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Abstract

In this paper, we investigate the application of the combination of
the Ramadan group transform and the accelerated Adomian polynomial
method for solving integro-differential equations. Integro-differential equa-
tions arise in various fields such as physics, engineering, and biology, often
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modeling complex phenomena. The Ramadan group transform, known
for its transformation properties and its ability to simplify computational
complexities, is coupled with the accelerated Adomian polynomial method,
which is an effective series expansion technique. This combination enhances
the convergence and efficiency of solving nonlinear integro-differential equa-
tions that are difficult to handle using traditional methods. The paper
demonstrates the utility of this hybrid approach through several test cases,
comparing it with existing methods in terms of accuracy, computational
efficiency, and convergence rate.

AMS subject classifications (2020): Primary 45J05; Secondary 65R20, 65H10,

65L09, 44A10.

Keywords: Ramadan group transform (RGT); Adomian polynomials; ac-
celerated Adomian; Integro-differential equations; Accuracy.

1 Introduction

An equation with the unknown function under the sign of integration and in-
cluding the unknown function’s derivatives is known as an integro-differential
equation (IDE). It falls into one of two categories: Volterra equations or Fred-
holm equations. IDEs are one of the most important tools in mathematics
[33].

Many researchers and scientists investigated IDEs while working on scien-
tific applications such as heat transformers, neutron diffusion, and biological
species coexisting with growing and decreasing rates of production and dif-
fusion processes. Applications in physics, biology, and engineering, as well
as models addressing complex integral equations like [14, 16], also use these
kinds of equations. An IDE system can be solved using a variety of methods,
such as the variational iteration method (VIM) [29], the rationalized Haar
functions method [18], the Adomian decomposition method (ADM) [8, 26],
and work by Younis and Al-Hayani [31, 3], the Galerkin method [19], and
He’s homotopy perturbation method (HPM) [9, 32] and the work by Younis
and Al-Hayani [30].
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3 Utilizing the Hybrid approach of the Ramadan group transform ...

The analytical method known as ADM uses Adomian polynomials to eval-
uate the answer. Both linear and nonlinear issues can be solved using this
method, which neither simplifies nor discretizes the provided problem. The
Galerkin and rationalized Haar function methods are numerical techniques
that can be used to solve IDEs in a variety of ways. The HPM, introduced by
He in 1997 and further detailed in 2000, combines traditional perturbation
techniques with the concept of Homotopy from topology [15]. He developed
and extended this innovative method, which has since been applied to a wide
range of linear and nonlinear problems.

Also, the use of the Laplace transform HPM by Al-Hayani [2]. Another
analytical method, the VIM, is also capable of addressing various linear and
nonlinear challenges. Additionally, Avudainayagam and Vani [5] explored the
use of wavelet bases for solving IDEs. They proposed a method for computing
a novel four-dimensional connection coefficient and validated their approach
by solving two basic educational nonlinear IDEs [6].

Interest in linear and nonlinear Volterra integro-differential equations
(VIDEs), which blend differential and integral components, has significantly
increased in recent years [28]. Nonlinear VITEs are fundamental in various
areas of nonlinear functional analysis and find widespread applications in
engineering, mechanics, physics, electrostatics, biology, chemistry, and eco-
nomics [7].

Recently, Ramadan et al. [21, 23, 22] have proposed the Ramadan group
transform (RGT) and the accelerated Adomian method to address solutions
for quadratic Riccati differential equations, the nonlinear Sharma–Tasso–
Olver equation, and other forms of nonlinear partial differential equations.

In this paper, we present the RGT and accelerated Adomian method for
solving the nonlinear VIDEs of the type:

y(i) (x) = f(x) + γ

∫ x

0

K(x, t)G(y(x))dt ,

with the initial conditions

y(r) (a) = br, r = 0, 1, 2, . . . , (i− 1) ,
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where y(i) (x) is the ith derivative of the unknown function y(x) that will be
determined, K(x, t) is the kernel of the equation, f(x) is an analytic function,
G is a nonlinear function of y, and a, b, γ and br are real finite constants.
The main objective of this contribution is to present a comparative study of
solving IDEs using the RGT method coupled with an accelerated Adomian
method and solving them using other methods.

This paper is organized as follows:
Mathematical preliminaries and notions are stated in Section 2.
In Section 3, the analysis of the hybrid RGT accelerated Adomian method is
explained thoroughly.
In Section 4, the proof of convergence of the hybrid RGT accelerated Adomian
method when applied to a class of nonlinear Volterra-type IDEs, including the
sufficient conditions guaranteeing existence and uniqueness are introduced.
To demonstrate the correctness and effectiveness of the suggested approach
in comparison to the current one’s numerical examples are solved in Section
5.
Concluding remarks are given in the last section.

2 Mathematical preliminaries and notions

We give the reader basic definitions and theorems in this section so they may
comprehend RGT and its fundamental characteristics.

2.1 The Adomian polynomials [1]

A wide range of linear and nonlinear functional equations can be analytically
approximated using the ADM.

The solution is defined by the infinite series in the standard ADM,

y =

∞∑
n=0

yn ,
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after which the nonlinear term Ny is broken down into an infinite series.
Moreover,

Ny =

∞∑
n=0

An ,

where the regular Adomian polynomials are denoted by the An and are de-
rived using the definitional formula for the nonlinearity Ny = f(y). Also,

An =
1

n!
(
dn

dλn
[N(

n∑
i=0

λiyi)])

λ=0

, n = 0, 1, 2, . . . .

