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Abstract

In this paper, we investigate the application of the combination of
the Ramadan group transform and the accelerated Adomian polynomial
method for solving integro-differential equations. Integro-differential equa-

tions arise in various fields such as physics, engineering, and biology, often
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modeling complex phenomena. The Ramadan group transform, known
for its transformation properties and its ability to simplify computational
complexities, is coupled with the accelerated Adomian polynomial method,
which is an effective series expansion technique. This combination enhances
the convergence and efficiency of solving nonlinear integro-differential equa-
tions that are difficult to handle using traditional methods. The paper
demonstrates the utility of this hybrid approach through several test cases,
comparing it with existing methods in terms of accuracy, computational

efficiency, and convergence rate.

AMS subject classifications (2020): Primary 45J05; Secondary 65R20, 65H10,
65L09, 44A10.

Keywords: Ramadan group transform (RGT); Adomian polynomials; ac-

celerated Adomian; Integro-differential equations; Accuracy.

1 Introduction

An equation with the unknown function under the sign of integration and in-
cluding the unknown function’s derivatives is known as an integro-differential
equation (IDE). It falls into one of two categories: Volterra equations or Fred-
holm equations. IDEs are one of the most important tools in mathematics
[33].

Many researchers and scientists investigated IDEs while working on scien-
tific applications such as heat transformers, neutron diffusion, and biological
species coexisting with growing and decreasing rates of production and dif-
fusion processes. Applications in physics, biology, and engineering, as well
as models addressing complex integral equations like [14, 16], also use these
kinds of equations. An IDE system can be solved using a variety of methods,
such as the variational iteration method (VIM) [29], the rationalized Haar
functions method [18], the Adomian decomposition method (ADM) [8, 26],
and work by Younis and Al-Hayani [31, 3|, the Galerkin method [19], and
He’s homotopy perturbation method (HPM) [9, 32] and the work by Younis
and Al-Hayani [30].
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Utilizing the Hybrid approach of the Ramadan group transform ...

The analytical method known as ADM uses Adomian polynomials to eval-
uate the answer. Both linear and nonlinear issues can be solved using this
method, which neither simplifies nor discretizes the provided problem. The
Galerkin and rationalized Haar function methods are numerical techniques
that can be used to solve IDEs in a variety of ways. The HPM, introduced by
He in 1997 and further detailed in 2000, combines traditional perturbation
techniques with the concept of Homotopy from topology [15]. He developed
and extended this innovative method, which has since been applied to a wide

range of linear and nonlinear problems.

Also, the use of the Laplace transform HPM by Al-Hayani [2]. Another
analytical method, the VIM, is also capable of addressing various linear and
nonlinear challenges. Additionally, Avudainayagam and Vani [5] explored the
use of wavelet bases for solving IDEs. They proposed a method for computing
a novel four-dimensional connection coefficient and validated their approach

by solving two basic educational nonlinear IDEs [6].

Interest in linear and nonlinear Volterra integro-differential equations
(VIDESs), which blend differential and integral components, has significantly
increased in recent years [28]. Nonlinear VITEs are fundamental in various
areas of nonlinear functional analysis and find widespread applications in
engineering, mechanics, physics, electrostatics, biology, chemistry, and eco-

nomics [7].

Recently, Ramadan et al. [21, 23, 22] have proposed the Ramadan group
transform (RGT) and the accelerated Adomian method to address solutions
for quadratic Riccati differential equations, the nonlinear Sharma-Tasso—

Olver equation, and other forms of nonlinear partial differential equations.

In this paper, we present the RGT and accelerated Adomian method for
solving the nonlinear VIDEs of the type:

o0 @) = S+ [ " K (e, )G y(a))dt |
0

with the initial conditions

y('f')(a):br7 r=0,1,2,..., (i—1),
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where () () is the ith derivative of the unknown function y(x) that will be
determined, K (x,t) is the kernel of the equation, f(z) is an analytic function,
G is a nonlinear function of y, and a,b,y and b, are real finite constants.
The main objective of this contribution is to present a comparative study of
solving IDEs using the RGT method coupled with an accelerated Adomian

method and solving them using other methods.

This paper is organized as follows:
Mathematical preliminaries and notions are stated in Section 2.
In Section 3, the analysis of the hybrid RGT accelerated Adomian method is
explained thoroughly.
In Section 4, the proof of convergence of the hybrid RGT accelerated Adomian
method when applied to a class of nonlinear Volterra-type IDEs, including the
sufficient conditions guaranteeing existence and uniqueness are introduced.
To demonstrate the correctness and effectiveness of the suggested approach
in comparison to the current one’s numerical examples are solved in Section
5.

Concluding remarks are given in the last section.

2 Mathematical preliminaries and notions

We give the reader basic definitions and theorems in this section so they may

comprehend RGT and its fundamental characteristics.

