- Arun, G., and Ghimire, K. (2019). Estimating post-harvest loss at the farm level to enhance Food Security: A Case of Nepal. International Journal of Agriculture, Environment and Food Sciences, 3(September), 127–136. available from https://doi.org/10.31015/jaefs.2019.3.3
- Aslan, M. F., Sabanci, K., & Aslan, B. (2024). Artificial intelligence techniques in crop yield estimation based on Sentinel-2 data: A comprehensive survey. Sustainability, 16(18), 8277. https://doi.org/10.3390/su16188277
- Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., Kimball, B.A., Ottman, M.J., Wall, G.W., White, J.W., Reynolds, M. P., Alderman, P.D., Prasad, P.V.V., Aggrawal, P.K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G, & Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147. https://doi.org/10.1038/nclimate2470
- Dhillon, M. S., Dahms, T., Kuebert-Flock, C., Rummler, T., Arnault, J., Steffan-Dewenter, I., & Ullmann, T. (2023). Integrating Random Forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape. Frontiers in Remote Sensing, 3, 1010978. https://doi.org/10.3389/frsen.2022.1010978
- Everingham, Y., Sexton, J., Skocaj, D., & Inman-Bamber, G. (2016) Accurateprediction of sugarcane yield using a Random Forest algorithm. Agronomy for Sustainable Development, 36(2), 1–9. https://doi.org/10.1007/s13593-016-0364-z
- Farhadi, M., Bannayan, M., Fallah, M. H., & Jahan, M. (2024). Identiication of climatic and management factors inluencing wheat’s yield variability using AgMERRA dataset and DSSAT model across a temperate region. Discover Life, 54(8). https://doi.org/10.1007/s11084-024-09651-8
- Gheysarbeigi, S., Pir Bavaghar, M., & Valipour, A. (2024). Forest aboveground biomass estimation using satellite imagery and Random Forest regression model. Geography and Environmental Sustainability, 14(1), 85-100. https://doi.org/10.22126/GES.2024.9971.2715
- Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001
- (2022). Sixth Assessment Report. Available Online at: https://www.ipcc.ch/site/assets/uploads/2022/04/AR6_Factsheet_April_2022.pdf
- Javadi, A., Ghahremanzadeh, M., Sassi, M. Javanbakht, O., & Hayati, B. (2024). Impact of climate variables change on the yield of wheat and rice crops in Iran (Application of Stochastic Model based on Monte Carlo Simulation). (2024). Computational Economics, 63, 983–1000. https://doi.org/10.1007/s10614-023-10389-0
- Jhajharia, K., Mathur, P., Jain, S., & Nijhawan, S. (2023). Crop yield prediction using machine learning and deep learning techniques. Procedia Computer Science, 218, 406-417. https://doi.org/10.1016/j.procs.2023.01.023
- Khodabandehloo, E., Azadbakht, M., Radiom, S., Ashourloo, D., & Alimohammadi, A. (2021). Prediction of wheat fusarium head blight severity by using Random Forest. Iranian Remote Sensing & GIS, 13(4), 1-44. (in Persian with English abstract). https://doi.org/10.52547/gisj.13.4.1
- Khodjaev, S., Bobojonov, I., Kuhn, L., & Glauben, T. (2025). Optimizing machine learning models for wheat yield estimation using a comprehensive UAV dataset. Modeling Earth Systems and Environment, 11, 15. https://doi.org/10.1007/s40808-024-02188-9
- Kim, Y., & Kim, Y. (2022). Explainable heat-related mortality with random forest and SHapley Additive exPlanations (SHAP) models. Sustainable Cities and Society, 79, 103677. https://doi.org/10.1016/j.scs.2022.103677
- Koocheki, A., Nassiri-Mahallati, M., Kamali, Gh., Shahandeh, Gh. (2006). Potential Impacts of Climate Change on Agroclimatic Indicators in Iran, Arid Land Research and Management 20(3):245-259. https://doi.org/10.1080/15324980600705768
- Krishnadoss, N., & Ramasamy, L. K. (2024). Crop yield prediction with environmental and chemical variables using optimized ensemble predictive model in machine learning. Environmental Research Communication, 6(10), 101001. https://doi.org/10.1088/2515-7620/ad7e81
- Monavar Sabegh, S., Zare Haghi, D., Samadianfard, S., Neishabouri, M. R., & Mikaeili, F. (2023). Estimation of daily reference evapotranspiration using Random Forest optimized by genetic algorithm. Water and Soil Science, 33(4), 33-53. https://doi.org/10.22034/ws.2021.48756.2449
- Moreno Sánchez, J. C., Acosta Mesa, H. G., Trueba Espinosa, A., Ruiz Castilla, S., & García Lamont, F. (2025). Improving wheat yield prediction through variable selection using Support Vector Regression, Random Forest, and Extreme Gradient Boosting. Smart Agricultural Technology, 10, 100791. https://doi.org/10.1016/j.atech.2025.100791
- Nayak, H. S., Silva, J. V., Parihar, C. M., Krupnik, T. J., Sena, D. R., Kakraliya, S. K., Jat, H. S., Sidhu, H. S., Sharma, P.C., Jat, M.L., & Sapkota, T.B. (2022). Interpretable machine learning methods to explain on-farm yield variability of high productivity wheat in Northwest India. Field Crops. Research., 2022, 287, 108640. https://doi.org/10.1016/j.fcr.2022.108640
- Oghnoum, M., Feghhi, J., Makhdoum, M., Moghaddamnia, A., & Etemad, V. (2019). Land capability evaluation of afforestation using Random Forest algorithm (Kan Watershed, Tehran). Journal of Forest Research and Development, 5(3), 387-403.