If N (y) = y2 (x) , then Adomian polynomials [1, 10] are

A0 = y0
2 ,

A1 = 2y0y1,

A2 = y1
2 + 2y0y2 .

Ordinary and partial differential equations are solved by approximating
the nonlinear term functions using the Adomian polynomials {An}.

2.2 Accelerated Adomian polynomials (El-Kalla
Adomian polynomials) [27, 12, 13, 11]

The accelerated Adomian polynomials are given in the following form:

An = N (sn)−
n−1∑
i=0

Ai,

where An, are accelerated Adomian polynomials, A0, A1, A2,… and N (sn).
Use the nonlinearity (n-times) to substitute the total of the responses.

If N (y) = y2 (x) , then accelerated Adomian polynomials are

A0 = y0
2 ,

A1 = 2y0y1 + y1
2 ,

A2 = 2y0y2 + 2y1y2 + y2
2 ,
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and if N (y) = y3 (x), then accelerated Adomian polynomials are

A0 = y0
3 ,

A1 = 3y0
2y1 + 3y0y1

2 + y1
3,

A2 = 3y0
2y2 + 6y0y1y2 + 3y1

2y2 + 3y0y2
2 + 3y1y2

2 + y2
3.

2.3 Ramadan group integral transform [24]

For exponentially ordered functions, a novel integral RGT was introduced.
Functions in set A are examined, as defined by

A = {f (t) : ∃M, t1, t2 > 0 s.t. |f (t)| < Me

|t|
tn , if t ∈ (−1)

n × [0,∞)}.

The RGT is defined by

K (s, u) = RG [f (t) ; (s, u)]

=


∫ ∞

0

e−stf (ut) dt, −t1 < u ≤ 0,∫ ∞

0

e−stf (ut) dt, 0 ≤ u < t2.

2.4 Ramadan group transform (RGT) convolution
theorem

Definition 1 (Convolution of two functions [20]). The convolution of piece-
wise continuous functions f (x) , g (x) : R → R is the function f ∗ g : R → R

and is determined by the integral

f ∗ g =

∫ x

0

f(t)g(x− t)dt.

Theorem 1 (Convolution theorem of RGT). [20]
Let f (x) and g (x) be two functions with RGTs K1(s, u) and K2(s, u),

respectively. Then
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7 Utilizing the Hybrid approach of the Ramadan group transform ...

RG [(f ∗ g) (s, u)] = uK1 (s, u)K2 (s, u) ,

and
RG−1 [uK1 (s, u)K2 (s, u)] = f ∗ g.

Proof. See [21] for theorem’s proof.

Table 1: Ramadan group transform (RGT) of some functions

f(t) RG[f(t)] = K(s, u))
1 1

s
t u

s2

tn−1

(n−1)!
un−1

sn
1√
πt

1√
su

eat 1
s−au

teat u
(s−au)2

sinWt
W

u
s2+u2w2

cosWt s
s2+u2w2

sinat
a

u
s2+u2a2

3 Analysis of the Hybrid RGT accelerated Adomian
method

This section outlines the steps of the suggested method for solving nonlinear
IDEs where the accelerated Adomian polynomial appears in the estimated
solution.

y(n) (x) = f(x) +

∫ x

0

K(x− t)G(y(x))dt . (1)

Applying the RGT for both sides, we get

sn

un
RG [y (x)]− sn−1

un
y (0)− sn−2

un−1
y′ (0)− · · · − 1

u
y(n−1) (0)

= RG [f (x)] +RG
[
K (x)

⊗
G (y (x))

]
.

(2)

The RGT of convolution term K (x)
⊗

G (y (x)) can be written as a prod-
uct of terms, so,
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sn

un
RG [y (x)]− sn−1

un
y (0)− sn−2

un−1
y′ (0)− · · · − 1

u
y(n−1) (0)

= RG [f (x)] + uRG [K (x)]RG [G (y (x)) ] .

(3)

This can be reduced to

sn

un
RG [y (x)] =

sn−1

un
y (0) +

sn−2

un−1
y′ (0) + · · ·+ 1

u
y(n−1) (0)

+RG [f (x)] + uRG [K(x)]RG[G (y (x)) ],

(4)

RG [y (x)] =
un

sn

[
sn−1

un
y (0) +

sn−2

un−1
y′ (0) + · · ·+ 1

u
y(n−1) (0)

]
+

un

sn
RG [f (x)] +

un+1

sn
RG [K(x)]RG[G (y (x)) ].

(5)

Applying the inverse RGT for both sides, we get

y(x) =RG−1

[
un

sn

[
sn−1

un
y (0) +

sn−2

un−1
y′ (0) + · · ·+

1

u
y(n−1) (0)

]]
+RG−1

[
un

sn
RG [f (x)]

]
+RG−1

[
un+1

sn
RG [K (x)]RG [G (y (x)) ]

]
. (6)

We represent the linear term y(x) at the left side by an infinite series of
components given by

y (x) =

∞∑
n=0

yn (x). (7)

The nonlinear term G (y (x)) at the right side of (6) will be represented
by an infinite series of the accelerated Adomian polynomials An

G (y (x)) =

∞∑
n=0

An (x) . (8)

3.1 Accelerated Adomian polynomials An formula

If the nonlinear function is G (y (x)) = y2 (x), then the accelerated Adomian
polynomials An are
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A0 = y0
2 ,

