captured with a UAV of date fruit plantations in the urban area of Bam 

 
Field inspection 

A grid-based survey covering the 480.22 
km2 urban area of Bam (divided into 48 
individual 1 km2 grids) was conducted to map 
the spatial distribution and intensity of Dubas 
bug infestations following a seasonal regular 
pest outbreak. Tree density varied across grids 
due to the heterogeneous urban landscape of 
Bam, including houses, roads, and open 
spaces, with trees spaced approximately 8×8 
meters apart. Within each grid, the degree of 
infestation was determined using the average 
measurements of three randomly selected trees 
with a minimum distance of 20 meters to 

ensure an adjustment to the resolution of the 
Sentinel-2 images. This methodology enabled 
a comprehensive assessment of infestation 
patterns across the urban environment. As 
recommended by (Hussain, 1963), pest density 
was documented during the field 
measurements by categorizing the infestation 
at each point into three levels: low (with an 
average of 0-5 eggs per leaflet), medium (5-10 
eggs per leaflet), and high (more than 10 eggs 
per leaflet). Fig. 2 showcases an inspected 
example of date palm leaflets infested with the 
Dubas bug pest. 

 



Karimi et al., An Assessment of the Potential of Multispectral Sentinel-2 …     ? 

 
Fig. 2. An instance of the inspected leaflets from a date palm tree infested with the Dubas bug 

 

The GPS device (GARMIN eTrex Summit) 
was used to record the geographical 
coordinates of the sampling points with an 
accuracy of three meters. In May 2023, the 
research site underwent field visits, sampling, 
and the acquisition of satellite images 
concurrently. The time of sampling was 

chosen as close as possible to the time at 
which the satellite flew over the study area. 
The provided Fig. 3 displays the specific 
locations where inspections were conducted to 
gather data on infestation in the urban area of 
Bam. 

 

 
Fig. 3. The locations in the Bam urban area were inspected for information on infestation 

 

Sensing information and selected bands 

The Sentinel-2 satellite captures 
multispectral imagery across 13 bands in the 

visible and infrared ranges, providing high-
resolution data for vegetation analysis. The 
benefits of this satellite include free public 
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information, resolutions of 10, 20, and 60 
meters, a wide field of view of 290 km, and 
global coverage. The spatial resolution for the 
RGB and infrared bands is 10 meters (EOS, 
2018). For this particular study, eleven bands 
were selected for modeling, with bands 1 and 

10 excluded due to their sensitivity to aerosols 
and clouds as well as their lower spatial 
resolution. These bands are not suitable for 
mapping vegetation (Kumbula, Mafongoya, 
Peerbhay, Lottering, & Ismail, 2019). 

 
Table 1- Specifications of Sentinel-2 satellite bands (EOS, 2018) 

Band number Spatial resolution (meters) Bandwidth (nm) Characteristic 
1 60 453-433 Coastal aerosol 
2 10 523-458 Blue 
3 10 578-543 Green 
4 10 680-650 Red 
5 20 713-698 Red Edge 
6 20 748-734 Red Edge 
7 20 785-765 Red Edge 
8 10 900-785 Near Infrared (NIR) 

8A 20 875-855 Narrow NIR 
9 60 950-930 Water vapour 
10 60 1385-1365 Short Wave Infrared (SWIR) – Cirrus 
11 20 1655-1565 SWIR 
12 20 2280-2100 SWIR 

 
Downloading satellite data 

With a review period of 5 days, the 
Sentinel-2 satellite is suitable for detecting 
pest infestations in a timely manner. The 
sensor's image covers a large area with a width 
of 290 km (Segarra et al., 2020). The large 
size of the image poses a challenge in 
capturing and pre-processing the image. In this 
study, using the USGS website 
(https://earthexplorer.usgs.gov), the images of 

the Sentinel-2 satellite were divided into 
smaller sections prior to processing. Among 
the images reviewed in the specified time 
period, the image received from the region on 
May 8, 2023, with the Sentinel-2 sensor, had 
the lowest cloud cover (0.056). Therefore, this 
image was selected for further processing (Fig.  
4). 
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Fig. 4. Sentinel-2 image, May 8, 2023 

 

Data preprocessing and modeling a classifier 

The SNAP software platform, developed by 
the European Space Agency (ESA) for 
Sentinel mission support, was utilized for 
image processing, modeling, and data 
visualization. With the application of the 
SNAP software, the Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes 
(FLAASH) method was employed for 
atmospheric correction of the acquired images. 
The ground references were validated by 
including specific points such as buildings, 
roads, and other relevant elements. The 
Nearest Neighbor interpolation method was 
used when resampling satellite images to 
standardize all bands to a uniform 10-meter 

resolution. This technique assigns values to 
each "corrected" pixel based on the proximity 
of the nearest "uncorrected" pixel. The Nearest 
Neighbor method is recognized for its ease of 
implementation and its ability to maintain the 
original values within the unaltered scene. In 
particular, it transfers the digital number (DN) 
of the nearest input pixel to the corresponding 
output pixel determined by its spatial 
coordinates. 

