- Ahola, J. K., Baker, D. S., Burns, P. D., Mortimer, R. G., Enns, R. M., Whittier, J. C., & Engle, T. E. (2004). Effect of copper, zinc, and manganese supplementation and source on reproduction, mineral status, and performance in grazing beef cattle over a two-year period. Journal of Animal Science, 82(8), 2375-2383. https://doi.org/10.2527/2004.8282375x
- Hossein Abadi, M., Ghoorchi, T., & Toghdory, A. (2021). Effect of Saccharomyces cerevisiae on growth performance, nutrient digestibility, serum metabolites and feeding behavior of Simmental dairy calves. Journal of Animal Production, 24(1), 35-41. https://doi.org/10.22059/jap.2022.331033.623640
- Alijani, K., Rezaei, J., & Rouzbehan, Y. (2020). Effect of nano-ZnO, compared to ZnO and Zn-methionine, on performance, nutrient status, rumen fermentation, blood enzymes, ferric reducing antioxidant power and immunoglobulin G in sheep. Animal Feed Science and Technology, 267, 114532. https://doi.org/10.1016/j.anifeedsci.2020.114532
- Bailey, C. B., & Mears, G. J. (1990). Birth weight in calves and its relation to growth rates from birth to weaning and weaning to slaughter. Canadian Journal of Animal Science, 70(1), 167-173. https://doi.org/10.4141/cjas90-019
- Bilici, M., Efe, H., Köroğlu, M. A., Uydu, H. A., Bekaroğlu, M., & Değer, O. (2001). Antioxidative enzyme activities and lipid peroxidation in major depression: Alterations by antidepressant treatments. Journal of Affective Disorders, 64(1), 43-51. https://doi.org/10.1016/S0165-0327(00)00199-3
- Ceppi, A., & Blum, J. W. (1994). Effects of growth hormone on growth performance, haematology, metabolites and hormones in iron‐deficient veal calves. Journal of Veterinary Medicine Series A, 41(1‐10), 443-458. https://doi.org/10.1111/j.1439-0442.1994.tb00111.x
- Chang, M. N., Wei, J. Y., Hao, L. Y., Ma, F. T., Li, H. Y., Zhao, S. G., & Sun P. (2020). Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves. Journal of Dairy Science, 103, 6100-6113. https://doi.org/10.3168/jds.2019-17610
- Dobson, H., Smith, R. F., Royal, M. D., Knight, C. H., & Sheldon, I. M. (2007). The high‐producing dairy cow and its reproductive performance. Reproduction in Domestic Animals, 42, 17-23. https://doi.org/10.1111/j.1439-0531.2007.00906.x
- Eisa, A. M., & Elgebaly, L. S. (2010). Effect of ferrous sulphate on haematological, biochemical and immunological parameters in neonatal calves. Veterinaria Italiana, 46(3), 329-335. https://doi.org/10.3168/jds.2007-0219.
- Feldmann, H. R., Williams, D. R., Champagne, J. D., Lehenbauer, T. W., & Aly, S. S. (2019). Effectiveness of zinc supplementation on diarrhea and average daily gain in pre-weaned dairy calves: A double-blind, block-randomized, placebo-controlled clinical trial. PLoS One, 14(7), e0219321. https://doi.org/10.1371/journal.pone.0219321
- Gelsinger, S. L., Pino, F., Jones, C. M., Gehman, A. M., & Heinrichs, A. J. (2016). Effects of a dietary organic mineral program including mannan oligosaccharides for pregnant cattle and their calves on calf health and performance. The Professional Animal Scientist, 32(2), 205-213. https://doi.org/10.15232/pas.2015-01475
- Heinrichs, A. J., Jones, C. M., VanRoekel, L. R., & Fowler, M. A. (2003). Calf Track: A system of dairy calf workforce management, training, and evaluation and health evaluation. Journal of Dairy Science, 86(1), 115.
- Hess, J. B., Downs, K. M., Macklin, K. S., Norton, R. A., & Bilgili, S. F. (2008). Organic Trace Minerals for Broilers and Breeders. Poultry Science Department, Auburn University, AL, School of Agribusiness and Agrisciences, Middle Tennessee State University, Murfreesboro, TN.