2.1 The Adomian polynomials [1]

A wide range of linear and nonlinear functional equations can be analytically

approximated using the ADM.

The solution is defined by the infinite series in the standard ADM,

oo
Z/ZZ.%m
n=0
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5 Utilizing the Hybrid approach of the Ramadan group transform ...

after which the nonlinear term Ny is broken down into an infinite series.

Moreover,

where the regular Adomian polynomials are denoted by the A,, and are de-

rived using the definitional formula for the nonlinearity Ny = f(y). Also,

A= (NN n=012,

nlid\, -
1=0 A=0
If N(y) = y?(x), then Adomian polynomials [1, 10] are

AO = y02 )
A1 = 2yoy1,
As =yi® 4 2yoy2 -

Ordinary and partial differential equations are solved by approximating

the nonlinear term functions using the Adomian polynomials {A,}.

2.2 Accelerated Adomian polynomials (El-Kalla
Adomian polynomials) [27, 12, 13, 11]

The accelerated Adomian polynomials are given in the following form:

n—1
Ay =N(sn) = > 4,
=0

where A,,, are accelerated Adomian polynomials, Ay, Ay, As,.. and N (sy,).

Use the nonlinearity (n-times) to substitute the total of the responses.

If N (y) = y?(x), then accelerated Adomian polynomials are

Z0 = ?JOZ )
Ay =2yoy1 + 17,
Ay = 2yoys + 2y1y2 + Y2
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and if N (y) = v (z), then accelerated Adomian polynomials are

Z0 :y03 )
Ay = 3yo®y1 +3you® + i,

Ay =3yoy2 + 6yoy1y2 + 3y1’ye + 3yoya” + 3yay® + yo.

2.3 Ramadan group integral transform [24]

For exponentially ordered functions, a novel integral RGT was introduced.
Functions in set A are examined, as defined by
1tl
A={f(t):IM, t1,ta > 0s.t. |f(t)] < Meln | if t € (—1)" x[0,00)}.
The RGT is defined by
K (s,u) = RG[f (); (s, u)]

/ e S f (ut) dt, —t1 <u <0,
0

/ e ' f (ut) dt, 0<u <t
0

2.4 Ramadan group transform (RGT) convolution

theorem

Definition 1 (Convolution of two functions [20]). The convolution of piece-
wise continuous functions f (x),g (z) : R — R is the function fxg: R — R

and is determined by the integral
fro= [ ftgte -t
0

Theorem 1 (Convolution theorem of RGT). [20]
Let f(z) and g (z) be two functions with RGTs K (s,u) and Ks(s,u),
respectively. Then
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7 Utilizing the Hybrid approach of the Ramadan group transform ...

RG[(f*g) (s,u)] = uky (s,u) Ky (s,u),

and

RG Y [uKy (s,u) Ky (s,u)] = f *g.

Proof. See [21] for theorem’s proof. O

Table 1: Ramadan group transform (RGT) of some functions

ft) | RG[f(t)] = K(s,u))
1 s
t =
T at T
(n—1)! sm
1 1
Vit Vsu
eat 1
- s—au
te (s—au)?
sinW¢ u
W s24+uw?
s
cosWt PEEwTETE
sinat _u
a s2+u2a?

3 Analysis of the Hybrid RGT accelerated Adomian
method

This section outlines the steps of the suggested method for solving nonlinear

IDEs where the accelerated Adomian polynomial appears in the estimated

solution. .
o () = f@)+ [ Klz - G ()t )
0
Applying the RGT for both sides, we get
" Snfl Sn72 , 1
2 _ _ . Zy(D
ARGy (@) = ==y (0) = =5y (0) Y (0) @

— RG[f (@)] + RG [K (1) R G (y (=)

The RGT of convolution term K (2) @ G (y (z)) can be written as a prod-

uct of terms, so,

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 7?7 pp 77



Ramadan, Mansour and Osheba 8

n—1 n—2 1

il I Sy — . L)
T BG ly ()] = ==y (0) — =" (0) Y (0) 3)

= RG[f (2)] + uRG [K (2)] RG[G (y (x)) ]

This can be reduced to

P Sn—l Sn—2
RO @) ="y O+ Ty O )
+RGIf () + uRG [K (@) RGIG (y (2)) ),
u™ Sn—l 811—2 , 1 =
ROy 0] =15 [y 0) + S ©) - 150 0)
unJrl (5)

. %:RG [f (#)] + “——RG [K ()] RG[G (y (x)) |-

S’I’L

Applying the inverse RGT for both sides, we get

o) =R6 [ [T 04 Sy 0 et 0 0)]

s™ u™ un—

+ RG™! {Z—:RG lf (:c)]} + RG™! {%IIRG [K ()] RG[G (y (2)) }} . (6)

We represent the linear term y(x) at the left side by an infinite series of

components given by

y(@) =3y (@) (")
n=0

The nonlinear term G (y (x)) at the right side of (6) will be represented

by an infinite series of the accelerated Adomian polynomials A,

Gly(z) =) Anl(x). (®)

