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This paper investigates the dynamic behavior of the fractional Gauss
map with fixed memory length, highlighting its potential for efficient
chaotic modeling. Unlike classical fractional systems that require the full
history of states, the proposed approach introduces a memory-limited ver-
sion, significantly reducing computational cost while preserving complex
dynamical features. Through bifurcation analysis, Lyapunov exponents,
and the 0 — 1 test for chaos, the study demonstrates that the system ex-
hibits a rich variety of behaviors, including periodic, quasi-periodic, and
chaotic regimes, depending on the fractional order and memory size. A
comparative evaluation with the classical Gauss map reveals that the fixed-
memory model retains similar chaotic characteristics, but with improved
computational efficiency. These findings suggest that fixed-memory frac-
tional maps offer a practical alternative for simulating chaotic systems in

real-time applications.

AMS subject classifications (2020): Primary 39A33; Secondary 37D45, 37N30.

Keywords: Chaos; Fractional difference equations; Gauss map; Fixed mem-

ory length; Bifurcation; Lyapunov exponent.

1 Introduction

Chaotic systems play a fundamental role in the modeling and analysis of non-
linear dynamics across various disciplines, including mathematics, physics,
biology, engineering and optimization [3, 4, 5, 7, 6, 8, 11, 10, 12, 13, 14, 15,
24, 26, 27, 25]. During this period, several chaotic discrete systems have been
proposed, such as the Logistic map, Tent map, Gauss map, Hénon map, and
Lozi map [21, 23, 28, 35, 37, 39].

The Gauss map, in particular, has been widely studied due to its rich
and sensitive dependence on initial conditions, making it a valuable tool for
exploring chaotic behavior in discrete systems [39]. In parallel, the theory
of fractional-order systems has gained increasing attention over the past two
decades as an effective framework for modeling systems with memory and
hereditary properties [17, 16, 31, 32, 41]. Fractional difference equations pro-
vide a generalization of traditional difference equations, allowing the present

state to depend on all past states with power-law weighting.
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However, a significant limitation of classical fractional models lies in their
requirement to store and process the entire history of the system, which can
lead to high computational and memory costs. This challenge becomes espe-
cially critical in real-time simulations or large-scale systems [16, 30, 33, 41].
To overcome this issue, researchers have introduced fractional systems with
fixed memory length, where only a finite number of past states contribute
to the current state. This approach reduces computational complexity while
preserving key dynamic features of the system [2, 18, 19]. Despite its po-
tential, there is still a lack of comprehensive studies exploring how memory
truncation affects the long-term behavior of chaotic fractional maps, par-
ticularly in comparison with both classical (nonfractional) and full-memory

fractional systems.

To address these limitations, this study employs a fixed memory length
approach, which restricts the influence of past states to a finite window.
This strategy not only reduces computational complexity but also reflects
practical constraints encountered in real-world systems. In many applica-
tions, such as real-time control systems, embedded cryptographic protocols,
and biological modeling, memory and computational resources are severely
limited [9, 22, 36]. For instance, control algorithms deployed on microcon-
trollers must operate under strict timing and memory constraints, while cryp-
tographic systems benefit from low-latency and lightweight implementations.
Similarly, in biological modeling, such as simulating cardiac activity, it is
often reasonable to assume that only a limited history influences the current
state due to physiological time scales. Fixed-memory fractional models thus
provide a realistic and efficient alternative, balancing dynamical richness with
feasibility.

This paper addresses this gap by investigating the dynamic behavior of
the fractional Gauss map with fixed memory length. We employ several
tools-such as bifurcation diagrams, Lyapunov exponents, and the 0—1 test to
analyze the system’s response under various parameter values. Additionally,
we perform a comparative analysis with the classical Gauss map to evaluate
the impact of fixed memory on both chaos and computational performance.
The results demonstrate that the proposed model maintains the richness of

chaotic dynamics while achieving improved computational efficiency, making
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it a promising approach for practical applications where memory and speed

are critical factors.

2 Fractional discrete-time calculus

Fractional discrete-time calculus extends classical difference equations by al-
lowing the order of differencing to be noninteger (fractional), which makes it
suitable for modeling systems with memory and hereditary properties. This
is particularly useful in fields where past states influence current behavior in a
gradual and persistent manner. One of the key operators used in this context
is the Caputo-like delta fractional difference, introduced in [1, Definition 13].
This operator is a discrete analog of the Caputo derivative from continuous
fractional calculus, and it is defined in a way that aligns naturally with initial
conditions, making it more convenient for modeling real-world systems.