- Hess, J. B., & Zimmermann, M. B. (2004). The effect of micronutrient deficiencies on iodine nutrition and thyroid metabolism. International Journal for Vitamin and Nutrition Research, 74(2), 103-115. https://doi.org/10.1024/0300-9831.74.2.103
- Krpálková, L., Cabrera, V. E., Kvapilík, J., Burdych, J., & Crump, P. (2014). Associations between age at first calving, rearing average daily weight gain, herd milk yield and dairy herd production, reproduction, and profitability. Journal of Dairy Science, 97(10), 6573-6582. https://doi.org/10.3168/jds.2013-7497
- Lopes, R. B., Bernal-Córdoba, C., Fausak, E. D., & Silva-del-Río, N. J. P. O. (2021). Effect of prebiotics on growth and health of dairy calves: A protocol for a systematic review and meta-analysis. PLoS One, 16(6), e0253379. https://doi.org/10.1371/journal.pone.0253379
- Ma, T., & Suzuki, Y. (2018). Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Veterinary Immunology and Immunopathology, 205, 35-48. https://doi.org/10.1016/j.vetimm.2018.10.004
- Maggini, S., Wintergerst, E. S., Beveridge, S., & Hornig, D. H. (2007). Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. British Journal of Nutrition, 98(S1), S29-S35. https://doi.org/10.1017/S0007114507832971
- Mallaki, M., Norouzian, M. A., & Khadem, A. A. (2015). Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs. Turkish Journal of Veterinary and Animal Sciences, 39(1), 75-80. https://doi.org/10.3906/vet-1405-79
- Mandal, G. P., Dass, R. S., Isore, D. P., Garg, A. K., & Ram, G. C. (2007). Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus× Bos taurus) bulls. Animal Feed Science and Technology, 138(1), 1-12. https://doi.org/10.1016/j.anifeedsci.2006.09.014
- Marques, R. S., Cooke, R. F., Rodrigues, M. C., Cappellozza, B. I., Mills, R. R., Larson, C. K., Moriel, P., & Bohnert, D. W. (2016). Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. Journal of Animal Science, 94(3), 1215-1226. https://doi.org/10.2527/jas.2015-0036
- McDowell, L. R. (2012). Vitamins in Animal Nutrition: Comparative Aspects to Human Nutrition. Elsevier, San Diego, United States.
- Mousavi-Haghshenas, M. A., Hashemzadeh, F., Ghorbani, G. R., Ghasemi, E., Rafiee, H., & Ghaffari, M. H. (2022). Trace minerals source in calf starters interacts with birth weights to affect growth performance. Scientific Reports, 12(1), 18763. https://doi.org/10.1038/s41598-022-23459-4.
- Nocek, J. E., Socha, M. T., & Tomlinson, D. J. (2006). The effect of trace mineral fortification level and source on performance of dairy cattle. Journal of Dairy Science, 89(7), 2679-2693. https://doi.org/10.3168/jds.S0022-0302(06)72344-X
- Olson, P. A., Brink, D. R., Hickok, D. T., Carlson, M. P., Schneider, N. R., Deutscher, G. H., Adams, D. C., Colburn, D. J., & Johnson, A. B. (1999). Effects of supplementation of organic and inorganic combinations of copper, cobalt, manganese, and zinc above nutrient requirement levels on postpartum two-year-old cows. Journal of Animal Science, 77(3), 522-532. https://doi.org/10.2527/1999.773522x
- Osorio, J. S., Wallace, R. L., Tomlinson, D. J., Earleywine, T. J., Socha, M. T., & Drackley, J. K. (2012). Effects of source of trace minerals and plane of nutrition on growth and health of transported neonatal dairy calves. Journal of Dairy Science, 95(10), 5831-5844. https://doi.org/10.3168/jds.2011-5042
- Pino, F., & Heinrichs, A. J. (2016). Effect of trace minerals and starch on digestibility and rumen fermentation in diets for dairy heifers. Journal of Dairy Science, 99(4), 2797-2810. https://doi.org/10.3168/jds.2015-10034
- Predieri, G., Tegoni, M., Cinti, E., Leonardi, G., & Ferruzza, S. (2003). Metal chelates of 2-hydroxy-4-methylthiobutanoic acid in animal feeding: preliminary investigations on stability and bioavailability. Journal of Inorganic Biochemistry, 95(2-3), 221-224. https://doi.org/10.1016/S0162-0134(03)00067-9
- Rahbar, R., Abdullahpour, R., & Sadeghi-Sefidmazgi, A. (2020). Effect of calf birth weight on milk production of Holstein dairy cattle in desert climate. Journal of Animal Behaviour and Biometeorology, 4(3), 65-70. http://dx.doi.org/10.14269/2318-1265/jabb.v4n3p65-70
- Ryan, A. W., Kegley, E. B., Hawley, J., Powell, J. G., Hornsby, J. A., Reynolds, J. L., & Laudert, S. B. (2015). Supplemental trace minerals (zinc, copper, and manganese) as sulfates, organic amino acid complexes, or hydroxy trace-mineral sources for shipping-stressed calves. The Professional Animal Scientist, 31(4), 333-341. https://doi.org/10.15232/pas.2014-01383
- SAS (2004). User’s Guide. Version 9.1: Statistics. SAS Institute, Cary, NC.