Plant stress is evident through the presence 
of honeydew and dust deposits on the leaves, 
which cause the green color of the leaf to turn 
yellow over time. Vegetation indices (VIs) are 
used to analyze and explore vegetation in 
spectral satellite imagery, which requires 
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mathematical conversions of specific 
wavelength bands. Previous studies have 
highlighted vegetation indicators associated 
with this color change (Huang, Luo, Zhang, 
Zhao, & Wang, 2012; Mirik, Michels, 
Kassymzhanova-Mirik, & Elliott, 2007; Reisig 
& Godfrey, 2006; Saadikhani, Maharlooei, 
Rostami, & Edalat, 2023). In this study, the 

Normalized Difference Vegetation Index 
(NDVI) and Normalized Difference Moisture 
Index (NDMI) indicators were first analyzed 
to evaluate the effectiveness of the Sentinel-2 
satellite spectral bands in detecting vegetation 
and stress caused by Dobas insect infestations 
(Table 2). 

 
Table 2- List of spectral VIs derived from satellite imagery 

Index Equation Reference 

NDVI (NIR- Red)/(NIR+ Red) (Rouse, Haas, Schell, & Deering, 1974) 

NDMI (NIR1- NIR2)/(NIR1+ NIR2) (Bernstein, Jin, Gregor, & Adler-Golden, 2012) 

 
In addition to NDVI and NDMI, a number 

of remote sensing indices are available for 
analyzing Sentinel-2 satellite images (IDB, 
2024). To overcome the challenge of selecting 
an appropriate vegetation index for detecting 
vegetation stress due to Dubas bug infestation, 
one can use principal component analysis 
(PCA) to leverage the full spectral data of a 
satellite image. PCA, a statistical technique, 
simplifies the dimensions of the dataset to 
create an index for each specific location. By 
incorporating all spectral information from the 
satellite image, PCA can effectively highlight 
vegetation stress and pest infestations. This 
method enables comprehensive data analysis 
by taking into account all the captured bands. 
Reducing the data set through PCA helps 
identify hidden patterns and relationships that 
may not be apparent with a single vegetation 
index. After acquiring the multispectral images 
and performing a principal component 
analysis, a classification model based on the 
K-nearest neighbor using the KD-tree is 
created. The model takes into account data 
obtained from field measurements of date 
palm groves. Seventy percent of the field 
survey data from each degree of infestation 
(uninfested, low-infested, medium-infested, 
and high-infested areas) and other land 
features such as buildings, roads, etc., were 
used to train the model, while the remaining 
thirty percent was used for evaluation. Once 
the model is trained, its accuracy is assessed 
by comparing its predictions with the data 
obtained from field measurements. In this way, 

it is possible to assess how well the model can 
identify and classify the different infestation 
levels. 

 
Evaluation metrics of the classification model 

The confusion matrix provides a detailed 
evaluation of how well the model's predictions 
align with the actual class labels. It allows for 
the evaluation of a classification model's 
accuracy by comparing its results to a 
predetermined set of test data with known true 
values (Kulkarni, Chong, & Batarseh, 2020). It 
provides valuable insights, including True 
Positive (TP), for accurate predictions of 
positive cases, such as the correct diagnosis of 
a pest infestation. False Positive (FP) occurs 
when negative cases are mistakenly predicted 
as positive, for example, when a pest 
infestation is inaccurately diagnosed (Type I 
error). False Negative (FN) points out 
instances where positive cases are inaccurately 
predicted as negative, such as when a pest 
infestation is overlooked even though it is 
present (Type II error). Finally, True Negative 
(TN) signifies correct predictions of negative 
cases, e.g., when the absence of an infestation 
is correctly detected (Tiwari, 2022). These 
results could contribute significantly to 
understanding the performance of the model in 
scenarios related to infestation diagnosis. 