Let ¢ € R be fixed and let N, = {¢,¢+1,¢+2,...} denote the isolated
time scale. For the function u(n), the delta difference operator A is defined

as follows:
Au(n) =u(n+1) —u(n). (1)

Definition 1. [38]
Let v : Ny, — R and v > 0. Then the fractional sum of order v is defined by

ALu(t) = S (t-o(s) Vus), teNgpo, (2)

where g is the starting point, o(s) = s+1 and ¢" is the falling function defined

in terms of the Gamma function as

Iit+1
(v) — ( + ) ) (3)
Iit+1-v)
Definition 2. [1]
For v >0, v ¢ N and u(t) defined on N,, the Caputo-like delta difference is

defined by

CATu(t) = AT A (1), (4)
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:# %v (mvl)Am() (5)

m-v) =,
where t € Nyj -, and m = [v] + 1.

Here, o(s) = s+1 is the forward jump operator commonly used on discrete
time scales. It defines the next point in the discrete domain and ensures that
the summation aligns with the forward-shifted indices. This choice is stan-
dard in delta-type fractional calculus and reflects the progression of discrete
time by one step. The term (¢ — o(s))™ =Y represents the falling factorial
kernel, which weights recent values more heavily than older ones, capturing

the memory effect inherent in fractional systems.

Theorem 1 ( [20]). For the delta fractional difference equation

[clecAgu(t) = f(t+v—-1u(t+v-1)),
AFu(q) = up,m = [v] + 1, k=0,...,m-1,

the equivalent discrete integral equation can be obtained as

u(t) = up(t)+ I‘(lv) tg:) (t—a(s))(v_l) xf(s+v-1, u(s+v-1), t € Nyypm,
s=q+m-v

(6)

=" L atuta) @

This operator calculates a fractional change in u(t), but instead of only us-
ing current and previous values (as in classical differences), it uses a weighted
sum of past changes, giving more weight to recent values and less to older
ones. This model is systems where recent history has a stronger effect, but
the influence of earlier states still persists.

The Caputo-like delta fractional difference is chosen in this work due
to several theoretical and practical advantages over other discrete fractional
operators, such as the Riemann—Liouville type or Grinwald—Letnikov formu-
lations.

First, the Caputo-like formulation allows for the use of initial conditions

in the same form as those used in classical integer-order systems. This makes
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it more suitable for physical and biological modeling, where initial values

often have direct physiological interpretations.

Second, the Caputo-like operator naturally accommodates memory effects
by incorporating a weighted history of the system states, while still preserving

computational tractability due to its structured definition.

Importantly, in the context of biological systems such as cardiac mod-
els, memory plays a crucial role in capturing physiological phenomena. The
electrical activity of the heart, for example, is influenced not only by the
current stimulus but also by a history of past activations and recovery pro-
cesses. Fractional models have been shown to better replicate such long-
range dependence in excitable tissues compared to their integer-order coun-
terparts [36, 40].

The Caputo-like operator is particularly advantageous here because it
reflects this hereditary behavior while maintaining a clear relationship with
classical dynamics. This balance between interpretability, memory fidelity,
and numerical implementation makes the Caputo-like fractional difference
a compelling choice for modeling complex, memory-dependent systems like

cardiac cells.

3 Fractional Gauss map with fixed memory length

In mathematics, the Gauss map, also referred to as the Gaussian map [29], is
a nonlinear iterated mapping that transforms real numbers into a real interval

using the Gaussian function defined as follows:
Tpy1 = exp(—az?) +b, (8)

where a and b are bifurcation parameters.

This map can exhibit chaotic behavior, for example, when ¢ = 7.5 and
b= -0.6 . This map is also known as the mouse map due to its bifurcation
diagram when a = 7.5 and b in the range -1 to 1 resembling a mouse as in

Figure 1.
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a=4.9 a=7.5

-1 -05 0 0.5 1

(a) (b)

Figure 1: Bifurcation diagram of map (8) with o = 0 and b in the range -1 to 1, (a)
a=4.9and (b) a=75

Figure 1 shows the bifurcation diagram of the fractional Gauss map (8)
for two different sets of parameters: The first set is a = 4.9 and b in the range

-1 to 1; the second set is a = 7.5 and b in the range -1 to 1.

