Andrady, A.L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
- Arnon, D.I. (1949). Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1
- Boonsong, P., Ussawarujikulchai, A., Prapagdee, B., & Pansak, W. (2025). Contamination of microplastics in greenhouse soil subjected to plastic mulching. Environmental Technology & Innovation, 37, 103991. https://doi.org/10.1016/j.eti.2024.103991
- Chen, F., Aqeel, M., Khalid, N., Nazir, A., Irshad, M.K., Akbar, M.U., Alzuaibr, F.M., Ma, & JNoman, A. (2023). Interactive effects of polystyrene microplastics and Pb on growth and phytochemicals in mung bean (Vigna radiata L.). Journal of Hazardous Materials, 449, 130966. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.130966
- Chen Y, Li, Y, Liang, X, Lu, S, Ren, J, Zhang, Y, Han, Z, Gao, BSun, K. (2024). Effects of microplastics on soil carbon pool and terrestrial plant performance. Carbon Research, 3(1), 1-23. https://doi.org/10.1007/s44246-024-00124-1
- De Silva YSK, Rajagopalan, UM, Kadono, H. (2021). Microplastics on the growth of plants and seed germination in aquatic and terrestrial ecosystems. Global Journal of Environmental Science & Management (GJESM), 1, 7(3).
- Gao W, Wu, D, Zhang, D, Geng, Z, Tong, M, Duan, Y, Xia, W, Chu, JYao, X. (2024). Comparative analysis of the effects of microplastics and nitrogen on maize and wheat: Growth, redox homeostasis, photosynthesis, and AsA-GSH cycle. Science of The Total Environment, 932, 172555. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.172555
- Geyer R, Jambeck, JRLaw, KL. (2017). Production, use, and fate of all plastics ever made. Science advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
- Gong W, Zhang, W, Jiang, M, Li, S, Liang, G, Bu, Q, Xu, L, Zhu, HLu, A. (2021). Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Science of the Total Environment, 796, 148750. https://doi.org/10.1016/j.scitotenv.2021.148750
- Horton AA, Walton, A, Spurgeon, DJ, Lahive, ESvendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127-141. https://doi.org/10.1016/j.scitotenv.2017.01.190
- Hurley R, Binda, G, Briassoulis, D, Carroccio, SC, Cerruti, P, Convertino, F, Dvořáková, D, Kernchen, S, Laforsch, CLöder, MG. (2024). Production and characterisation of environmentally relevant microplastic test materials derived from agricultural plastics. Science of the Total Environment, 946, 174325. https://doi.org/10.1016/j.scitotenv.2024.174325
- Iqbal B, Zhao, X, Khan, KY, Javed, Q, Nazar, M, Khan, I, Zhao, X, Li, GDu, D. (2024). Microplastics meet invasive plants: Unraveling the ecological hazards to agroecosystems. Science of the Total Environment, 906, 167756. https://doi.org/10.1016/j.scitotenv.2023.167756
- Jadhav B Medyńska-Juraszek, A. (2024). Microplastic and Nanoplastic in Crops: Possible Adverse Effects to Crop Production and Contaminant Transfer in the Food Chain. Plants, 13(17), 2526. https://doi.org/10.3390/plants13172526
- Jia L, Liu, L, Zhang, Y, Fu, W, Liu, X, Wang, Q, Tanveer, MHuang, L. (2023). Microplastic stress in plants: effects on plant growth and their remediations. Frontiers in plant science, 14, 1226484. https://doi.org/10.3389/fpls.2023.1226484
- Kumar D, Biswas, JK, Mulla, SI, Singh, R, Shukla, R, Ahanger, MA, Shekhawat, GS, Verma, KK, Siddiqui, MWSeth, CS. (2024). Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. Plant Physiology and Biochemistry, 108795. https://doi.org/10.1016/j.plaphy.2024.108795
- Li F, Huang, D, Wang, G, Cheng, M, Chen, H, Zhou, W, Xiao, R, Li, R, Du, LXu, W. (2024). Microplastics/nanoplastics in porous media: Key factors controlling their transport and retention behaviors. Science of The Total Environment, 20;926:171658. https://doi.org/10.1016/j.scitotenv.2024.171658
- Li R, Tu, C, Li, L, Wang, X, Yang, J, Feng, Y, Zhu, X, Fan, QLuo, Y. (2023). Visual tracking of label-free microplastics in wheat seedlings and their effects on crop growth and physiology. Journal of Hazardous Materials, 456, 131675. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.131675
- Li X, Wang, R, Dai, W, Luan, YLi, J. (2023). Impacts of micro (nano) plastics on terrestrial plants: germination, growth, and litter. Plants, 12(20), 3554. https://doi.org/10.3390/plants12203554
- Lian J, Wu, J, Xiong, H, Zeb, A, Yang, T, Su, X, Su, LLiu, W. (2020). Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of hazardous materials, 385, 121620. https://doi.org/10.1016/j.jhazmat.2019.121620
- Liang R, Zhang, C, Zhang, R, Li, Q, Liu, HWang, X-X. (2024). Effects of microplastics derived from biodegradable mulch film on different plant species growth and soil properties. Science of The Total Environment, 948, 174899. https://doi.org/10.1016/j.scitotenv.2024.174899
- Pignattelli S, Broccoli, ARenzi, M. (2020). Physiological responses of garden cress (L. sativum) to different types of microplastics. Science of The Total Environment, 727, 138609. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138609
- Rillig MC, Lehmann, A, de Souza Machado, AAYang, G. (2019). Microplastic effects on plants. New phytologist, 223(3), 1066-1070. https://doi.org/10.1111/nph.15794
- Rochman CM, Brookson, C, Bikker, J, Djuric, N, Earn, A, Bucci, K, Athey, S, Huntington, A, McIlwraith, HMunno, K. (2019). Rethinking microplastics as a diverse contaminant suite. Environmental toxicology and chemistry, 38(4), 703-711. https://doi.org/10.1002/etc.4371
- Shiferaw B, Smale, M, Braun, HJ, Duveiller, E, Reynolds, M, Muricho, G. (2013). Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food security, 5, 291-317. https://doi.org/10.1007/s12571-013-0263-y
- Szabados L, Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in plant science, 15(2), 89-97. https://doi.org/10.1016/j.tplants.2009.11.009
- Tian L, Jinjin, C, Ji, R, Ma, YYu, X. (2022). Microplastics in agricultural soils: sources, effects, and their fate. Current Opinion in Environmental Science & Health, 25, 100311. https://doi.org/10.1016/j.coesh.2021.100311
- Yan Y, Yang, H, Du, Y, Li, XLi, X. (2024). Effects and molecular mechanisms of polyethylene microplastic oxidation on wheat grain quality. Journal of Hazardous Materials, 5;474:134816. https://doi.org/10.1016/j.jhazmat.2024.134816
- Yao Z, Seong, H.J, Jang, Y.S. (2022). Environmental toxicity and decomposition of polyethylene. Ecotoxicology and Environmental Safety, 242, 113933. https://doi.org/10.1016/j.ecoenv.2022.113933
- Zhou Y, Wang, J, Zou, M, Jia, Z, Zhou, SLi, Y. (2020). Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. Science of the Total Environment, 748, 141368. https://doi.org/10.1016/j.scitotenv.2020.141368
|