A1 = 2y0y1 + y1
2 ,

A2 = 2y0y2 + 2y1y2 + y2
2 ,

and G (y (x)) = y3 (x), the accelerated Adomian polynomials An are

A0 = y0
3 ,

A1 = 3y0
2y1 + 3y0y1

2 + y1
3,

A2 = 3y0
2y2 + 6y0y1y2 + 3y1

2y2 + 3y0y2
2 + 3y1y2

2 + y2
3,

where An, n ≥ 0 can be obtained for all forms of nonlinearity. Substituting
(7) and (8) into (5) leads to

∞∑
n=0

yn (x) =RG−1

[
un

sn

[
sn−1

un
y (0) +

sn−2

un−1
y′ (0) + · · ·+ 1

u
y(n−1) (0)

]]
+RG−1

[
un

sn
RG [f (x)]

]
+ RG−1

[
un+1

sn
RG [K (x)]RG

[ ∞∑
n=0

An (x)

]]
,

where

y0 (x) =RG−1

[
un

sn

[
sn−1

un
y (0) +

sn−2

un−1
y′ (0) + · · ·+ 1

u
y(n−1) (0)

]]
+RG−1

[
un

sn
RG [f (x)]

]
,

yn+1 (x) = RG−1

[
un+1

sn
RG [K (x)]RG

[ ∞∑
n=0

An (x)

]]
, n ≥ 0.

4 Convergence of the proposed method

In this section, we present and prove a convergence theorem for the ap-
plication of the hybrid RGT in combination with the accelerated Adomian
polynomials.
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Theorem 2. The solution of the nonlinear Volterra-type integro-differential
equation

y(i) (x) = f(x) +

∫ x

x0

K(x, t)G(y(x))dt ,

using RGT converges if G(y(x)) satisfy Lipschitz condition in the interval of
interest J = [0, b] and this solution, is unique provided that

0 < MM1
(x− x0)

i+1

(i+ 1)!
< 1, for all x ∈ J, where M is the Lipschitz in-

equality constant.

Proof. Define a complete metric space (C[0, b] d), the space of all continuous
functions on J with the distance function

d (f1 (x) , f2 (x)) = max
∀x∈J

|f1 (x)− f2 (x)| .

Define the sequence {Sn} such that Sn =
n∑

i=0

yi (x) = y0 + y1 + · · ·+ yn

is a sequence of partial sums of the series solution
∞∑
i=0

yi (x), since

f

( ∞∑
i=0

yi (x)

)
=

∞∑
i=0

Ai (y0, y1, . . . , yi),

f (Sn) =

∞∑
i=0

Ai (y0, y1, . . . , yi).

Let, Sn and Sm be arbitrary partial sums with n ≥ m. We prove that
{Sn} is a Cauchy sequence in this complete metric space:

d (Sn , Sm) = max
∀x∈J

||Sn − Sm||

= max
∀x∈J

∣∣∣∣∣
n∑

i=m+1

yi (x)

∣∣∣∣∣
= max

∀x∈J

∣∣∣∣∣
n∑

i=m+1

RG−1[

∫ x

x0

K (x, t)Ai−1dt]

∣∣∣∣∣
= max

∀x∈J

∣∣∣∣∣
n∑

i=m+1

RG−1[

∫ x

x0

K(x, t)Ai−1dt]

∣∣∣∣∣
Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



11 Utilizing the Hybrid approach of the Ramadan group transform ...

= max
∀x∈J

∣∣∣∣∣RG−1[

∫ x

x0

K(x, t)

n−1∑
i=m

Aidt]

∣∣∣∣∣
= max

∀x∈J

∣∣∣∣RG−1[

∫ x

x0

K (x, t)[f (Sn−1)− f(Sm−1)]dt]

∣∣∣∣
≤ max

∀x∈J
RG−1

[∫ x

x0

|K (x, t)| |f (Sn−1)− f (Sm−1)| dt
]

≤ M1 max
∀x∈J

|f (Sn−1)− f (Sm−1)| RG−1

∫ x

x0

dt.

Since f(x) satisfy Lipschitz condition,

|f (Sn−1)− f (Sm−1)| ≤ M |Sn−1 − Sm−1|,

so,

d (Sm , Sn) ≤ MM1 max
∀x∈J

|Sn−1 − Sm−1|
∫ x

x0

. . . (i+ 1)− fold . .

∫ x

x0

dt . . . dt ,

≤ MM1
(x− x0)

i+1

(i+ 1)!
d (Sm−1 , Sn−1) ,

≤ αd (Sm−1 , Sn−1) , α = MM1
(x− x0)

i+1

(i+ 1)!
.

Now, for n = m+ 1,

d (Sm+1 , Sm) ≤ αd (Sm , Sm−1) ≤ α2d (Sm−1 , Sm−2) ≤ · · · ≤ αmd (S1 , S0) .

From the triangle inequality, we have

d (Sm , Sn) ≤ α [d (Sm−1 , Sm) + d (Sm , Sm+1) + · · ·+ d (Sn−2 , Sn−1)] ,

≤ α
[
αm−1 + αm + · · ·+ αn−2

]
d (S1 , S0) ,

≤ αm 1− αn−m

1− α
d (S1 − S0) ,

≤ αm

1− α
d (S1 , S0) .