3.1 Accelerated Adomian polynomials A,, formula

If the nonlinear function is G (y (z)) = y? (x), then the accelerated Adomian

polynomials A,, are
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9 Utilizing the Hybrid approach of the Ramadan group transform ...
Ao =wo”,
Ay =2yoy + 3%,
Ag = 2yoy + 2192 + 42°

and G (y(z)) = y> (x), the accelerated Adomian polynomials A,, are

Z0 = y03 )

A1 = 3w’y +3yoy® +

Ay =3yo’ya +6yoyrvz +3y1°y2 + 3yoy2” + 3y1ye” + 2’
where A,,,n > 0 can be obtained for all forms of nonlinearity. Substituting
(7) and (8) into (5) leads to

n—1 n—2

;yn () =RG™! {"S‘: [s y (0) + Zn_ly’ 0) 4+ -+ ly(nﬂ) (0)”

uTL

+RG {Z:RG i (a:)]}

+ RG™! "

RG K (z)] RG

Sn

where

(@) =86 [ (2 0+ 2 0+ 0 o)

Sn
], n > 0.

RG K (z)] RG

S’I’L

Z A, (z)
n=0

4 Convergence of the proposed method

In this section, we present and prove a convergence theorem for the ap-
plication of the hybrid RGT in combination with the accelerated Adomian

polynomials.
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Theorem 2. The solution of the nonlinear Volterra-type integro-differential

equation

s @) = 5@+ | " K (e, )G y(e))dt |

using RGT converges if G(y(x)) satisfy Lipschitz condition in the interval of
interest J = [0,b] and this solution, is unique provided that
(z — z0)"

(i + 1)!
equality constant.

0 < MM, < 1, forallz € J, where M is the Lipschitz in-

Proof. Define a complete metric space (C[0,b] d), the space of all continuous

functions on J with the distance function

d(fi(z), f2(x)) = max |f1(z) = f2(2)] -

Define the sequence {S,} such that S, = > y; (@) =vo+y1+ -+ Yn
i=0

o0
is a sequence of partial sums of the series solution »_ y; (z), since
i=0

f (Z Yi (I)> = A (Yo, y1,- - vi),
=0 i=0

f(Sn) = Zzi (Yo, Y15+ Yi)-
i=0

Let, S, and S, be arbitrary partial sums with n > m. We prove that

{S,} is a Cauchy sequence in this complete metric space:

d(Sn, Sm) :éna?HSn — Sl
xre

n

—max| 3 0@

Vzeld |,
i=m-+1

=max| Y RG*l[/ K (z,t) A;_ 1 dt]

Vzeld |,
1=m+1

=max| »  RG™'[ / K(x,t)A;_dt]

Veeld |,
1=m-+1
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11 Utilizing the Hybrid approach of the Ramadan group transform ...

T n—1
RG—l[/ K(x,t) Y Adt]

Zo

= max
VaeJ

i=m
T

RGO K @01 (S0o1) = F(Snvlar]

= max
YzeJ zo
<y BG | [ K @Ol17 (S101) ~ £ (Sl ]
AS zo
< — -1 .
< My max [f(Sur) £ (Snr)| RG /%dt

Since f(z) satisfy Lipschitz condition,

[f (Sn—1) = f (Sm-1)| < M[Sp—1 = Sl

S0,

A(Su , $.) < MM, max |sn,1—sm,1|/ o (i41) = fold . / dt...dt
z€ o T

0

< MM M d(s Sp_1)

= 1 (Z+1)' m—1 5 POn—1),
(x_xo)i-‘rl

< _ _ = MM —FF——

_ad(Sm 1, Sn 1)7 « 1 (Z+1)'

Now, for n =m+ 1,
d(Sm—i-l 5 Sm) S od (Sm ) Sm—l) S Oézd (Sm—l ) Sm—2) S e S a™d (Sl ) SO) .

From the triangle inequality, we have

d(Sm ) Sn) S CY[d(smfl ) Sm)+d(5m ) Serl) + +d(Sn72 ) Snfl)]a
<ala™ ' +a™++ a7 d(S1, So),

1—qnm
mid _
< @I a5 - 8),
am
< d .
=13 (S1, So)
Indeed, d(S1, So) = maxyzes |S1— So|=maxvzes |y1| , which is

bounded. As m — o0, d(Sm , Sn) — 0 we conclude that {S,} is a

oo
Cauchy sequence in this complete metric space, so the series > y, (x) con-
n=0
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verges. For the uniqueness of the solution, assume that y and y* are two

different solutions. Then from (6), we have

ra( K (@ 0)lf () - Fl )]

Zo

d(y , y*)=g;a€»§

9

< 56| [ K @01l 0) - )]
< My max F@)-f0) RGT [ at
<ad(y, y").

