سنتز و مشخصهیابی جاذبهای TiO2/Ag برای حذف H2S از پسابهای صنعتی
مهندسی متالورژی و مواد
مقاله 6 ، دوره 36، شماره 3 - شماره پیاپی 39 ، شهریور 1404، صفحه 85-98 اصل مقاله (1.73 M )
نوع مقاله: مقاله پژوهشی
شناسه دیجیتال (DOI): 10.22067/jmme.2025.94024.1211
نویسندگان
مهدی سلیمانی ؛ سید مهدی رفیعائی*
گروه مهندسی مواد، دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان.
چکیده
در این تحقیق ذرات TiO2/Ag با استفاده از یک روش احیایی بمنظور حذف قابل توجهی از گاز سولفید هیدروژن از پسابهای پالایشگاهی سنتز شد. همچنین ذرات فرآوری شده TiO2/Ag با استفاده از تکنیکهای مختلفی مانند XRD، SEM، FTIR، UV-Vis و DSC مشخصهیابی گردیدند. آنالیز XRD انجام شده موید این واقعیت هستند که مواد سنتز شده دارای شبکه کریستالی تتراگونال بوده و مواد فرآوری شده فاقد هرگونه فازهای دیگر و ناخالصی است. نتایج حاصل از تصاویر SEM نشان داد که اندازه ذرات فرآوری شده TiO2/Ag عمدتا در محدوده تقریبی 120 تا 160 نانومتر بوده و از توزیع یکنواختی برخوردار هستند ضمن آنکه مطابق با نتایج آزمون EDX-Map مشاهده گردید که عناصر مختلف و از جمله نقره با کیفیت مطلوبی در مواد سنتز شده توزیع شدهاند. آنالیز حرارتی مواد سنتز شده تا دمای 1000 درجه سانتیگراد نشان داد که پیک-های ایجاد شده در دماهای 47 و 310 درجه سانتیگراد به ترتیب مربوط به تبخیر آب سطحی و حذف فازهای آلی بوده و حدود 5/1 درصد از وزن آنها کاهش یافته است. در نهایت آنالیز UV-Vis نشان داد که با بخدمت گیری مواد جاذب سنتز شده میزان عبور نور از پسابها به میزان قابل قبولی افزایش و در واقع تصفیه پسابها تا حدود مناسبی انجام شده است. این پدیده به واکنش میان Ag و H2S موجود در پساب و تشکیل Ag2S نسبت داده میشود.
کلیدواژهها
پساب پالایشگاه ؛ سولفید هیدروژن ؛ TiO2 ؛ TiO2/Ag
مراجع
M. Rafiaei, G. Dini, and A. Bahrami, “Synthesis, crystal structure, optical and adsorption properties of BaAl₂O₄: Eu²⁺, Eu²⁺/L³⁺ (L = Dy, Er, Sm, Gd, Nd, and Pr) phosphors,” Ceramics International , vol. 46, no. 12, pp. 20243–20250, 2020. https://doi.org/10.1016/j.ceramint.2020.05.106
K. Habibi, S.M. Rafiaei, A. Alhaji, M. Zare, “ZnAl2O4: Ce3+ phosphors: Study of crystal structure, microstructure, photoluminescence properties and efficient adsorption of congo red dye,” Journal of Molecular Structure , vol. 1228, no. 15, p. 129769, 2021. https://doi.org/10.1016/j.molstruc.2020.129769
K. Habibi, S. M. Rafiaei, A. Alhaji, and M. Zare, “Synthesis of ZnFe₂O₄: 1 wt% Ce³⁺/Carbon fibers composite and investigation of its adsorption characteristic to remove Congo red dye from aqueous solutions,” Journal of Alloys and Compounds , vol. 890, p. 161901, 2022. https://doi.org/10.1016/j.jallcom.2021.161901
Q. Salih, L. Steiner, W. Goessler, J. R. Hama, and B. Lajin, “Urinary excretion of H₂S methylation metabolites in oil refinery workers,” Toxicology Letters , vol. 401, pp. 82–88, 2024. https://doi.org/10.1016/j.toxlet.2024.09.007
Vakili and P. Koutnik, “Addressing hydrogen sulfide corrosion in oil and gas industries: A sustainable perspective,” Sustainability , vol. 16, no. 4, p. 1661, 2024. https://doi.org/10.3390/su16041661
C. Nailwal, J. Salvi, P. Chotalia, N. Goswami, L. Muhmood, S. Kar, and A. K. Adak, “Enhanced H₂S decomposition using membrane reactor,” International Journal of Hydrogen Energy , vol. 70, no. 12, pp. 1573–1585, 2024. https://doi.org/10.1016/j.ijhydene.2024.05.195
Moradirad, H. Asilian, and S. J. Shahtaheri, “Investigating the factors affecting the optimization of hydrogen sulfide gas adsorption parameters on the new MIPs@H₂S nanoadsorbent using the response surface method,” International Journal of Environmental Science and Technology , vol. 21, no. 14, pp. 8943–8958, 2024. https://doi.org/10.1007/s13762-024-05585-w