The metrics of accuracy (Eq. 1) and 
precision (Eq. 2) were also considered to 
assess the validity of the classification. 
Accuracy refers to the overall correctness of 
the classification results, indicating how well 
the model identified and categorized different 
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data points. Although accuracy is important 
for evaluating the results, it may not be 
reliable in cases of significant class imbalance, 
as it can be misleading. In such situations, 
alternative metrics such as precision should be 
considered. Due to the partial imbalance in the 
spatial infestation data, the precision metric 
was also considered. Precision measures the 
proportion of correctly predicted positive 
instances out of all instances predicted as 
positive, helping to assess the model's ability 
to identify true positive instances and avoid 
false positive instances. Analyzing these 
metrics together with the elements of the 
confusion matrix enables a more detailed 
evaluation of the performance of the 
classification model. This comprehensive 
approach provides a clearer understanding of 
the model's strengths and weaknesses. 

(1) Accuracy = 
𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(2) Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
Results and Discussion 

Data analysis 

Fig. 5 shows the map of the NDVI for the 
urban area of Bam, a simple and efficient 

method for quantifying vegetation. This index 
serves as an indicator of vegetation health and 
is determined by the reflection of light from 
plants at specific wavelengths ranging from -1 
to 1. Negative NDVI values (close to -1) 
indicate the presence of water, while values 
close to zero (-0.1 to 0.1) typically indicate 
barren areas such as rocks or sand. Low to 
moderately positive values (around 0.2 to 0.4) 
are associated with shrubs and grasslands, 
while high values are associated with trees 
and, in the context of Bam, with palm groves. 

The NDMI is used to assess the water 
content of plants and to monitor drought 
conditions, with a scale ranging from -1 to 1. 
Negative NDMI values (close to -1) usually 
indicate poor soils, while values close to zero 
(-0.2 to 0.4) are generally associated with 
water stress. On the other hand, high positive 
values indicate lush vegetation cover without 
water stress (around 0.4 to 1). This normalized 
index of moisture difference can also serve as 
an indicator of vegetation stress in the studied 
area. The normalized index map illustrating 
the estimated moisture difference for the urban 
area of Bam is shown in Fig. 6. It shows the 
effective differentiation of vegetation from 
other land features such as buildings, roads, 
and open land. 
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Fig. 5. Map of the Normalized Difference Vegetation Index estimated in the urban area of Bam 

 
Fig. 5 and Fig. 6 show the suitability of 

NDVI and NDMI for date palm detection and 
the likely ability to diagnose the dubas bus. 
However, in the field of vegetation analysis, 
other indices such as Green Chlorophyll 
Index-Green (CI-G), Green Difference 
Vegetation Index (GDVI), Green Normalized 
Difference Vegetation Index (GNDVI), Green 
Ratio Vegetation Index (GRVI), Normalized 

Red (NR), and Simple Ratio (SR) have also 
attracted interest. Atmospheric conditions, 
background noise, and sensor variations limit 
the indices. A study in Oman focused on the 
detection of palm Dubas bug invasions using 
WorldView-3 satellite imagery, which led to 
alternative indices being considered (Al Shidi 
et al., 2019). 
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Fig. 6. The Normalized Difference Moisture Index map of the estimated humidity difference for the urban area of Bam 

 
One technique is to use tasseled cap indices 

to assess changes in green, yellow, and 
lightness by merging data from different bands 
(Baig, Lifu, Tong, & Tong, 2014). The 
tasseled cap transformation converts the 
original image bands into a new set of bands 
with specific meanings that are useful for 
vegetation mapping. This process involves the 
formation of "linear combinations" of the 
original image bands, a concept similar to 
PCA (Kauth & Thomas, 1976; Peerbhay, 
Ilaria, Romano, & Naicker, 2022). Rather than 
calculating numerous vegetation indices, this 
study utilizes PCA analysis of all spectral 
bands of satellite imagery to identify key 
variables associated with Dubas bug pest 
infestation, soil composition, water bodies, and 
various land cover attributes. By using PCA, 
we can effectively reduce the dimensionality 
of the data while retaining essential 
information about plant health. This approach 

allows us to identify patterns and relationships 
in the data that may not be as obvious when 
analyzing vegetation indices separately. In 
addition, PCA analysis provides a 
comprehensive overview of all available 
spectral information, enabling a more holistic 
assessment of plant health. This method can 
help identify subtle variations and correlations 
between different spectral bands, leading to a 
more accurate and nuanced understanding of 
plant conditions. 

 
Classification results 

The K-nearest neighbor classification 
model was first trained and developed to 
distinguish date trees from other land features 
such as buildings, roads, and soil. They were 
then used to identify areas of pest infestation 
and categorize the degree of infestation into 
three levels: low, medium, and high. As 
mentioned above, 70% of the labeled samples 
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were assigned for training, while the 
remaining 30% were used for evaluation.  