Indeed, d (S1 , S0) = max∀x∈J |S1 − S0|=max∀x∈J |y1| , which is
bounded. As m → ∞, d(Sm , Sn) → 0 we conclude that {Sn} is a
Cauchy sequence in this complete metric space, so the series

∞∑
n=0

yn (x) con-
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verges. For the uniqueness of the solution, assume that y and y∗ are two
different solutions. Then from (6), we have

d (y , y∗) = max
∀x∈J

∣∣∣∣RG−1[

∫ x

x0

K (x, t)[f (y)− f(y∗)]dt]

∣∣∣∣ ,
≤ max

∀x∈J
RG−1

[∫ x

x0

|K (x, t)| |f (y)− f (y∗)| dt
]
,

≤ M1 max
∀x∈J

|f (y)− f (y∗)| RG−1

∫ x

x0

dt,

≤ αd (y , y∗) .

So, (1 − α)d (y , y∗) ≤ 0 and 0 < α <= 1; then d (y , y∗) = 0, which
implies y = y∗.

5 Numerical examples

In this numerical section, we apply the hybrid RGT and accelerated Adomian
polynomials to solve several nonlinear IDEs. The results are compared with
traditional methods, highlighting improvements in accuracy and computa-
tional efficiency, demonstrating the effectiveness of the proposed approach.

Example 1. Consider the nonlinear VIDE [25]

y′ (x) = −1 +

∫ x

0

y2(t)dt , y (0) = 0 ,

whose exact solution takes the form

y (x) =
−x+

x4

28

1 +
x3

21

.

This example is solved by Rani and Mishra [25] where they used Laplace
and a modification of ADM by computing the Adomian polynomials for the
nonlinear term using the Newton-Raphson formula. We applied our hybrid
method for combining RGT and the accelerated version of ADM. Four itera-
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13 Utilizing the Hybrid approach of the Ramadan group transform ...

tions are carried out and the approximate series solution is evaluated at the
corresponding points as in [25].

Applying the RGT for both sides, we get

RG [ỳ (x)] = RG [−1] +RG

[∫ x

0

y2(t)dt

]
,

s

u
RG [y(x)]− 1

u
y(0) = RG [−1] +RG

[∫ x

0

y2(t)dt

]
,

s

u
RG [y(x)] =

−1

s
+RG

[∫ x

0

y2(t)dt

]
,

RG [y(x)] =
−u

s2
+

u

s
RG

[∫ x

0

y2(t)dt

]
.

Applying the inverse RGT for both sides, we get

y (x) = RG−1

[
−u

s2

]
+RG−1

[
u

s
RG

[∫ x

0

y (t)
2
dt

]]
,

y (x) = −x+RG−1

[
u

s
RG

[∫ x

0

y2(t)dt

]]
.

Let y2(t) =
∞∑

n=0
An ,

∞∑
n=0

yn(x) = −x+RG−1

[
u

s
RG

[∫ x

0

∞∑
n=0

An dx

]]
.

By comparing both sides, we get

y0 (x) = −x ,

yn+1 (x) = RG−1

[
u

s
RG

[∫ x

0

∞∑
n=0

An dx

]]
.

Using accelerated Adomian polynomials, we have

A0 = y0
2, A1 = 2y0y1 + y1

2, A2 = 2y0y2 + 2y1y2 + y2
2, . . . .

Then

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??
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y0 (x) = −x , y1 (x) =
x4

12
, y2 (x) = − x7

252
+

x10

12960
,

y3 (x)

=
11831339520x10 − 701537760x13 + 15992262x16 − 240240x19 + 1729x22

134167390156800

y4 (x) =− x13

884520
+

89x16

849139200
− 10757x19

2032839244800
+

350993x22

1878343462195200

− 4507x25

901604861853696
+

24354871x28

221524314557453107200

− 1312457x31

628869391142952960000
+

253524431x34

7647700951798842654720000

− 1709x37

4053164656463290368000
+

241247x40

59943018919370607820800000

− x43

39132841298576965632000
+

x46

12464483949901696204800000
.

y (x) (approximate) = y0 + y1 + y2 + y3 + y4

= −x+
x4

12
− x7

252
+

x10

6048
− x13

157248
+

2663x16

11887948800
+ · · · .

Table 2: Comparison of the approximate solutions and absolute error against the method
of Laplace Adomian using Newton–Raphson formula [25]

x Exact solution Approximate solution
(presented method, 4
iterations)

Absolute error Approximate
solution [25] (4
iterations)

Absolute error

0. 0. 0. 0. 0. 0.
0.0625 -0.0624987284490275 -0.0624987284490275 2.082×10−17 -0.062499682 3.1789×10−7

0.125 -0.124979656839952 -0.124979656839974 2.2×10−14 -0.124994914 1.4914×10−5

0.1875 -0.187397035493881 -0.187397035495149 1.268×10−12 -0.187474253 7.4253×10−5

0.25 -0.249674721189591 -0.249674721212078 2.249×10−11 -0.249918635 2.4863×10−4

0.3125 -0.311706424640996 -0.311706424850075 2.091×10−10 -0.31230139 5.9139×10−3

0.375 -0.373356178680768 -0.373356179972127 1.291×10−9 -0.374588271 1.2283×10−3

0.4375 -0.434459096619924 -0.434459102631869 6.012×10−9 -0.436737503 2.2775×10−3

0.5 -0.494822485207101 -0.494822507955013 2.275×10−8 -0.498699852 3.8799×10−3

Table 2 and Figure 1 show that the proposed method achieves higher ac-
curacy and improved computational efficiency, primarily because the accel-
erated Adomian polynomials eliminate the requirement to compute deriva-
tives of the nonlinear functions. Another notable advantage of using the
accelerated polynomial is its superior rate of convergence compared to the
traditional polynomials.

