- Alaaudeen, K. M., Selvarajan, S., Manoharan, H., & Jhaveri, R. H. (2024). Intelligent robotics harvesting system process for fruits grasping prediction. Scientific Reports, 14(1), 2820. https://doi.org/10.1038/s41598-024-52743-8
- Bac, C. W., Van Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high‐value crops: State‐of‐the‐art review and challenges ahead. Journal of Field Robotics, 31(6), 888-911. https://doi.org/10.1002/rob.21525
- Bharad, N. B., & Khanpara, B. M. (2024). Agricultural fruit harvesting robot: An overview of digital agriculture. Plant Archives, 24, 154-160. https://doi.org/10.51470/PLANTARCHIVES.2024.v24.SP-GABELS.023
- Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. ArXiv Preprint ArXiv:2004.10934. https://doi.org/10.48550/arXiv.2004.10934
- Droukas, L., Doulgeri, Z., Tsakiridis, N. L., Triantafyllou, D., Kleitsiotis, I., Mariolis, I., ..., & Bochtis, D. (2023). A survey of robotic harvesting systems and enabling technologies. Journal of Intelligent & Robotic Systems, 107(2), 21. https://doi.org/10.1007/s10846-022-01793-z
- FAO. (2023). Food and Agriculture Organization, 2021 Food and Agriculture Data. [Online]. https://www.fao.org/faostat/en/#data/QCL/visualize
- Fatehi, F., Bagherpour, H., & Amiri Parian, J. (2025). Investigating the Potential of the Innovative YOLOv8s Model for Detecting Bloomed Damask Roses in Open Fields. Journal of Agricultural Machinery, (in Press). https://doi.org/10.22067/jam.2024.88066.1249
- Fernandez, R., Montes, H., Surdilovic, J., Surdilovic, D., Gonzalez-De-Santos, P., & Armada, M. (2018). Automatic detection of field-grown cucumbers for robotic harvesting. IEEE Access, 6, 35512-35527. https://doi.org/10.1109/ACCESS.2018.2851376
- Jin, T., & Han, X. (2024). Robotic arms in precision agriculture: A comprehensive review of the technologies, applications, challenges, and future prospects. Computers and Electronics in Agriculture, 221, 108938. https://doi.org/10.1016/j.compag.2024.108938
- Hussain, M. (2024). Sustainable machine vision for industry 4.0: a comprehensive review of convolutional neural networks and hardware accelerators in computer vision. AI, 5(3), 1324-1356. https://doi.org/10.3390/ai5030064
- Jocher, G., Chaurasia, A., & Qiu, J. (2023). YOLO by Ultralytics. https://ultralytics.com/yolo
- Kootstra, G., Wang, X., Blok, P. M., Hemming, J., & Van Henten, E. (2021). Selective harvesting robotics: current research, trends, and future directions. Current Robotics Reports, 2, 95-104. https://doi.org/10.1007/s43154-020-00034-1
- Kuznetsova, A., Maleva, T., & Soloviev, V. (2020). Using YOLOv3 algorithm with pre-and post-processing for apple detection in fruit-harvesting robot. Agronomy, 10(7), 1016. https://doi.org/10.3390/agronomy10071016
- Liu, G., Nouaze, J. C., Touko Mbouembe, P. L., & Kim, J. H. (2020). YOLO-tomato: A robust algorithm for tomato detection based on YOLOv3. Sensors, 20(7), 2145. https://doi.org/10.3390/s20072145
- Mahani, S. F. N., & Karami, A. (2023). Maize tassel detection and counting using deep learning techniques. Journal of Agricultural Machinery, 13(2), 175-194. https://doi.org/10.22067/jam.2022.72477.1062
- Mallick, P. K. (2022). Evaluating potential importance of cucumber (Cucumis sativus-Cucurbitaceae): a brief review. International Journal of Applied Sciences and Biotechnology, 10(1), 12-15. https://doi.org/10.3126/ijasbt.v10i1.41466
- Mehta, S. S., MacKunis, W., & Burks, T. F. (2016). Robust visual servo control in the presence of fruit motion for robotic citrus harvesting. Computers and Electronics in Agriculture, 123, 362-375. https://doi.org/10.1016/j.compag.2016.02.019
- Moseley, K. R., House, L., & Roka, F. M. (2012). Adoption of mechanical harvesting for sweet orange trees in Florida: addressing grower concerns on long-term impacts. International Food and Agribusiness Management Review, 15(1030-2016–82762), 83-98. https://doi.org/10.22004/ag.econ.127108
- Park, Y., Seol, J., Pak, J., Jo, Y., Kim, C., & Son, H. I. (2023). Human-centered approach for an efficient cucumber harvesting robot system: Harvest ordering, visual servoing, and end-effector. Computers and Electronics in Agriculture, 212, 108116. https://doi.org/10.1016/j.compag.2023.108116
- Salim, N. O., & Mohammed, A. K. (2024). Comparative Analysis of Classical Machine Learning and Deep Learning Methods for Fruit Image Recognition and Classification. Traitement du Signal, 41(3). https://doi.org/10.18280/ts.410322
- Shewfelt, R. L., & Prussia, S. E. (2022). Challenges in handling fresh fruits and vegetables. In Postharvest Handling (pp. 167–186). Elsevier. https://doi.org/10.1016/B978-0-12-822845-6.00007-0
- Sola-Guirado, R. R., Castro-Garcia, S., Blanco-Roldán, G. L., Gil-Ribes, J. A., & González-Sánchez, E. J. (2020). Performance evaluation of lateral canopy shakers with catch frame for continuous harvesting of oranges for juice industry. International Journal of Agricultural and Biological Engineering, 13(3), 88-93. https://doi.org/10.25165/j.ijabe.20201303.4998
- Tajane, K., Khutale, P., Kore, A., Khairmode, A., & Girawale, S. (2024). Object Detection: A comprehensive study of famous Deep Learning approaches with case study of Helmet Detection dataset. In 2024 2nd International Conference on Advancements and Key Challenges in Green Energy and Computing (AKGEC)(pp. 1-5). IEEE. https://doi.org/10.1109/AKGEC60574.2024.10507194
- Wu, D., Lv, S., Jiang, M., & Song, H. (2020). Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments. Computers and Electronics in Agriculture, 178, 105742. https://doi.org/10.1016/j.compag.2020.105742
- Xiao, F., Wang, H., Li, Y., Cao, Y., Lv, X., & Xu, G. (2023). Object detection and recognition techniques based on digital image processing and traditional machine learning for fruit and vegetable harvesting robots: An overview and review. Agronomy, 13(3), 639. https://doi.org/10.3390/agronomy13030639
- Yue, X., Qi, K., Na, X., Zhang, Y., Liu, Y., & Liu, C. (2023). Improved YOLOv8-Seg Network for Instance Segmentation of Healthy and Diseased Tomato Plants in the Growth Stage. Agriculture, 13(8), 1643. https://doi.org/10.3390/agriculture13081643
- Zhang, Z., Igathinathane, C., Li, J., Cen, H., Lu, Y., & Flores, P. (2020). Technology progress in mechanical harvest of fresh market apples. Computers and Electronics in Agriculture, 175, 105606. https://doi.org/10.1016/j.compag.2020.105606
- Zhou, H., Wang, X., Au, W., Kang, H., & Chen, C. (2022). Intelligent robots for fruit harvesting: Recent developments and future challenges. Precision Agriculture, 23(5), 1856-1907. https://doi.org/10.1007/s11119-021-09836-5
|