Y. Lee, M. Y. Kim, K. H. Lee, S. Han, S. Y. Lee, A. Mirzaei, S. W. Choi, M. S. Choi, C. Jin, and J. Y. Hwang, “Surface reaction mechanism and characteristics of 2-dimensional TiO₂ and 0-dimensional Ag nanocomposites specialized for H₂S gas sensing at room temperature,” Sensors and Actuators Reports , vol. 9, p. 100290, 2025. https://doi.org/10.1016/j.snr.2025.100290
Sun, K. Vikrant, K.-H. Kim, and D. W. Boukhvalov, “Titanium dioxide–supported mercury photocatalysts for oxidative removal of hydrogen sulfide from the air using a portable air purification unit,” Journal of Hazardous Materials , vol. 470, p. 134089, 2024. https://doi.org/10.1016/j.jhazmat.2024.134089
Motamedi and A. H. Sari, “Plasma effect on the NO, CO, and SO₂ gases pollutant removal using AC/MgO/Fe₂O₃/TiO₂/ZnO/Zeolite nanocomposite,” Case Studies in Chemical and Environmental Engineering , vol. 10, p. 100890, 2024. https://doi.org/10.1016/j.cscee.2024.100890
Alaya, M. Madani, N. Bouguila, L. El Mir, E. Fazio, C. Corsaro, and G. Neri, “Conductometric H₂S sensors based on TiO₂ nanoparticles,” Materials , vol. 17, no. 13, p. 3283, 2024. https://doi.org/10.3390/ma17133283
K. Baboukani, A. N. Chermahini, and H. Farrokhpour, “Photocatalytic oxidative desulfurization of a model fuel using S-doped TiO₂/BiVO₄ composites: A combination of experimental and theoretical study,” Journal of Alloys and Compounds , vol. 1002, p. 175478, 2024. https://doi.org/10.1016/j.jallcom.2024.175478
Talwar, S. Anand, A. Nayyar, F. Fatima, and M. Zahera, “Hybrid nanomaterials: A sustainable tool to detect environmental problems,” in Technological Applications of Nano-Hybrid Composites , V. Khanna, P. Sharma, and P. Mahajan, Eds. Hershey, PA, USA: IGI Global, 2024, pp. 34–63. https://doi.org/10.4018/979-8-3693-1261-2.ch003
Yu, Z. Deng, Y. Li, and X. Wang, “Advances in electrocatalyst design and mechanism for sulfide oxidation reaction in hydrogen sulfide splitting,” Advanced Functional Materials , vol. 34, no. 39, p. 2403435, 2024. https://doi.org/10.1002/adfm.202403435
Huang, G. He, Y. Zhang, and X. Liu, “Trivalent metal ions (Al, Ga, In)-doped TiO₂ for enhanced photocatalytic desulfurization of H₂S: Band structure regulation, performance, and mechanism,” Industrial & Engineering Chemistry Research , vol. 63, no. 16, pp. 6253–6264, 2024. https://doi.org/10.1021/acs.iecr.4c00074
Y. Tee, J. Kong, J. J. Koh, C. P. Teng, X. Z. Wang, X. Wang, S. L. Teo, W. Thitsartarn, M.-Y. Han, and Z. W. Seh, “Structurally and surficially activated TiO₂ nanomaterials for photochemical reactions,” Nanoscale , vol. 16, no. 39, pp. 18345–18372, 2024. https://doi.org/10.1039/D4NR02342K
Rychtowski, O. Paszkiewicz, A. Markowska-Szczupak, G. Leniec, and B. Tryba, “Sulphated TiO₂ reduced by ammonia and hydrogen as an excellent photocatalyst for bacteria inactivation,” Materials , vol. 17, no. 1, p. 66, 2023. https://doi.org/10.3390/ma17010066
Du, N. S. Said, and W. Y. Lee, “Development of pH-sensitive intelligent films incorporating betacyanin from dragon fruit peel and TiO₂ nanoparticles for monitoring fish fillet freshness,” Sustainable Chemistry and Pharmacy , vol. 42, p. 101839, 2024. https://doi.org/10.1016/j.scp.2024.101839
B. Akhani, J. Pathak, T. K. Akhani, and M. S. Rathore, “Structural and optical properties of Mg doped TiO₂ nanoparticles synthesized by sol-gel method,” Materials Today: Proceedings , vol. 82, pp. 694–701, 2024. https://doi.org/10.1016/j.matpr.2024.02.029