In the first step of building the model, field 
measurements were collected and categorized 
into two classes: 0 and 1. Class 0 represents 
features that are not date palms, such as 
buildings, roads, and land, while class 1 
represents date palms. The results show that 
the K-nearest neighbor classification model 
using the KD-tree was able to effectively 
identify the unique features of date palms and 

distinguish them from other land features 
(Table 3). The calculated Root Mean Squared 
Error (RMSE) of 0.1311 indicates the average 
variance between the values predicted by the 
model and the actual values and shows the 
ability of the model to accurately predict the 
target value. In addition, the KD Tree KNN 
Classifier showed 98.28 percent correct 
predictions when evaluating the test dataset, 
demonstrating its effectiveness in 
discriminating date palms. 

 
Table 3- A summary of the results of classifying date palms from other land feature pixels 

Classification metrics Class 1: date tree Class 0: other 

Accuracy 0.9828 0.9828 

Precision 0.9801 0.9855 

Correlation 0.9662 0.9662 

Error Rate 0.0172 0.0172 

True Positives 2464 2450 

False Positives 50 36 

True Negatives 2450 2464 

False Negatives 36 50 

 
In addition, classification models were 

developed to identify infestation by 
categorizing the field measurement data into 
four classes based on the degree of tree 
infestation: uninfested, light-infested, 
moderate-infested, and heavy-infested. Other 
land factors were assigned to a separate 
category. After training and evaluation of the 
classification algorithms, the KD-tree-based 
K-nearest neighbor classifier again showed the 
best performance in detecting the presence and 
severity of infestation at the date palm sites. 
The classifier uses a KD-tree, a data structure 
that organizes the training data for an efficient 
nearest neighbor search. To evaluate the 
accuracy of the classification, the classification 
value for each measurement point was 
extracted, and corresponding evaluation 
metrics were created. These metrics are 
calculated by conducting a pixel-by-pixel 
comparison between the training samples in 
the ground truth and the corresponding pixels 
in the classification results. 

Table 4 provides an overview of the 
classification assessment for different levels of 
infestation of the date palm Dubas bug. The 
precision metric, which indicates the accuracy 
of the classification model, was calculated for 
each category. A precision value of 0.98 for 
the detection of other land features shows that 
the model is very accurate in identifying these 
pixels. For date palm locations without 
infestation, the precision score is 0.67, which 
means that the model correctly identifies 67% 
of these pixels. This suggests that uninfested 
areas may be misclassified as Dubas bug 
infestations. Also, for low, medium, and high 
infestations, the precision values are 0.74, 
0.77, and 0.66, respectively, indicating varying 
degrees of accuracy in identifying the severity 
of Dubas bug infestation. These metrics 
suggest that the model performs relatively well 
in identifying low and medium infestations but 
is less accurate in identifying severe 
infestations. 

 
Table 4- An overview of the classification results for multiple infestation levels of the date palm Dubas bug 

Classification metrices Class 0: other Class 1: level_0  Class 2: level_1  Class 3: level_2  Class 4: level_3  

Accuracy 0.9951 0.9586 0.9140 0.9093 0.8920 

Precision 0.9970 0.6667 0.7450 0.7709 0.6649 
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Correlation 0.9899 0.4131 0.7583 0.7146 0.6771 

Error Rate 0.0049 0.0414 0.0860 0.0907 0.1080 

True Positives 1982 60 789 636 629 

False Positives 6 30 270 189 317 

True Negatives 2902 4645 3697 3827 3749 

False Negatives 18 173 152 256 213 

 
The KD classifier achieved an accuracy of 

83%, correctly predicting the infestation 
category for 83% of the test dataset. 
Furthermore, the root mean square error 
(RMSE) for the classifier's predictions is 
0.7693. The RMSE is a measure of the average 
difference between the predicted and actual 
values, with lower values indicating better 
accuracy. In this case, the RMSE indicates that 
the classifier's predictions are relatively close 
to the actual values. Overall, the scoring 
metric performs well in accurately 
categorizing Dubas bug infestations, with 

some room for improvement in distinguishing 
between infested and non-infested areas.  

Fig. 7 illustrates the predicted distribution 
of Dubas bug infestations in the urban area of 
Bam, as derived from multispectral satellite 
imagery. On Monday, May 8, 2023, the areas 
with high infestation are highlighted in red. 
Through the utilization of multispectral 
satellite data and machine learning-based 
classification, a method for detecting Dubas 
bug infestation in date palms using remote 
sensing was successfully developed and 
evaluated with high validity and accuracy. 