So, 1 —a)d(y, y*) < 0and 0 < o <= 1; then d(y , y*) = 0, which
implies y = y*.
O

5 Numerical examples

In this numerical section, we apply the hybrid RGT and accelerated Adomian
polynomials to solve several nonlinear IDEs. The results are compared with
traditional methods, highlighting improvements in accuracy and computa-

tional efficiency, demonstrating the effectiveness of the proposed approach.

Example 1. Consider the nonlinear VIDE [25]

y’<x>1+/0wy2<t>dt, y(0) =0

whose exact solution takes the form

This example is solved by Rani and Mishra [25] where they used Laplace
and a modification of ADM by computing the Adomian polynomials for the
nonlinear term using the Newton-Raphson formula. We applied our hybrid

method for combining RGT and the accelerated version of ADM. Four itera-
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13 Utilizing the Hybrid approach of the Ramadan group transform ...

tions are carried out and the approximate series solution is evaluated at the

corresponding points as in [25].

Applying the RGT for both sides, we get

RG [y ()] = RG[-1] + RG [/OI Y2 (t)dt ] ,

SRG (@] - (0) = RG-11+ RG | [ Par .

u

O R [ | v ] |

RG [y(z)] = ;—f + %RG Uow (1) dt } .

Applying the inverse RGT for both sides, we get
y(x) = RG™ [‘f] + RG™ [uRG [/ y (t)%dt H :
S S 0
y(r) = —x + RG™! {URG [/ y*(t)dt H .
$ 0

Let y%(t) = Y. A, ,
n=0

o0

> yn(x) = -2+ RG

n=0

YR
S

/wiAn dx
0 n=o

By comparing both sides, we get

Yo (v) =~ ,

/ngn dH

Using accelerated Adomian polynomials, we have

Yn+1 (CL‘) = RG_l

Yra
S

Ao =yo®, A =2you1 +y1%, Az =2y0y2 + 2y1y2 + Yo7,

Then
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.’174 .’L‘7 3?10

Yo (z) = —x (m)zﬁuy2(x):_@+m ,

y3 ()
B 1183133952020 — 701537760213 + 15992262216 — 24024021 4 1729222
- 134167390156800

- 13 n 89716 _ 10757219
884520 849139200 2032839244800
450725 24354871128

 901604861853696 = 221524314557453107200
1312457231 253524431234

628869391142952960000 ' 7647700951798842654720000
170927 n 241247240
4053164656463290368000  59943018919370607820800000
243 246

~ 39132841298576965632000 + 12464483949901696204800000

350993222
1878343462195200

ya (z) =

y (x) (approximate) = yo + y1 + y2 + Y3 + ya

354 357 LElO :1713

T 127 252 T 6048 157248

2663216 N
11887948800

Table 2: Comparison of the approximate solutions and absolute error against the method
of Laplace Adomian using Newton-Raphson formula [25]

T Exact solution Approximate solution | Absolute error | Approximate Absolute error
(presented method, 4 solution [25] (4
iterations) iterations)
0. 0. 0. 0. 0. 0.
0.0625 | -0.0624987284490275 | -0.0624987284490275 2.082x10717 | -0.062499682 3.1789x 1077
0.125 | -0.124979656839952 -0.124979656839974 2.2x107 -0.124994914 1.4914x107°
0.1875 | -0.187397035493881 -0.187397035495149 1.268x10712 | -0.187474253 7.4253x107°
0.25 -0.249674721189591 -0.249674721212078 2.249x 10711 -0.249918635 2.4863x10~4
0.3125 | -0.311706424640996 -0.311706424850075 2.091x10710 | -0.31230139 5.9139x1073
0.375 | -0.373356178680768 -0.373356179972127 1.291x107° | -0.374588271 1.2283x107%
0.4375 | -0.434459096619924 -0.434459102631869 6.012x107° -0.436737503 2.2775%1073
0.5 -0.494822485207101 -0.494822507955013 2.275x107% | -0.498699852 3.8799x 1073

Table 2 and Figure 1 show that the proposed method achieves higher ac-
curacy and improved computational efficiency, primarily because the accel-
erated Adomian polynomials eliminate the requirement to compute deriva-
tives of the nonlinear functions. Another notable advantage of using the
accelerated polynomial is its superior rate of convergence compared to the

traditional polynomials.

Example 2. Consider the nonlinear VIDE [17]

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 7?7 pp 77



15 Utilizing the Hybrid approach of the Ramadan group transform ...

Logy error

._-v""/_’\A
-8 s
,/-rv‘/“_f
"/"/,
woF i g
/_,x.’"'
- — —#— Laplace Adomian+Newton Raphson with four iterations
12 A
st 3 —&— RG+accelerated Adomian with four iterations.
//
&
14}
0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Figure 1: Comparison the absolute errors of the two approaches at four iterations.