Example 2. Consider the nonlinear VIDE [17]
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15 Utilizing the Hybrid approach of the Ramadan group transform ...

Figure 1: Comparison the absolute errors of the two approaches at four iterations.

y′′ (x) = 2+2x+x2−x2ex−e2x+

∫ x

0

ex−ty2 (t) dt, y (0) = 1, y′ (0) = 2 ,

whose exact solution takes the form y (x) = x+ ex.

Khanlari and Paripour [17] solved this example using a combination of
Laplace and the homotopy analysis method (HAM) by computing the Ado-
mian polynomials for the nonlinear term. We applied our hybrid method
for combining the RGT and the accelerated version of ADM. Three itera-
tions were carried out, and the approximate solution and absolute error were
evaluated at the corresponding points as in [4].

We note that the integral term uses the RGT convolution theorem of the
two functions ex and y2 (x) [13].

Applying the RGT for both sides, we get

RG [y′′ (x)] = RG
[
2 + 2x+ x2 − x2ex − e2x

]
+RG

[
ex
⊗

y2 (x)
]
,

RG [y′′ (x)] = RG
[
2 + 2x+ x2 − x2ex − e2x

]
+ uRG [ex]RG

[
y2 (x)

]
,

s2

u2
RG [y (x)]− s

u2
y (0)− 1

u
y′ (0) =

2

s
+

2u

s2
+

2u2

s3
− 2u2

(s− u)
3

− 1

−2u+ s
+

u

s− u
RG

[
y2 (x)

]
,
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s2

u2
RG [y (x)] =

s

u2
+

2

u
+

2

s
+

2u

s2
+

2u2

s3
− 2u2

(s− u)
3 − 1

−2u+ s

+
u

s− u
RG

[
y2 (x)

]
,

RG [y (x)] =
1

s
+

2u

s2
+

2u2

s3
+

2u3

s4
+

2u4

s5
− 2u4

s2 (s− u)
3 − u2

s2(−2u+ s)

+
u3

s2(s− u)
RG

[
y2 (x)

]
.

Applying the inverse RGT for both sides, we get

y (x) =RG−1

[
1

s
+

2u

s2
+

2u2

s3
+

2u3

s4
+

2u4

s5
− 2u4

s2 (s− u)
3 − u2

s2 (−2u+ s)

]

+RG−1

[
u3

s2 (s− u)
RG

[
y2 (x)

]]
,

∞∑
n=0

yn(x) =RG−1

[
1

s
+

2u

s2
+

2u2

s3
+

2u3

s4
+

2u4

s5
− 2u4

s2 (s− u)
3 − u2

s2 (−2u+ s)

]

+RG−1

[
u3

s2 (s− u)
RG

[ ∞∑
n=0

An

]]
.

By comparing both sides and using the Taylor series from 0 to 4, we get

y0 (x) = 1 + 2x+
x2

2
− x4

6
+ . . . ,

yn+1 (x) = RG−1

[
u3

s2 (s− u)
RG

[ ∞∑
n=0

An

]]
.

Using accelerated Adomian polynomials, we have

A0 = y0
2,

A1 = 2y0y1 + y1
2,

A2 = 2y0y2 + 2y1y2 + y2
2,

...

Then
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17 Utilizing the Hybrid approach of the Ramadan group transform ...

y0 (x) = 1 + 2x+
x2

2
− x4

6
+ . . . ,

y1 (x) =
x3

6
+

5x4

24
+

x5

8
+

3x6

80
+ . . . ,

y2 (x) =
x6

360
+

x7

180
+

89x8

20160
+ . . . ,

y3 (x) =
x9

90720
+

29x10

907200
+ . . . ,

y (x) (approximate) = y0+y1+y2+y3 = 1+2x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+

x6

720
+· · · .

Table 3: Comparison of the approximate solutions and absolute error against the com-
bination of the HAM and Laplace transform-Adomian method [4]

x Exact solution Approximate
solution (pre-
sented method,
3 iterations)

Absolute error Approximate
solution [4]
(4 iterations)

Absolute error

0.00 1.0000000000000 1.0000000000000 0.0000 1.00000 0.00000
0.02 1.0402013400268 1.0402013400268 7.105×10−15 1.04042 2.16577×10−4

0.04 1.0808107741924 1.0808107741933 9.064×10−13 1.08175 9.37538×10−4

0.06 1.1218365465454 1.1218365465611 1.573×10−11 1.12412 2.28194×10−3

0.08 1.1632870676750 1.1632870677947 1.197×10−10 1.16767 4.38752×10−3

0.10 1.2051709180756 1.2051709186553 5.796×10−10 1.21259 7.41437×10−3

0.12 1.2474968515794 1.2474968536878 2.108×10−9 1.25905 1.15497×10−3

0.14 1.2902737988572 1.2902738051525 6.295×10−9 1.30729 1.70138×10−2

0.16 1.3335108709918 1.3335108872586 1.627×10−8 1.35758 2.40683×10−2

0.18 1.3772173631218 1.3772174007597 3.764×10−8 1.41024 3.30265×10−2

0.20 1.4214027581602 1.4214028379772 7.982×10−8 1.46567 4.42678×10−2

Figure 2: Comparison the approximate solutions of the two approaches.
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Figure 3: Comparison the absolute errors of the two approaches.