Kumar, A. Pandey, A. Vishvakarma, A. Kumar, L. Kumar, and B. P. Singh, “Growth of MAPbI₃ perovskite films on MWCNT-modified TiO₂ thin films for solar cell applications,” Inorganic Chemistry Communications , vol. 163, p. 112360, 2024. https://doi.org/10.1016/j.inoche.2024.112360
Shahzad, M. Jamshaid, A. E.-Z. M. Mustafa, H. Rizwana, R. Iqbal, M. A. Watto, S. Jabeen, A. A. Tahir, and A. U. Rehman, “Synergistic silver-titania nano-composites: Optimized hetero-junction for enhanced water decontamination,” Desalination and Water Treatment , vol. 320, p. 100696, 2024. https://doi.org/10.1016/j.dwt.2024.100696
Nakamura and Y. Nakato, “Primary intermediates of oxygen photoevolution reaction on TiO₂ (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements,” Journal of the American Chemical Society , vol. 126, no. 4, pp. 1290–1298, 2004. https://doi.org/10.1021/ja0388764
Yan, X. Yang, P. Ning, C. Wang, X. Sun, F. Wang, P. Gao, and K. Li, “Cu/TiO₂ adsorbents modified by air plasma for adsorption–oxidation of H₂S,” Journal of Environmental Sciences , vol. 148, pp. 476–488, 2025. https://doi.org/10.1016/j.jes.2023.09.023
V. Mikhaylov, A. A. Lisachenko, B. N. Shelimov, V. B. Kazansky, G. Martra, G. Alberto, and S. Coluccia, “FTIR and TPD analysis of surface species on a TiO₂ photocatalyst exposed to NO, CO, and NO–CO mixtures: Effect of UV–Vis light irradiation,” The Journal of Physical Chemistry C , vol. 113, no. 47, pp. 20381–20387, 2009. https://doi.org/10.1021/jp906176c
A. Ouda, F. K. M. Alosfur, N. J. Ridha, S. H. Abud, N. M. Umran, H. H. Al-aaraji, and R. A. Madlool, “Facile method to synthesis of anatase TiO₂ nanorods,” Journal of Physics: Conference Series , vol. 1032, no. 1, p. 012038, 2018. https://doi.org/10.1088/1742-6596/1032/1/012038
M. Rafiaei, T. D. Isfahani, H. Afshari, and M. Shokouhimehr, “Improved optical properties of YVO₄: Eu³⁺ nano–layers on silica spheres,” Materials Chemistry and Physics , vol. 203, pp. 274–279, 2017. https://doi.org/10.1016/j.matchemphys.2017.10.027
M. Rafiaei, M. Shokouhimehr, “Synthesis and luminescence properties of transparent YVO₄: Eu³⁺ phosphors,” Materials Research Express , vol. 5, no. 11, p. 116208, 2018. https://doi.org/10.1088/2053-1591/aadd89
M. Rafiaei and M. Shokouhimehr, “Effect of fuels on nanostructure and luminescence properties of combustion synthesized MgAl₂O₄: Eu³⁺ phosphors,” Journal of Molecular Structure , vol. 1193, pp. 274–279, 2019. https://doi.org/10.1016/j.molstruc.2019.05.057
M. Rafiaei, “Evaluation of (GdₓY₁₋ₓ)VO₄:Er³⁺ (x = 0, 0.25, 0.5, 0.75, 1) compounds: Study of crystal structure, microstructure, luminescence and adsorption properties,” Ceramics International , vol. 48, no. 10, pp. 14913–14919, 2022. https://doi.org/10.1016/j.ceramint.2022.02.286
Paradisi, P. J. Plaza-González, G. Baldi, J. M. Catalá-Civera, and C. Leonelli, “On the use of microwaves during combustion/calcination of N-doped TiO₂ precursor: An EMW absorption study combined with TGA-DSC-FTIR results,” Materials Letters , vol. 338, p. 133975, 2023. https://doi.org/10.1016/j.matlet.2023.133975
K. Hassan, W. H. Mahmoud, A. Al-sayed, S. H. Ismail, A. A. El-Sherif, and S. M. Abd El Wahab, “Multi-functional of TiO₂@Ag core–shell nanostructure to prevent hydrogen sulfide formation during anaerobic digestion of sewage sludge with boosting of bio-CH₄ production,” Fuel , vol. 333, no. 2, p. 126608, 2023. https://doi.org/10.1016/j.fuel.2022.126608
آمار
تعداد مشاهده مقاله: 216
تعداد دریافت فایل اصل مقاله: 119