Y’ (z) = 24+ 2z + 2% — x2e” —ezI—i—/ ey (t)dt, y(0)=1, 3 (0)=2,
0

whose exact solution takes the form y () = x + €®.

Khanlari and Paripour [17] solved this example using a combination of
Laplace and the homotopy analysis method (HAM) by computing the Ado-
mian polynomials for the nonlinear term. We applied our hybrid method
for combining the RGT and the accelerated version of ADM. Three itera-
tions were carried out, and the approximate solution and absolute error were

evaluated at the corresponding points as in [4].

We note that the integral term uses the RGT convolution theorem of the

two functions e” and y? (x) [13].

Applying the RGT for both sides, we get
RGy" (z)] = RG [2 + 2z + 2° — 2°e” — €*"] + RG [e” ®y2 (z) } ,

RG[y" (z)] = RG [2+ 2z + 2 — 2%e” — "] + uRG [¢*] RG [y* (z)] ,

52 S 1, 2 2u  2u? 2u?
ERG[y(x)] —?y(o)—ay (0)—5‘*‘37‘?873—@
1 U

+ RG [yg (x)] ,

_72u+5 s—u

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 7?7 pp 77



Ramadan, Mansour and Osheba 16

52 s 2 2 2u  2u? 2u? 1
—RG =+ -—-4+-4+—=+—-
2lG @] =g+t o+ o+

53 (S_u)3_—2u+s
+ ﬁ RG [y2 ()],
1 2u 2u?  2u® 2t 2u* u?
RG =t ottt — - -
[y (l')] s + 52 + $3 + g4 + s5 §2 (8 _ u)S 52(_2u + S)
b RG Y (@)
s2(s —u) v

Applying the inverse RGT for both sides, we get

1 2w 2u? 2 2t 2ut u?
el I N L -
y() 2T ats s2(s—u)®  s2(—2u+s)
cre | _Re [y (z)]
s2 (s —u) vl
= 1 2u  2u?  2u®  2ut 2ut u?
n(z) =RG™' |-+ = — - -
nzzjoy (z) 5 + 2 3 54 + 55 2 (s — u)3 52 (—2u + 5)
tre | Y Re f: A,
s2 (s —u) =

By comparing both sides and using the Taylor series from 0 to 4, we get

2 4

x xr
yO(‘r) €z ) 6 )
n z) = RG 1 7’LL3 RG E An
Yn-1 (@) s2 (s —u) —

Using accelerated Adomian polynomials, we have
Z0 = y027

A1 = 2yoy1 + 412,

As = 2yoya + 25192 + Yo,

Then
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17 Utilizing the Hybrid approach of the Ramadan group transform ...

yo(:c):1+2x+x;—%4+... )
x3 bzt 2®  3aS
yl(a:)zz%-ﬂ-i-g-i-%—k...,
25 27 89a8
y2($):%+@ 50160 T
z? 297,10
v (%) = 5o730 + goza00 T
_ R T
y (x) (approximate) = yo+y1+y2+ys = 1+2x+?+€+ﬂ+m+%+~ .

Table 3: Comparison of the approximate solutions and absolute error against the com-
bination of the HAM and Laplace transform-Adomian method [4]

T Exact solution Approximate Absolute error | Approximate | Absolute error

solution  (pre- solution  [4]

sented method, (4 iterations)

3 iterations)
0.00 | 1.0000000000000 | 1.0000000000000 | 0.0000 1.00000 0.00000
0.02 | 1.0402013400268 | 1.0402013400268 | 7.105x10~1'° 1.04042 2.16577x1074
0.04 | 1.0808107741924 | 1.0808107741933 | 9.064x 10713 1.08175 9.37538x10~*
0.06 | 1.1218365465454 | 1.1218365465611 | 1.573x 10~ 1.12412 2.28194x1073
0.08 | 1.1632870676750 | 1.1632870677947 | 1.197x10~1° 1.16767 4.38752x1073
0.10 | 1.2051709180756 | 1.2051709186553 | 5.796x 10710 1.21259 7.41437x1073
0.12 | 1.2474968515794 | 1.2474968536878 | 2.108x10~° 1.25905 1.15497x1073
0.14 | 1.2902737988572 | 1.2902738051525 | 6.295x10~° 1.30729 1.70138x 1072
0.16 | 1.3335108709918 | 1.3335108872586 | 1.627x 1078 1.35758 2.40683x 1072
0.18 | 1.3772173631218 | 1.3772174007597 | 3.764x10~8 1.41024 3.30265x1072
0.20 | 1.4214027581602 | 1.4214028379772 | 7.982x 1078 1.46567 4.42678x1072

Log1g error

—#— Laplace Adomian and HAM with four iterations

#— RG+accelerated Adomian with three iterations

Figure 2:

0.15

X

Comparison the approximate solutions of the two approaches.
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—e— Laplace Adomian and HAM
—s— RG with accelerated Adomian
—o— exact solution

0.00 0.05 0.10 0.15 0.20
X

Figure 3: Comparison the absolute errors of the two approaches.

