- Amiri, M., Pourghasemi, H.R., Ghanbarian, Gh.A., & Afzali, S.F. (2020). Spatial modeling of gully erosion in Maharlou Watershed using different scenarios and Weights-of-evidence algorithm. Journal of Watershed Engineering and Management, 11(4), 1016-1032. (In Persian with English abstract). https://doi.org/10.1007/ 978-3-030-01440-7_59
- Asadi Nalivan, O., Rabet, A., Vakili tajareh, F., Ramezani, M., Momeni, M., & Heydari, K. (2023). Zoning gully erosion susceptibility using ANN, CART and RF models. Watershed Engineering and Management, 15(2), 155-171. (In Persian with English abstract). https://doi.org/10.22092/ijwmse.2022.356379.1920
- Bammou, Y., Benzougagh, B., Abdessalam, O., Brahim, I., Kader, Sh., Spalevic, V., Sestras, P., & Ercişli, S. (2024). Machine learning models for gully erosion susceptibility assessment in the Tensift catchment, Haouz Plain, Morocco for sustainable development. Journal of African Earth Sciences, 213(1), 105229. https://doi.org/1016/ j.jafrearsci.2024.105229
- Conoscenti, C., Agnesi, V., Cama, M., Caraballo‐Arias, N.A., & Rotigliano, E. (2018). Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity. Land Degradation & Development, 29(3), 724-736. https://doi.org/10.1002/ldr.2772
- Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., & Märker, M. (2014). Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology, 204(1), 399-411. https://doi.org/10.1016/j.geomorph.2013.08.021
- Emadodin, S., Omidi, M., Arekhi, S., & Karam, A. (2021). Assessment the Gully Erosion Risk in Quyjoq watershed. Journal of Natural Environmental Hazards, 10(30), 17-34. (In Persian with English abstract). https://doi.org/ 10.22111/jneh.2020.34212.1662
- Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H.R., & Van Oost, K. (2019). Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Science of the Total Environment, 664(1), 1117-1132. https://doi.org/10.1016/j.scitotenv.2019.02.093
- Garosi, Y., Sheklabadi, M., Pourghasemi, H.R., Besalatpour, A.A., Conoscenti, C., & Van Oost, K. (2018). Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma, 330(1), 65-78. https://doi.org/10.1016/j.geoderma.2018.05.027
- Gayen, A., Pourghasemi, H.R., Saha, S., Keesstra, S., & Bai, S. (2019). Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of the Total Environment, 668(1), 124-138. https://doi.org/10.1016/j.scitotenv.2019.02.436
- Ghaderi, N., Ghodosi, J., Tabatabai, M.R., & Khaledian, H. (2000). Zoning of gully erosion risk in the Talwar Chay watershed of Kurdistan province using GIS. Report of a Research Project in Soil Conservation and Watershed Management Research Institute. Identical Code 18781476, p. 139. (In Persian with English abstract). http:// fipak.areeo.ac.ir/site/catalogue/18781476
- Ghorbanzadeh, O., Shahabi, H., Mirchooli, F., Valizadeh Kamran, K., Lim, S., Aryal, J., Jarihani, B., & Blaschke, T. (2020). Gully erosion susceptibility mapping (GESM) using machine learning methods optimized by the multi‑collinearity analysis and K-fold cross-validation. Geomatics, Natural Hazards and Risk, 11(1), pp.1653-1678. https://doi.org/10.52547/jwmr.12.24.298
- Igwe, P.U., Chinedu, O.C., Nlem E.U., Nwezi, C.C., & Ezekwu, J.C. (2018). A review of landscape design as a means of controlling gully erosion. International Journal of Environment Agriculture and Biotechnology, 3(1), 103-111. https://doi.org/22161/ijeab/3.1.13
- Javidan, N., Kavian, A., Rajabi, S., Pourghasemi, H.R., & Jafarian, Z. (2023). Identification the areas prone to gully erosion and landslides in the form of two-hazards map using machine learning models in Gorganrood watershed. Iranian Journal of Watershed Management Science, 17(62), 75-85. (In Persian with English abstract). https://doi.org/10.1007/978-3-030-23243-6_29
- Jurchescu, M., & Grecu, F. (2015). Modelling the occurrence of gullies at two spatial scales in the Olteţ Drainage Basin (Romania). Natural Hazards, 79(1), 255-289. https://doi.org/1007/s11069-015-1981-6
- Nyssen, J., Poesen, J., Moeyersons, J., Luyten, E., Veyret‐Picot, M., Deckers, J., Haile, M., & Govers, G. (2002). Impact of road building on gully erosion risk: a case study from the northern Ethiopian highlands. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 27(12), 1267-1283. https://doi.org/10.1002/esp.404
- Rahmati, , Soleimanpour, S.M., Shadfar, S., & Zahedi, S. (2023). Modeling gully erosion susceptibility in Talwar watershed, Kurdistan province and evaluating the model transferability to Baba-arab watershed. Final Report of Research Project, Soil Conservation and Watershed Management Research Institute, 76pp. Project code: 2-53-29-013-000301. (In Persian with English abstract). https://doi.org/10.52547/jwmr.12.24.298
- Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R., & Feizizadeh, B. (2017). Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology, 298(1), 118-137. https://doi.org/10.1016/j.geomorph.2017.09.006
- Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R., & Feizizadeh, B. (2019). Assessing the effectiveness of the maximum entropy model to gully erosion susceptibility prediction in the Kashkan-Poldokhtar Watershed. Journal of Watershed Engineering and Management, 10(4), 727-738. (In Persian with English abstract). https://doi.org/10.1016/j.geomorph.2017.09.006
- Rahmati, O., Soleimanpour, S.M., & Shadfar, S. (2024). Principles of spatial modeling of gully erosion using artificial intelligence models. Soil Conservation and Watershed Management Research Institute Press, P. 158. (In Persian with English abstract).