 

 
Fig. 7. Prediction of the pixels infected with the palm weevil pest in Bam city 

 

Conclusion 

This research signifies a substantial 
advancement in the management of palm 

dubas within the Bam urban region through 
the integration of Sentinel-2 multispectral data 
with conventional pest management 
techniques. This combination of technological 
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innovation and established practices has the 
capacity to improve the safeguarding of date 
palms against this harmful pest. The suggested 
remote sensing methodology presents a cost-
efficient and accessible approach, functioning 
as a practical resource for farmers and 
agricultural managers. A key benefit of this 
strategy lies in its capacity for the early 
identification of Dubas bug infestations, in 
addition to the continuous observation of pest 
populations and their distribution throughout 
date palm groves. Early identification and 
continuous monitoring are essential as they 
empower stakeholders to enact timely 
responses to potential outbreaks. By averting 
extensive infestations, this proposed method 
could significantly diminish fruit damage, 
leading to increased yields and enhanced date 
quality. As a result, the livelihoods of farmers 
and communities reliant on date palm 
agriculture could be bolstered. Subsequent 
research initiatives should emphasize 
leveraging the capabilities of convolutional 
neural networks (CNNs) to enhance the 

precision of Dubas bug detection. Greater 
detection accuracy will facilitate more 
effective and focused interventions, ultimately 
optimizing pest management strategies. 
However, the expansion of this innovative 
approach to broader geographic regions or 
varying environmental conditions necessitates 
a meticulous and comprehensive evaluation of 
numerous factors. These factors encompass 
discrepancies in climate, topography, and the 
distinctive attributes of date palm cultivation 
across different areas. 
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هجوم آفت زنجرک در  ییشناسا یبرا ۲-نلیسنت یفیچندط یاماهواره ر یتصاو لیپتانس یابیارز

 مناطق کشت نخل خرما 

 
 3یرنجبر ورند  فروغ، ۲یزهد  یهاد، ۲یعصار محمدجواد، *1ی م ی کر یهاد

 25/07/1403تاریخ دریافت:  
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 چکیده

شناسایی محل آلودگی برای کنترل موثر آفااا  کند. زنجرک خرما با تضعیف درختان خرما و کاهش تولید میوه، کشاورزی در خاورمیانه را تهدید می
خصوص در مناطق وساای . ایاان مهالعااه توانااایی تصاااویر بر باشد، بهتواند پرهزینه، دشوار و زمانبا این حال، بازرسی منظم میدانی می.  بسیار مهم است

های هجوم زنجرک خرما برای بهبود نظار  و فعال کردن کنترل فوری آفا ، در نتیجه کاااهش را برای شناسایی مکان  2-ای چندطیفی سنتینلماهواره
همزمان با اوج شیوع آفت انجام شد. شد  آلودگی از طریااق  1402آزمایش صحرایی برای ارزیابی آلودگی در اردیبهشت  .کندخسارا  مالی، ارزیابی می
سااازی دست آمد، باارای تصااحیم، آمادهاز یک منهقه خاص به 2-های منهقه شهری بم تعیین شد. تصاویر چندطیفی سنتینلشمارش آفا  در نخلستان

 KD مبتناای باار درخاات K-Nearest Neighbor کنندهبندیپردازش، مدل طبقههای خام و استخراج اطلاعا  پردازش شد. پس از مرحله پیشداده

شده، شامل مناطق غیرآلوده گیریهای میدانی اندازهدرصد از داده  70های آلوده انتخاب شد. برای آموزش،  برای توسعه مدلی با تمرکز بر شناسایی مکان
مانااده درصااد با ی 30ها و غیره اسااتفاده شااد. ها، جادههای زمین مانند ساختمانو مناطق با سه سهم آلودگی از سبک تا شدید و همچنین سایر ویژگی

هااای بینیدرصااد پیش ۸3های حقیقاات پایااه، در حاادود دیده در مقایسه با دادهآموزش بنددیده استفاده شد. مدل طبقهها برای ارزیابی مدل آموزشداده
و یادگیری ماشینی را برای شناسایی هجوم حشرا  بااه   2-دست آورد. این د ت، توانایی تصاویر چندطیفی سنتینلدرست را با مجموعه داده آزمایشی به

 .تواند مدیریت هدفمند و پایدار آفا  را تسهیل کندکند و میها برجسته میزنجرک خرما در نخلستان

 
 بندی، میوه خرما سنجش از دور، مدل طبقه ،های میدانیبازرسی های کلیدی: واژه
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