Based on Table 3 and Figures 2 and 3, the RGT combined with the
accelerated Adomian method yields higher accuracy compared to the hybrid
approach of the HAM and the Laplace transform-Adomian method. Notably,
this improved performance is achieved using only three iterations, whereas
HAM requires four.

Example 3. Consider the nonlinear VIDE [4]

y′′′ (x) =
−2

3
− 5

3
cos (x) +

4

3
cos2 (x) +

∫ x

0

cos (x− t) y2 (t) dt,

y (0) = y′ (0) = 1, y′′ (0) = −1,

whose exact solution takes the form

y (x) = sin(x) + cos(x) .

Almousa et al. [4] approached this example by employing a combination
of Laplace transform and HAM. They calculated the Adomian polynomials
for the nonlinear term. In our study, we utilized a hybrid method that
combines the RGT with an accelerated Adomian polynomial. We conducted
two iterations and evaluated both the approximate solutions and absolute
error at the corresponding points, as described in [20].

We note that the integral term uses the RGT convolution theorem of two
functions cos(x) and y2 (x) [10].
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19 Utilizing the Hybrid approach of the Ramadan group transform ...

Applying the RGT for both sides, we get

RG [y′′′ (x)] = RG

[
−2

3
− 5

3
cos (x) +

4

3
cos2 (x)

]
+RG

[
cos (x)

⊗
y2 (x)

]
,

RG [y′′′ (x)] = RG

[
−2

3
− 5

3
cos (x) +

4

3
cos2 (x)

]
+uRG

[
cos (x) ] RG[y2 (x)

]
,

s3

u3
RG [y (x)]− s2

u3
y(0)− s

u2
y′(0)− 1

u
y′′(0)

= − s3 + 6su2

s4 + 5s2u2 + 4u4
+

us

s2 + u2
RG[y2 (x)],

s3

u3
RG [y (x)] =

s2

u3
+

s

u2
− 1

u
− s3 + 6su2

s4 + 5s2u2 + 4u4
+

us

s2 + u2
RG[y2 (x)],

RG [y (x)] =
1

s
+

u

s2
− u2

s3
− u3(s3 + 6su2)

s3(s4 + 5s2u2 + 4u4)
+

u4

s2(s2 + u2)
RG[y2 (x)].

Applying the inverse RGT for both sides, we get

y (x) =RG−1

[
1

s
+

u

s2
− u2

s3
−

u3
(
s3 + 6su2

)
s3 (s4 + 5s2u2 + 4u4)

]

+RG−1

[
u4

s2 (s2 + u2)
RG

[
y2 (x)

]]
,

∞∑
n=0

yn(x) =RG−1

[
1

s
+

u

s2
− u2

s3
−

u3
(
s3 + 6su2

)
s3 (s4 + 5s2u2 + 4u4)

]

+RG−1

[
u4

s2 (s2 + u2)
RG

[ ∞∑
n=0

An

]]
.

By comparing both sides and using the Taylor series from 0 to 9, we get

y0 (x) = 1 + x− x2

2
− x3

6
− x5

120
+

x7

560
− 41x9

362880
+ . . . ,

yn+1 (x) = RG−1

[
u4

s2 (s2 + u2)
RG

[ ∞∑
n=0

An

]]
.

Using accelerated Adomian polynomials

A0 = y0
2, A1 = 2y0y1 + y1

2, A2 = 2y0y2 + 2y1y2 + y2
2,
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...

Then
y0 (x) = 1 + x− x2

2
− x3

6
− x5

120
+

x7

560
− . . . ,

y1 (x) =
x4

24
+

x5

60
− x6

720
− x7

504
− x8

40320
+ . . . ,

y2 (x) =
x8

20160
+ . . . ,

y (x) (approximate) = y0 + y1 + y2.

Table 4: Comparison of the approximate solutions and absolute error against the method
of (HAM) [4]

x Exact solution Approximate solution
(presented method, 2
iterations)

Absolute error Approximate
solution [4]
(4 iterations)

Absolute error

0.00 1.0000000000000 1.0000000000000 0 1.00000 0
0.02 1.019798673359911 1.019798673359911 0 1.01980 1.37991×10−6

0.04 1.0391894408476121 1.0391894408476123 2.22×10−16 1.03920 1.14101×10−5

0.06 1.0581645464146487 1.0581645464146487 0 1.05820 3.97525×10−5

0.08 1.0767164002717922 1.0767164002717917 4.441×10−16 1.07681 9.71538×10−5

0.10 1.094837581924854 1.0948375819248513 2.665×10−15 1.09503 1.95418×10−4

0.12 1.1125208431427855 1.1125208431427716 1.399×10−14 1.11287 3.47374×10−4

0.14 1.1297591108568736 1.1297591108568175 5.618×10−14 1.13033 5.66843×10−4

0.16 1.1465454899898728 1.1465454899896865 1.863×10−13 1.14741 8.68596×10−4

0.18 1.1628732662139456 1.1628732662134090 5.367×10−13 1.16414 1.26832×10−3

0.20 1.1787359086363027 1.1787359086349205 1.382×10−12 1.18052 1.78257×10−3

From Table 4, RGT with accelerated Adomian gives better accuracy com-
pared with the HAM and Laplace transform-Adomian method. Although,
RGT with accelerated Adomian polynomials uses less iterations than HAM.