The first-order difference of Gauss map can be easily expressed as
Az, = exp(—azl) +b-x,. (9)
In discrete fractional calculus, the fractional Gauss map can be defined as
REA =exp(-az(t-14+v)?) +b-z(t-1+v), (10)

where “A [ is the fractional difference of Caputo and 0 <v <1 is the difference

order. For the Gauss map (10), an explicit numerical solution can be given
by

n-j+v)
n-j+1)

B 1 &I , .
=n = 20+ Frs j; o (exp(-az(j-1)*) +b-2(j-1)), (11)

where x¢ is initial condition.

For v = 1, the discrete fractional map (11) simplifies to the classical
map (8). Unlike the integer order map (8), the fractional map (11) includes
a discrete kernel function that relies on past information zg,x1,...,Tn-1-

Consequently, the memory effects in these discrete maps imply that their
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current state of evolution depends on all previous states. Figure 2 shows

v=0.9, a=4.9 v=0.9, a=4.9

v=0.4, a=7.5

4 05 o 05 4 1 05 0 05 1

(c) (d)

Figure 2: (a) Bifurcation diagram of fractional Gauss map (11) for v = 0.9, 2o = 0, b in
the range -1 to 1 and a = 4.9, (b) the greatest Lyapunov exponent of fractional Gauss
map for v = 0.9, o = 0, b in the range -1 to 1 and a = 4.9, (c) Bifurcation diagram of
fractional Gauss map (11) for v = 0.4, zg = 0, b in the range —1 to 1 and a = 7.5, (d)
the greatest Lyapunov exponent of fractional Gauss map for v = 0.4, z9p = 0, b in the
range —1 to 1 and a = 7.5.

the bifurcation diagram and Lyapunov exponent of the fractional Gauss map
(11) for two different sets of parameters: The first set is a = 4.9, v = 0.9, and
b in the range -1 to 1; the second set is a = 7.5, v = 0.4, and b in the range
-1 to 1.

For example, for v = 0.4 and a = 7.5, we note that the map (11) con-
verges to period — 1 orbit for -1 < b < —0.97. The first bifurcation occurs
when b = —0.97, transitioning from a fixed point to a period — 2 orbit via
period-doubling bifurcation. Figure 2(d) confirms this information because

the Lyapunov exponent is negative over the interval -1 < b < —0.97 and
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becomes zero when b = —0.97. The map maintains the same behavior until
b = -0.89, where the second bifurcation occurs, transitioning from a period—2
orbit to a period — 4 orbit via period-doubling bifurcation. When b > —0.87,
the Lyapunov exponent becomes positive, indicating that the map has be-
come chaotic over the interval —0.87 < b < —0.7; this is confirmed by Figures
2(d) and 2(c). When -0.7 < b < -0.67, the map converges to a period—3 orbit,
which further confirms that the map is chaotic for certain values of b [34].
Another bifurcation occurs when b = —0.67, transitioning from a period — 3
orbit to a period — 6 orbit via period-doubling bifurcation. Another return
to chaotic behavior of the map (11) from point b = -0.66 to point b = —0.59
as shown in Figure 2(c). Then, as —0.59 < b < —0.56, the map (11) converges
to period — 6 orbit for the second time. After that, the map (11) converges
again to period — 3 orbit in the interval —0.56 < b < —0.43. Again, in the
interval —0.43 < b < —0.27, map (11) has chaotic behavior. On the interval
-0.27 < b < 0, map (11) converges to period — 4 orbit again. Finally, as
0<b<1, map (11) converges to period — 2 orbit for the second time.

It should be noted that the figure presenting the Lyapunov exponent of
the map (11) confirms all previously mentioned results, where the Lyapunov
exponent is negative when the orbit of map (11) converges towards a peri-
odic orbit, is zero at the bifurcation point, and positive when the trajectory

converges to chaotic behavior.

In classical fractional-order models, the system exhibits infinite memory,
where all past states influence the present dynamics with a decaying weight.
While this feature captures hereditary effects accurately, it leads to high
computational cost and memory storage requirements, especially in long-
term simulations.

To address these limitations, this study employs a fixed memory length
approach, which restricts the influence of the past to a finite window of pre-
vious steps. This simplification not only reduces computational complexity
but also reflects a more realistic assumption in many physical and biological
systems where distant past events have negligible influence.