Based on Table 3 and Figures 2 and 3, the RGT combined with the
accelerated Adomian method yields higher accuracy compared to the hybrid
approach of the HAM and the Laplace transform-Adomian method. Notably,
this improved performance is achieved using only three iterations, whereas

HAM requires four.

Example 3. Consider the nonlinear VIDE [4]

y" (z) = %2 - gcos (x) + %cos2 (x) + /096 cos (x —t)y? (t) dt,
y(0) =y (0) =1, y"(0)=-1,

whose exact solution takes the form
y (z) = sin(z) + cos(x) .

Almousa et al. [4] approached this example by employing a combination
of Laplace transform and HAM. They calculated the Adomian polynomials
for the nonlinear term. In our study, we utilized a hybrid method that
combines the RGT with an accelerated Adomian polynomial. We conducted
two iterations and evaluated both the approximate solutions and absolute
error at the corresponding points, as described in [20].

We note that the integral term uses the RGT convolution theorem of two

functions cos(x) and y? (z) [10].

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 7?7 pp 77



Utilizing the Hybrid approach of the Ramadan group transform ...

19
Applying the RGT for both sides, we get
RG [y (z)] = RG 2 §cos (x) + écos2 (z) | + RG {cos (x) ®y2 (:c)}
3 3 3 ’
" —2 ) 4 2 2
RG[y" ()] = RG 5 ~3c0s (x) + 3¢08 (z) |+uRG [cos (x) ] RGly” (z)],
83 52 s 1
A 1G Y (@)] = —5y(0) = =y (0) = ~4"(0)
5% + 6su? us )
T 45820 +dut | 2 4 w2 RGly” (@)
s s* s 1 §3 + 6su? us 2
ﬁRG ly ()] = BrE Ty +5s2u2 +4ut  s2 +u? RGly” (@)
1w u? u3(s® + 6su?) ut 9

2 53 $3(st 4 5s2u? + dut)

Applying the inverse RGT for both sides, we get

Yy (I) =RG™! 1 + u u72 . u? (83 + 65u2)
S 52 53 33 (54+582u2+4u4)
+RG! LRG [yQ (m)}
82 (82+u2) 5
3 1 ’ 3 (5% + 6su?
3 iy rn [Ly e )
=0 508 § s3 (s* + 5s2u? + 4u?)
fRG | ke |S 4, ||
s2 (8% +u?) <

By comparing both sides and using the Taylor series from 0 to 9, we get

2 g8 b x’ 412°

X
-1 _ — - =
vo (@) =1+ =5 =5 =155+ 566~ 350880 T

4 o0
_ -1 u
yn1 () = RGO ;An

Using accelerated Adomian polynomials

Ao =yo®, A1 = 2yoy1 + y1 %, Az = 2yoya + 2y1y2 + Yo,
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Then
§C2 1'3 1'5 SC7
Y I ror o
vo (@) =14z— o === o6+ 55 :
ZA x5 xﬁ $7 .Ts
v =51+ 5 720 5014 0320 T
8
X
v2 (%) = 35760 T

y (z) (approximate) = yo + y1 + ya.

Table 4: Comparison of the approximate solutions and absolute error against the method
of (HAM) [4]

T Exact solution Approximate solution | Absolute error | Approximate | Absolute error
(presented method, 2 solution  [4]
iterations) (4 iterations)
0.00 | 1.0000000000000 1.0000000000000 0 1.00000 0
0.02 | 1.019798673359911 1.019798673359911 0 1.01980 1.37991x 1076
0.04 | 1.0391894408476121 1.0391894408476123 2.22x10716 1.03920 1.14101x107°
0.06 | 1.0581645464146487 1.0581645464146487 0 1.05820 3.97525x107°
0.08 | 1.0767164002717922 1.0767164002717917 | 4.441x10716 1.07681 9.71538x10~°
0.10 | 1.094837581924854 1.0948375819248513 2.665x1071° 1.09503 1.95418x 1074
0.12 | 1.1125208431427855 1.1125208431427716 1.399x 10714 1.11287 3.47374x1074
0.14 | 1.1297591108568736 1.1297591108568175 5.618x10714 1.13033 5.66843x1074
0.16 | 1.1465454899898728 1.1465454899896865 1.863x10713 1.14741 8.68596x10~4
0.18 | 1.1628732662139456 1.1628732662134090 5.367x10713 1.16414 1.26832x1073
0.20 | 1.1787359086363027 | 1.1787359086349205 1.382x10712 1.18052 1.78257x10~3

From Table 4, RGT with accelerated Adomian gives better accuracy com-
pared with the HAM and Laplace transform-Adomian method. Although,

RGT with accelerated Adomian polynomials uses less iterations than HAM.