Example 4. Consider the following nonlinear VIDE [4]:

y′ (x) =
3

2
ex − 1

2
e3x +

∫ x

0

ex−t y3 (t) dt, y (0) = 1 ,

whose exact solution takes the form y (x) = ex.

This example is solved by Almousa et al. [4], and they used a hybrid
ADM with Modified Bernstein Polynomials by using the ADM for the non-
linear term. We applied our hybrid method for combining the RGT and the
accelerated Adomian polynomial. Four iterations are carried out, and the
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approximate series solution and absolute error are evaluated at the corre-
sponding points as in [4].

We note that the integral term uses the RGT convolution theorem of two
functions ex and y3 (x) [12].

Applying RGT for both sides, we get

RG [ y′ (x) ] = RG

[
3

2
ex
]
−RG

[
1

2
e3x

]
+RG

[
ex
⊗

y3 (x)
]
,

RG [ y′ (x) ] = RG

[
3

2
ex
]
−RG

[
1

2
e3x

]
+ uRG [ ex ]RG

[
y3 (x)

]
,

s

u
RG [y (x)]− 1

u
y (0) =

3

2s− 2u
− 1

2s− 6u
+

u

s− u
RG

[
y3 (x)

]
,

s

u
RG [y (x)] =

1

u
+

3

2s− 2u
− 1

2s− 6u
+

u

s− u
RG

[
y3 (x)

]
,

RG [y (x)] =
1

s
+

3u

2s(s− u)
− u

2s(s− 3u)
+

u2

s(s− u)
RG

[
y3 (x)

]
.

Applying the inverse RGT for both sides, we get

y (x) =
1

6

(
−2 + 9ex − e3x

)
+RG−1

[
u2

s (s− u)
RG

[
y3 (x)

]]
,

Let y (x) =
∞∑

n=0
yn(x), y3(x) =

∞∑
n=0

An(x) ,

∞∑
n=0

yn(x) =
1

6

(
−2 + 9ex − e3x

)
+RG−1

[
u2

s (s− u)
RG

[ ∞∑
n=0

An(x)

]]
.

By comparing both sides and using the Taylor series from 0 to 6, we get

y0 (x) = 1 + x− x3

2
− x4

2
− 13x5

40
− x6

6
+ . . . ,

yn+1 (x) = RG−1

[
u2

s (s− u)
RG

[ ∞∑
n=0

An(x)

]]
.

Using accelerated Adomian polynomials, we have
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A0 =y0
3 ,

A1 =3y0
2y1 + 3y0y1

2 + y1
3,

A2 =3y0
2y2 + 6y0y1y2 + 3y1

2y2 + 3y0y2
2 + 3y1y2

2 + y2
3,

A3 =3y0
2y3 + 6y0y1y3 + 3y1

2y3 + 6y0y2y3 + 6y1y2y3 + 3y2
2y3

+ 3y0y3
2 + 3y1y3

2 + 3y2y3
2 + y3

3,

...

Then
y0 (x) = 1 + x− x3

2
− x4

2
− 13x5

40
− x6

6
+ . . . ,

y1 (x) =
x2

2
+

2x3

3
+

5x4

12
+

7x5

120
− 101x6

720
+ . . . ,

y2 (x) =
x4

8
+

11x5

40
+

71x6

240
+ . . . ,

y3 (x) =
x6

80
+ . . . ,

y4 (x) =
3x8

4480
+

x9

896
+ . . . ,

y (x) (approximate) = y0 + y1 + y2 + y3 + y4.

Table 5: Comparison of the approximate solutions and absolute error against Hybrid
ADM with modified Bernstein polynomials [4]

x Exact solution Approximate solution
(presented method, 4
iterations)

Absolute error Approximate
solution [4]
(4 iterations)

Absolute er-
ror

0.0 1.000000000000000 1.000000000000000 0 1.000000 0
0.1 1.105170918075648 1.105170918063368 1.228×10−11 1.105170917 1.333×10−9

0.2 1.221402758160170 1.221402757841270 3.189×10−10 1.221402667 9.133×10−8

0.3 1.349858807576003 1.349858828402902 2.083×10−8 1.349857750 1.058×10−6

0.4 1.491824697641270 1.491825086984127 3.893×10−7 1.491818667 6.031×10−6

0.5 1.648721270700128 1.648724413674975 3.143×10−6 1.648697917 2.335×10−5

0.6 1.822118800390509 1.822135294857143 1.649×10−5 1.822048000 7.080×10−5

0.7 2.013752707470477 2.013818459141493 6.575×10−5 2.013571417 1.813×10−4

0.8 2.225540928492468 2.225756899555555 2.16×10−4 2.225130667 4.103×10−4

0.9 2.459603111156950 2.460217010731026 6.139×10−4 2.458758250 8.449×10−4

1.0 2.718281828459045 2.719841269841270 1.559×10−3 2.716666667 1.615×10−3

According to Table 5, the proposed method is both more accurate and
computationally simpler than the Adomian hybrid decomposition method
with modified Bernstein polynomials, which involves extensive calculations
when the same number of iterations is used.
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Example 5. Consider the nonlinear VIDE [28]

y(4) (x) = e−3x + e−x − 1 + 3

∫ x

0

y3 (t) dt ,

with the conditions

y (0) = y′′ (0) = 1, y′ (0) = y′′′ (0) = −1 ,

whose exact solution takes the form y (x) = e−x.