- Siciliano Jones, J. L., Socha, M. T., Tomlinson, D. J., & DeFrain, J. M. (2008). Effect of trace mineral source on lactation performance, claw integrity, and fertility of dairy cattle. Journal of Dairy Science, 91(5), 1985-1995. https://doi.org/10.3168/jds.2007-0779
- Spears, J. W. (1996). Organic trace minerals in ruminant nutrition. Animal Feed Science and Technology, 58(1-2), 151-163. https://doi.org/10.1016/0377-8401(95)00881-0
- Spears, J. W., & Kegley, E. B. (2002). Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. Journal of Animal Science, 80(10), 2747-2752. https://doi.org/10.1093/ansci/80.10.2747
- Spears, J. W., & Weiss, W. P. (2014). Invited review: Mineral and vitamin nutrition in ruminants. The Professional Animal Scientist, 30(2), 180-191. https://doi.org/10.15232/S1080-7446(15)30103-0
- Spears, J. W., Schlegel, P., Seal, M. C., & Lloyd, K. E. (2004). Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science, 90(2-3), 211-217. https://doi.org/10.1016/j.livprodsci.2004.05.001
- Stamey, J. A., Janovick, N. A., Kertz, A. F., & Drackley, J. K. (2012). Influence of starter protein content on growth of dairy calves in an enhanced early nutrition program. Journal of Dairy Science, 95(6), 3327-3336. https://doi.org/10.3168/jds.2011-5107
- Stanton, T. L., Whittier, J. C., Geary, T. W., Kimberling, C. V., & Johnson, A. B. (2000). Effects of trace mineral supplementation on cow-calf performance, reproduction, and immune function. The Professional Animal Scientist, 16(2), 121-127. https://doi.org/10.15232/S1080-7446(15)31674-0
- Teixeira, A. G. V., Lima, F. S., Bicalho, M. L. S., Kussler, A., Lima, S. F., Felippe, M. J., & Bicalho, R. C. (2014). Effect of an injectable trace mineral supplement containing selenium, copper, zinc, and manganese on immunity, health, and growth of dairy calves. Journal of Dairy Science, 97(7), 4216-4226. https://doi.org/10.3168/jds.2013-7625
- Tiffany, M. E., & Spears, J. W. (2005). Differential responses to dietary cobalt in finishing steers fed corn-versus barley-based diets. Journal of Animal Science, 83(11), 2580-2589. https://doi.org/10.2527/2005.83112580x
- Tom Dieck, H., Döring, F., Roth, H. P., & Daniel, H. (2003). Changes in rat hepatic gene expression in response to zinc deficiency as assessed by DNA arrays. The Journal of Nutrition, 133(4), 1004-1010. https://doi.org/10.1093/jn/133.4.1004
- Tomlinson, D. J., Mülling, C. H., & Fakler, T. M. (2004). Invited review: formation of keratins in the bovine claw: Roles of hormones, minerals, and vitamins in functional claw integrity. Journal of Dairy Science, 87(4), 797-809. https://doi.org/10.3168/jds.S0022-0302(04)73223-3
- Underwood, E. J., & Suttle, N. F. (1999). The Mineral Nutrition of Livestock. 3rd edition. CABI Publishing, CAB International, Wallingford, 614. https://doi.org/10.1017/s0007114500001689
- Vedovatto, M., Moriel, P., Cooke, R. F., Costa, D. S., Faria, F. J. C., Neto, I. M. C., Bento, A. L. L., Rocha, R. F. A. T., Ferreira, L. C. L., Almeida, R. G., Santos, S. A., & Franco, G. L. (2019). Effects of a single trace mineral injection on body parameters, ovarian structures, pregnancy rate and components of the innate immune system of grazing Nellore cows synchronized to a fixed-time AI protocol. Livestock Science, 225, 123-128. https://doi.org/10.1016/j.livsci.2019.05.011
- Zaboli, K., & Elyasi, M. (2021). Effects of different amounts of zinc on performance and some blood and ruminal parameters in Holstein suckling calves. Journal of Ruminant Research, 9(3), 93-106. (In Persian).
- Zarbalizadeh-Saed, A., Seifdavati, J., Abdi-Benemar, H., Salem, A. Z., Barbabosa-Pliego, A., Camacho-Diaz, L. M., Fadayifar , A., & Seyed-Sharifi, R. (2020). Effect of slow-release pellets of selenium and iodine on performance and some blood metabolites of pregnant Moghani ewes and their lambs. Biological Trace Element Research, 195, 461-471. https://doi.org/10.1007/s12011-019-01853-w
- Zimmermann, M. B. (2006). The influence of iron status on iodine utilization and thyroid function. Annual Review of Nutrition, 26(1), 367-389. https://doi.org/10.1146/annurev.nutr.26.061505.111236
|