Example 4. Consider the following nonlinear VIDE [4]:

3 1 ’
Y (z) = §ex—§e3x+/ eyt (t) dt, y(0)=1,
0

whose exact solution takes the form y (z) = e*.

This example is solved by Almousa et al. [4], and they used a hybrid
ADM with Modified Bernstein Polynomials by using the ADM for the non-
linear term. We applied our hybrid method for combining the RGT and the

accelerated Adomian polynomial. Four iterations are carried out, and the
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approximate series solution and absolute error are evaluated at the corre-
sponding points as in [4].

We note that the integral term uses the RGT convolution theorem of two
functions e® and v (x) [12].

Applying RGT for both sides, we get
RG[vy (z)] = RG §ez — RG 1631 + RG [ e’ ®y3 (x)}
2 2 ’

e’ ] +uRG[ " | RG [y ()],

N |

e | e |

=
«
Qd\
&

|

=
Q
po |

SRG Ly ()] — Ly (0) = —° LY RGP @),

U u :28—2u_25—6u s—u

s 1 3 1 U 3
7RG[y(w)]7u+2s—2u 23—6u+s—u RG[y (x)],

2

RGly (@) = é * 25(ju— u) 25(51i 3u) * s(su— u) RG [y (@]

Applying the inverse RGT for both sides, we get

y(x) = é (=2 +9¢" — €**) + RG™" [s (5u2 m RG [y* (m)]} )
Let y (1) = 3 (). 9°(0) = 3 Ano)
Zyn(x) = é (=2 +9¢" — €**) + RG™" 5(,9u2u) RG ZAn(x) 1 .
n=0 n=0

By comparing both sides and using the Taylor series from 0 to 6, we get

() 14 3zt 132° a:6+
T) = r—— = — —— — — +...
Yo 2 2 40 6 ’

> An(x) ] .
n=0

2
_ " Rra
u)

_ —1
Yn+1 (I)*RG S(S—

Using accelerated Adomian polynomials, we have
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ZO :y03 )
A1 =3yo*y1 +3yoyi® +yi°,
Ay =3yo%ys +6yoy1y2 + 3y12ya + 3yoy2® + 3y1y2® +u2°,
As =3yo’ys +6yoy1ys +3y1°ys + 6yoyays + 6y1y2ys + 3y2>ys
+3yoys? +3y1ys® + 3yays® +ys,
Then
(2) =1+ 3zt 132° 28 "
x) = r— - = Ty
Yo 2 2 40 6 ’
() = x2 n 23 n 5at n 725 101z n
P = T Ty o0 120 T
() = 2t 112 N 7120 N
RE= T 40 T 240 :
6
x
(@) 38 n z9 n
)= —— 4+ —+ ...,
Ya 4480 ' 896

y (z) (approximate) = yo + y1 + y2 + Y3 + ya-

Table 5: Comparison of the approximate solutions and absolute error against Hybrid
ADM with modified Bernstein polynomials [4]

x| Exact solution Approximate solution | Absolute error Approximate | Absolute er-
(presented method, 4 solution  [4] | ror
iterations) (4 iterations)
0.0 | 1.000000000000000 1.000000000000000 0 1.000000 0
0.1 | 1.105170918075648 1.105170918063368 1.228x10711 1.105170917 1.333x107°
0.2 | 1.221402758160170 1.221402757841270 3.189x10~10 1.221402667 9.133x1078
0.3 | 1.349858807576003 1.349858828402902 2.083x1078 1.349857750 | 1.058x1076
0.4 | 1.491824697641270 1.491825086984127 3.893x1077 1.491818667 | 6.031x1076
0.5 | 1.648721270700128 1.648724413674975 3.143x10~¢ 1.648697917 | 2.335x107°
0.6 | 1.822118800390509 1.822135294857143 1.649x107° 1.822048000 | 7.080x107°
0.7 | 2.013752707470477 2.013818459141493 6.575x107° 2.013571417 1.813x1074
0.8 | 2.225540928492468 2.225756899555555 2.16x1074 2.225130667 | 4.103x107%
0.9 | 2.459603111156950 2.460217010731026 6.139x10~4 2.458758250 | 8.449x10~4
1.0 | 2.718281828459045 2.719841269841270 1.559x 1073 2.716666667 | 1.615x1073

According to Table 5, the proposed method is both more accurate and
computationally simpler than the Adomian hybrid decomposition method
with modified Bernstein polynomials, which involves extensive calculations

when the same number of iterations is used.
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Example 5. Consider the nonlinear VIDE [28§]
y D (z)=e 3" e — 1+ 3/ y® (t)dt
0
with the conditions

y(0)=y"(0)=1, ' (0)=y"(0)=~-1,

whose exact solution takes the form y (z) = e™*.

This example is solved by Sharif, Hamoud, and Ghadle [28] using a
Laplace and modified homotopy perturbation method (MHPM) by using the
ADM for the nonlinear term. We applied our hybrid method for combining
the RGT and the accelerated Adomian polynomial. Three iterations are car-
ried out, and the approximate series solution and absolute error are evaluated

at the corresponding points as in [28].