Moreover, the use of fixed memory enhances numerical stability and im-
plementation efficiency, making it more suitable for real-time applications

or hardware-constrained systems. In contrast, infinite memory schemes may

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 77, pp 77



Bellout, Bououden, Bouzeraa and Berkal 10

suffer from accumulating numerical errors and impractical memory demands

over long simulation horizons.

Therefore, the adoption of a fixed-memory fractional Gauss map strikes a
balance between capturing essential memory effects and maintaining tractable,
efficient simulations. This feature is particularly advantageous in chaotic
modeling, where fast computation and sensitivity to initial conditions are
critical. The following equation defines the fractional Gauss map with fixed
memory length:

n — . . .
Tn :zo+ﬁjgl%(e@(—am—1)2)+b—z(J -1)) if n<lL,

Tp = F(lv) D> ; %(exp(—ax(j -DH +b-2(-1)) else,

(12)
where L is the length of the memory.

In classical fractional systems, the entire past state history contributes to

v=0.9, a=4.9, L=200

v=0.9, a=4.9, L=200

Figure 3: (a) Bifurcation diagram of the fractional Gauss map with fixed memory length
for L = 200,v = 0.9,z0 = 0,a = 4.9 and b in the range —1 to 1, (b) The greatest Lyapunov
exponent for L = 200,v = 0.9,z9 = 0,a = 4.9 and b in the range -1 to 1.

the current state, with memory effects governed by a power-law kernel. This
long-term memory is central to capturing hereditary and complex dynamics.
However, it comes at the cost of high computational demands and sensitivity
to numerical errors over long simulations. The introduction of fized memory

length, denoted by L, truncates the influence of past states to only the most
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v=0.4, a=‘7.5, L=50 v=0.4, a=7.5, L=50

0.015

0.005

LE

‘ b L‘ . A‘any,p|m\mw\yw0..mvu“mw“
-0.005 W“J o 1

1 05 o 05 ) 1 05 0 05 1

(a) (b)

Figure 4: (a) Bifurcation diagram of the fractional Gauss map with fixed memory length
for L =50,v =0.4,290 = 0,a = 7.5 and b in the range —1 to 1, (b) The greatest Lyapunov
exponent for L = 50,v = 0.4,z0 = 0,a = 7.5 and b in the range —1 to 1 .

recent L iterations. This simplification raises fundamental questions about

how such truncation affects the nature of chaos.

Qualitatively, memory truncation can dampen long-range correla-
tions, potentially reducing the depth of chaotic complexity or altering the
sequence of bifurcations. However, as demonstrated in Figures 3 and 4, the
fixed-memory fractional Gauss map continues to exhibit hallmark features
of chaotic systems (including period-doubling routes to chaos, windows of
periodicity, and regions of positive Lyapunov exponents) despite having a
finite memory. The preservation of these structures suggests that essential

nonlinear behavior remains intact even when older history is ignored.

Quantitatively, our simulations show that when comparing the full-
memory fractional map (11) with the fixed-memory version (12), the critical
bifurcation points and ranges of chaotic behavior shift only slightly,
and the values of the largest Lyapunov exponents remain within comparable

ranges.

Moreover, the numerical gain is substantial. Table 1 illustrates that com-
putation time is reduced by up to 99% when memory is fixed, without sac-
rificing the model’s ability to simulate chaos. This trade-off between com-
putational efficiency and memory fidelity is favorable in real-time or

embedded systems, where resource constraints are strict.
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Table 1: The time required to obtain the path of the fractional Gauss map (FGM) and
the fractional gauss map with fixed memory length (FGMFML) when L = 50.

Number of iteration FGM FGMFML
1000 0.920305 0.205349
5000 91.580199 0.264022
10000 732.813417 0.267275
20000 13121.494701 0.304672

Figures 3 and 4 show the bifurcation diagram and Lyapunov exponent of
a fractional Gauss map with fixed memory length and the greatest Lyapunov
exponent for two different sets of parameters: The first set is a = 4.9, v = 0.9,
L =200 and b in the range —1 to 1; the second set is a = 7.5, v =0.4, L =50
and b in the range -1 to 1.