- Rangzan, K., Zaheri Abdehvand, Z., & Mokarram, M. (2022). Determining areas prone to gully erosion using fuzzy membership function (Case study: Mohr City in the south of Fars province). Quantitative Geomorphological Researches, 10(4), 56-74. (In Persian with English abstract). DOR: 1001.1.22519424.1401.10.4.4.9
- Refahi, H.Gh. (2017). Water Erosion and Its Control. Tehran University Press, 7th edition, 672 pages. (In Persian)
- Saha, S., Roy, J., Arabameri, A., Blaschke, T., & Tien Bui, D. (2020). Machine learning-based gully erosion susceptibility mapping: A case study of Eastern India. Sensors, 20(5), p.1313. https://doi.org/10.3390/s20051313
- Servati, M.R., Ghodosi, J., & Dadkhah, M. (2008). Factors affecting the formation and spread of gully erosion in loess. Research and Construction, 21(1), 20-33. (In Persian with English abstract).
- Shahabi, H., Amiri, Z., & Shirzadi, A. (2022). Prediction of Gully Erosion Susceptibility and Its Hazards in Kloche Bijar Watershed Using Spatial Predictive Models. Environmental Management Hazards, 9(2), 89-107. (In Persian with English abstract). https://doi.org/10.22059/jhsci.2022.348010.742
- Soleimani, F., Soufi, M., & Arsham, A. (2017). Determination of Effective Factors in Gullies Development in Modares Watershed of Shushtar. Water and Soil, 31(5), 1432-1446. (In Persian with English abstract). https://doi.org/10.22067/jsw.v31i5.63329
- Soleimanpour, S., Soufi, M., & Ahmadi, H. (2009). Determining Effective Factors on Gully Development in Konartakhte Region, Fars Province. Water and Soil, 23(1), 131-141. (In Persian with English abstract). https://doi.org/10.22067/jsw.v0i0.1545
- Vosoghi, S., Zakerinejad, R., & Entezari, M. (2025). Prediction of Gully Erosion and identifying factors affecting it using the Maximum Entropy Model and BCC-CSM2-MR climate change models for the years 2020-2040 (case study: Alamarvdasht watershed). Journal of Geography and Planning, 28(90), 163-141. (In Persian with English abstract). https://doi.org/10.22034/gp.2023.57572.3169
- Wei, Y., Liu, Z., Zhang, Y., Cui, T., Guo, Z., Cai, C., & Li, Z. (2022). Analysis of gully erosion susceptibility and spatial modelling using a GIS-based approach. Geoderma, 420(1), 115869. https://doi.org/10.1016/j.geoderma. 2022.115869
- Were, K., Kebeney, S., Churu, H., Mumo Mutio, J., Njoroge, R., Mugaa, D., Alkamoi, B., Ng’etich, W., & Ram Singh, B. (2023). Spatial prediction and mapping of gully erosion susceptibility using machine learning techniques in a degraded semi-arid region of Kenya. Land, 12(4), 1-19. https://doi.org/3390/land12040890
- Zakerinejad, R., & Alvandi, P. (2023). Spatial prediction of gully erosion using TanDEM-X data and maximum entropy model (A case study: Khasoyeh watershed, in Southeast of Fars Province). Environmental Erosion Research, 13(1), 96-113. (In Persian with English abstract). http://magazine.hormozgan.ac.ir/article-1-705-en.html
|