Applying RGT for both sides, we get

RG[y™ (z)] = RGle "] + RG[e™"] — RG[1] + 3RG]| / ’ g3 () dt ],

84 83 82 s 1
- — = +3RG 3(t)dt],
(s+3u)+(5+u) s+ [/Oy() ]
g4 B 2 s 11 1 ) -
JRG ly (z)] = §_$+ﬁ_ﬂ_g+(s + 3u)+(s + u) +3RG[/O y° (t)dt |,

1 u w? o ouwd ud ut ut

s sz 8 sl s5+s4(s+3u) st(s+wu)

4 xT
+ %RG[/ yo () dt ],
0

Applying the inverse RGT for both sides, we get

1 —3x 2 3 4 3 4 T
y(@) = ——+ e T T T LRG| S—ZRG[/ P (tydt]]
0

81 81 27 18 18 24
yB(t) = Z Ay 3
n=0
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731 2 3 4

Z ———+ et T 4T D
yn() = 81 27 18 ' 18 24

RG™! 3—“430 xooAd
+ [ S [Oznw]],
n=0

By comparing both sides and using the Taylor series from 0 to 5, we get

22 23 2t 2P

_17 - -
vo () Tty T Ty T

Ynt1 () = RG™ —RG/ A, dx |

Using accelerated Adomian polynomials, we have
Ay =y’ , Ay = 3yo’yr +3yorn® + i,

Ay =3yoy2 + 6yoyiy2 + 3y1°ye + 3yoya” + 3yaye® + o,

Then
2 1,3 1,4 1,5
=log4— — o —
o () Tty T T 3
¥ a8 37 928

() =15~ 50 " 560 ~ 10

.1310 ,1’,‘11 3.1:.12
v2(*) = 131200 ~ 98560 " 304240 T
LU15
vs (%) = sxeiamgo00 T

y (z) (approximate) = yo + y1 + y2 + y3.

Based on Table 6, the proposed method outperforms the others at both
two and three iterations specifically when two iterations are used in the
MHPM and three iterations in the LADM [15].
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Table 6: Comparison of the approximate solution against LADM [17] and MHPM [7]

X Exact solu- | Approximate | Absolute Error | LADM [17] Absolute MHPM [7] Absolute
tion solution for | for presented Error for Error for
presented method using LADM [17] MHPM [7]
method wus- | three itera-

ing three | tions
iterations

0.00] 1.0000000000 | 1.0000000000 | 0.0000 x 107 1.0000000000 | 0.0000 x 10° | 1.0000000000 0.0000 x 107

0.04| 0.9607894392 | 0.9607894391 | 5.5992 x 10~! | 0.9607895450 | 1.0580x 10~7 | 0.9608106692 2.1230x 10~°
0.08| 0.9231163464 | 0.9231163429 | 3.5278 x 1072 | 0.9231180530 | 1.7066x 10~¢ | 0.9232854120 1.6906 x 104
0.12| 0.8869204367 | 0.8869203971 | 3.9569 x 1078 | 0.8869290770 | 8.6403x 1075 | 0.8874885866 5.6815x 104
0.16| 0.8521437890 | 0.8521435700 | 2.1898 x 1077 | 0.8521710940 | 2.7305x 10~ | 0.8534850921 1.3413x 1073
0.20| 0.8187307531 | 0.8187299301 | 8.2298 x 1077 | 0.8187974190 | 6.6670x 10~ | 0.8213405980 2.6098 x 103
0.24| 0.7866278611 | 0.7866254393 | 2.4218 x 1075 | 0.7867661000 | 1.3824x10~* | 0.7911217470 4.4938x 1073
0.28 0.7557837415 | 0.7557777214 | 6.0201 x 107¢ | 0.7560398470 | 2.5611x10™* | 0.7628963355 7.1125x1073
0.32| 0.7261490371 | 0.7261358094 | 1.3228 x 107> | 0.7265859450 | 4.3691x 10~* | 0.7367334755 1.0584x 1072
0.36| 0.6976763261 | 0.6976498733 | 2.6453 x 10™° | 0.6983761680 | 6.9984x 10~ | 0.7127037390 1.5027x 102

6 Conclusions

In this study, a hybrid approach combining the RGT with the accelerated
Adomian polynomial is introduced to solve IDEs numerically. The resulting
method is straightforward and efficient, as demonstrated by the numerical
results presented in the tables.

These results highlighted the improved accuracy achieved through this
combination, outperforming other existing methods. An important advan-
tage and as a key contribution of the proposed convergence analysis is the
use of the classical fixed-point theorem in conjunction with accelerated poly-
nomials, rather than traditional polynomials.

This approach enhanced the robustness and efficiency of analysis. All
computations were carried out using MATHEMATICA 12.
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