When comparing Figure 2, which represents the bifurcation diagram of
the fractional Gauss map, with Figure 4, which represents the bifurcation
diagram of the fractional Gauss map with a fixed memory length, we obtain
the following observations and results:

Every feature included in the fractional order bifurcation diagram can ad-
ditionally be seen in fractional order with fixed memory length bifurcation
diagrams.

We can see an increase in the period of the bifurcations, which results in
chaos in all bifurcation diagrams.

From the bifurcation diagram shown in Figure 4 for the fractional Gauss map
with a fixed memory length L = 50 we observe if -1 < b < —0.97 the map (12)
converges to period — 1 orbit. The first bifurcation occurs when b = -0.97,
transitioning from a fixed point to a period — 2 orbit via period-doubling
bifurcation. Figure 4(b) confirms this information because the Lyapunov ex-
ponent is negative over the interval —1 < b < —0.97 and becomes zero when
b= -0.97. The map maintains the same behavior until b = —0.88, where the
second bifurcation occurs, transitioning from a period -2 orbit to a period—4
orbit via period-doubling bifurcation. When —0.88 < b < —0.58, the Lyapunov
exponent becomes positive, indicating that the map has become chaotic over
the interval —0.88 < b < —0.58; this is confirmed by Figures 4(b) and 4(a).
When-0.58 < b < —0.55, the map converges to a period—6 orbit, which further

confirms that the map is chaotic for certain values of b. Another bifurcation
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occurs when b = —0.55, transitioning from a period—6 orbit to a period—3 or-
bit. Another return to chaotic behavior of the map (12) from point b = -0.42
to point b = —0.21 as shown in Figure 4(a). Then, as —0.21 < b < —-0.06 the
map (12) converges to period — 4 orbit for the second time. After that, the

map (12) converges again to period — 2 orbit in the interval 0.06 < b < 1.

The figure displaying the Lyapunov exponent for map (12) validates all
prior conclusions. It demonstrates that the Lyapunov exponent is negative
when the orbit of map (12) approaches a periodic state, zero at the bifurcation

point, and positive when the trajectory transitions into chaotic behavior.

The parameter values used in our simulations, such as a = 4.9, a = 7.5,
and b € [-1,1], are selected based on their well-known ability to produce
rich dynamical behaviors in the classical Gauss map. The fractional orders
v = 0.4 and v = 0.9 were chosen to compare strong memory effects versus
near-integer behavior. The memory lengths L = 50 and L = 200 were used to

evaluate the impact of truncation while maintaining low computational cost.

By comparing the bifurcation diagrams of the fractional Gauss map and
the fractional Gauss map with fixed memory length, we can conclude that

the length of the memory has a big effect on the dynamics of the map.

We mentioned in the first section that the numerical calculation of the
discrete fraction system is very time-consuming compared to the numerical
calculation of the discrete fraction system with a fixed memory length, and
this is what we will prove in this part through the table that summarizes
the results of the time taken to obtain the path of the fractional Gauss map
and the fractional Gauss map with a fixed memory length, and we used the
MATLAB program and ran it on an i5 processor, 2.40GH z with 16G of RAM
(random access memory).

Table 1 compares the computation time required by the fractional Gauss map
with two memory strategies: Infinite memory and fixed memory length. The
results clearly indicate that the fixed-memory approach significantly reduces

the computational burden.

This improvement becomes more pronounced as the simulation horizon
increases, highlighting the scalability of the proposed method. By limiting

the number of past states involved in each iteration, the fixed-memory model
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avoids redundant calculations while still capturing the essential memory dy-
namics of the system.

Such a reduction in execution time is crucial for real-time applications
and long-term simulations, especially in hardware-constrained environments
or large-scale systems. Therefore, the use of fixed memory not only enhances
numerical efficiency but also makes the fractional modeling of chaotic systems

more practical and accessible.

v=I, a=7.5 v=0.4, a=7.5

T 05 0 05 1 T 05 0 05 1

v=0.4, a=7.5, L=50

Figure 5: Bifurcation diagram of fractional gauss map with initial condition as z¢g = 0.9
and b in the range —1 to 1 where, (a)for v =1, (b) for v = 0.4 and (c) for v = 0.4 and
fixed memory length L = 50.

Form Figure 5, we noted that when the initial state was changed, there
was a rapid interruption in the bifurcation diagrams for of integer order and
fractional order. This is also what was observed in bifurcation diagram of
fractional map with fixed memory length (Figure 5) when changing the initial

value from zg =0 to 2¢g = 0.9.