This example is solved by Sharif, Hamoud, and Ghadle [28] using a
Laplace and modified homotopy perturbation method (MHPM) by using the
ADM for the nonlinear term. We applied our hybrid method for combining
the RGT and the accelerated Adomian polynomial. Three iterations are car-
ried out, and the approximate series solution and absolute error are evaluated
at the corresponding points as in [28].

Applying RGT for both sides, we get

RG[y
(4)

(x)] = RG[e−3x] +RG[e−x]−RG[1] + 3RG[

∫ x

0

y3 (t) dt ],

s4

u4
RG [y (x)]− s3

u4
y (0)− s2

u3
y′ (0)− s

u2
y′′ (0)− 1

u
y′′′ (0)

=
1

(s+ 3u)
+

1
(s+ u)

− 1

s
+ 3RG[

∫ x

0

y3 (t) dt ],

s4

u4
RG [y (x)] =

s3

u4
− s2

u3
+

s

u2
− 1

u
−1

s
+

1
(s+ 3u)

+
1

(s+ u)
+3RG[

∫ x

0

y3 (t) dt ],

RG [y (x)] =
1

s
− u

s2
+

u2

s3
− u3

s4
− u4

s5
+

u4

s4(s+ 3u)
+

u4

s4(s+ u)

+
3u4

s4
RG[

∫ x

0

y3 (t) dt ],

Applying the inverse RGT for both sides, we get

y (x) = − 1

81
+
e−3x

81
+e−x+

x

27
−x2

18
+
x3

18
−x4

24
+RG−1[

3u4

s4
RG[

∫ x

0

y3 (t) dt ] ] ,

y3(t) =

∞∑
n=0

An ,
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∞∑

n=0

yn(x) =− 1

81
+

e−3x

81
+ e−x +

x

27
− x2

18
+

x3

18
− x4

24

+RG−1[
3u4

s4
RG[

∫ x

0

∞∑
n=0

An dx ] ] ,

By comparing both sides and using the Taylor series from 0 to 5, we get

y0 (x) = 1− x+
x2

2
− x3

6
+

x4

24
− x5

30
+ . . . ,

yn+1 (x) = RG−1[
3u4

s4
RG[

∫ x

0

An dx ] ].

Using accelerated Adomian polynomials, we have

A0 = y0
3 , A1 = 3y0

2y1 + 3y0y1
2 + y1

3,

A2 = 3y0
2y2 + 6y0y1y2 + 3y1

2y2 + 3y0y2
2 + 3y1y2

2 + y2
3,

...

Then
y0 (x) = 1− x+

x2

2
− x3

6
+

x4

24
− x5

30
+ . . . ,

y1 (x) =
x5

40
− x6

80
+

3x7

560
− 9x8

4480
+ . . . ,

y2 (x) =
x10

134400
− x11

98560
+

3x12

394240
+ . . . ,

y3 (x) =
x15

5381376000
+ . . . ,

y (x) (approximate) = y0 + y1 + y2 + y3.

Based on Table 6, the proposed method outperforms the others at both
two and three iterations specifically when two iterations are used in the
MHPM and three iterations in the LADM [15].
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Table 6: Comparison of the approximate solution against LADM [17] and MHPM [7]

x Exact solu-
tion

Approximate
solution for
presented
method us-
ing three
iterations

Absolute Error
for presented
method using
three itera-
tions

LADM [17] Absolute
Error for
LADM [17]

MHPM [7] Absolute
Error for
MHPM [7]

0.00 1.0000000000 1.0000000000 0.0000× 100 1.0000000000 0.0000× 100 1.0000000000 0.0000× 100

0.04 0.9607894392 0.9607894391 5.5992× 10−11 0.9607895450 1.0580×10−7 0.9608106692 2.1230×10−5

0.08 0.9231163464 0.9231163429 3.5278× 10−9 0.9231180530 1.7066×10−6 0.9232854120 1.6906×10−4

0.12 0.8869204367 0.8869203971 3.9569× 10−8 0.8869290770 8.6403×10−6 0.8874885866 5.6815×10−4

0.16 0.8521437890 0.8521435700 2.1898× 10−7 0.8521710940 2.7305×10−5 0.8534850921 1.3413×10−3

0.20 0.8187307531 0.8187299301 8.2298× 10−7 0.8187974190 6.6670×10−5 0.8213405980 2.6098×10−3

0.24 0.7866278611 0.7866254393 2.4218× 10−6 0.7867661000 1.3824×10−4 0.7911217470 4.4938×10−3

0.28 0.7557837415 0.7557777214 6.0201× 10−6 0.7560398470 2.5611×10−4 0.7628963355 7.1125×10−3

0.32 0.7261490371 0.7261358094 1.3228× 10−5 0.7265859450 4.3691×10−4 0.7367334755 1.0584×10−2

0.36 0.6976763261 0.6976498733 2.6453× 10−5 0.6983761680 6.9984×10−4 0.7127037390 1.5027×10−2

6 Conclusions

In this study, a hybrid approach combining the RGT with the accelerated
Adomian polynomial is introduced to solve IDEs numerically. The resulting
method is straightforward and efficient, as demonstrated by the numerical
results presented in the tables.

These results highlighted the improved accuracy achieved through this
combination, outperforming other existing methods. An important advan-
tage and as a key contribution of the proposed convergence analysis is the
use of the classical fixed-point theorem in conjunction with accelerated poly-
nomials, rather than traditional polynomials.

This approach enhanced the robustness and efficiency of analysis. All
computations were carried out using MATHEMATICA 12.
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