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 77, pp 77



15 A study on efficient chaotic modeling via fixed-memory length fractional ...

4 Regular and chaotic behavior of a fractional Gauss

map with fixed memory length

In 2003, Gatwald and Melbourne introduced the 0 — 1 test to prove the exis-
tence of chaotic behavior in nonlinear deterministic systems. The 0 -1 test
is applied to a direct time series and provides a binary-like outcome: A value
of K ~ 0 indicates regular (nonchaotic) dynamics, while a value of K ~ 1 is
a strong indicator of chaos. This allows for a clear quantitative distinction
between regular and chaotic behavior. The 0 — 1 test is applied to a direct
time series. The 1 -0 test can determine the behavior of a given sequence
from the dynamics of trajectories p. and ., where a dynamical system is
chaotic if the behavior of the trajectories is Brownian motion (k approaches
1), while a dynamical system is regular if the motion is finite (k approaches

from 0). For ¢ € [0, 7], We have ¢g. and p. determined as follows:

-

pe(n) = 2, (j)cos(jo), (13)

Jj=1

|M~

)sin(jc). (14)

The average square displacement Mc(n) of both variables p.(n) and g.(n) is

calculated from the following relationship:

IZ_V: (e +1) =pe(i)?* + (ge(G +n) —ae(i))*. (15)

Finally, we calculate the asymptotic growth rate K using the correlation
method, where
K = median(k,). (16)

Also, we have k. defined by the following relation:

A
k= o0& 8) -1,1], (17)
var(&)var(A)
where & = (1,2,...,ncut), A = (M,(1),M,(2),..., M, (cut)) and ne,: =
round(NN/10)). Moreover, D.(n) is the adjusted average square displacement.
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It has been defined as follows:

51— cos(nc)

D) = Me(rn) = (E(b(z)))* =0 15 (18)
where the average E(®) is given by
. 1 X
B@() = lm 3 3 o) (19)

Figure 6 represents the result of the 0 — 1 test for the fractional Gauss map

12 0.6 5

051
04r

03F

01f *

*ﬁk *

OF % e ok gk, X gt*ww H kK
%

0.1t *
*
0.2 .
05 1 15 2 25
c
' *7 * * A * PR
A *y * * g ¥
* Fa £ * oo &
¥k, ok P
0.99 N * *
% *
0.98
~ 097
*
*
0.96
0.95
#*
25 . . . . . . . 0.04 .
-10 5 0 5 10 15 20 25 30 05 1 15 2 25
c

Figure 6: The 0 -1 test of fractional Gauss map with fixed memory length L = 50,v =
0.4,29 =0, (a) (b) for b= 0 and (c),(d) for b =-0.7.

where v = 0.4, L = 50 with zo = 0.
We conducted a 0 -1 test at two different values of b. When b = 0 the

trajectories of p. and ¢. in the (p. — ¢.) plane present bounded (see Figure
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6(a)) We also note that the value of k is very close to 0 (see Figure 6(b)), and
this translates into a fractional Gauss map with a fixed memory length that
non chaotic behavior. When b = —0.7 we note the trajectories of p. and ¢, in
the (p. — g.) plane, similar to Brownian motion (Figure 6 (c)). We also note
that the value of k is very close to 1 (see Figure 6(d)), and this translates
into a fractional Gauss map with a fixed memory length that has chaotic

behavior.

5 Conclusion

In this study, we proposed a fractional Gauss map with fixed memory length
to efficiently model chaotic dynamics. The results demonstrate that the fixed-
memory approach can significantly reduce computation time while maintain-
ing the essential features of chaotic behavior.

Unlike traditional infinite-memory fractional systems, the proposed model
achieves a balance between memory representation and numerical efficiency,

making it more suitable for real-time or large-scale applications.

However, the current study is limited to specific types of chaotic maps
and a fixed memory structure. The influence of varying memory lengths, the
stability of long-term dynamics, and the accuracy trade-offs require further

investigation.

Future work will focus on extending this framework to other fractional
maps, exploring adaptive memory strategies, and applying the model to real-
world systems such as biological or economic time series. Additionally, more
rigorous theoretical analysis of the stability and convergence properties of the
fixed-memory fractional model would enhance its mathematical foundation

and applicability.
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