- Pang, A., Chang, M. W., & Chen, Y. (2022). Evaluation of Random Forest for regional and local-scale wheat yield prediction in Southeast Australia. Sensors, 22, 717. https://doi.org/10.3390/s22030717
- Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
- Ray, D. K., Gerber, J. S., Macdonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6, 1–9. https://doi.org/10.1038/ncomms6989
- Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., & Wolf, J., (2018). Climate change impact on global potato production. European Journal of Agronomy, 100, 87-98. https://doi.org/10.1016/j.eja.2017.11.008
- Remman, S. B., Lekkas, A. M. (2021). Robotic lever manipulation using hindsight experience replay and shapley additive explanations. European Control Conference (ECC). Cornell University, USA. https://doi.org/23919/ecc54610.2021.9654850
- Roell, Y. E., Beucher, A., Møller, P. G., Greve, M. B., & Greve, M. H. (2020). Comparing a Random Forest based prediction of winter wheat yield to historical yield potential. Agronomy, 10(3), 3. https://doi.org/10.3390/agronomy10030395
- Sadeghi, M., &Ahmadi Nadoushan, M. (2021). Modeling soil nitrogen using Remote Sensing, Regression and Random Forest models. Journal of Water and Soil Resources Conservation (WSRCJ), 11(2), 97-111.
- Shen, Y., Mercatoris, B., Liu, Q., Yao, H., Li, Z., Chen, Z., & Wang, W. (2024). Use Self-Training Random Forest for Predicting Winter Wheat Yield. Remote Sensing, 16(24), 4723. https://doi.org/10.3390/rs16244723
- Si, Z., Qin, A., Liang, Y., Duan, A., & Gao, Y. (2023). A review on regulation of irrigation management on wheat physiology, grain yield, and quality. Plants, 12(4), 692. https://doi.org/10.3390/plants12040692
- Slafer, G. A., Savin, R., Sadras, V. O., & Calderini, D. F. (2023). Wheat yield improvement: Physiological and agronomic basis. Field Crops Research, 291, 108757.
- Soleimannejad, L., Bonyad, A. E., Naghdi, R., & Latifi, H. (2018). Classification of quantitative attributes of Zagros forest using Landsat 8-OLI and Random Forest algorithm (Case study: Protected area of Manesht forests). Journal of Forest Research and Development, 4(4), 415-434.
- Soltani, M., Jahan, M., & Yaghoubi, F. (2025). Evaluation of power and accuracy of AgMERRA and ERA5 dataset to simulate long term data for temperature and radiation in grat Khorasan province. (Under referee process)
- Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2018). Fundamentals of Plant Physiology. New York, USA: Oxford University Press. ISBN 978160535790
- Ting, K. M. (2011). Confusion Matrix. In C. Sammut & G. I. Webb, (eds) Encyclopedia of Machine Learning. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30164-8_157
- Vieira, H. V., Bradford, B. Z., Osterholzer, A., Pierce, E. S., Cockrell, D., Peairs, F., Frost, K., Groves, R., & Nachappa, P. (2025). A new growing degree-day phenology model for wheat stem sawfly (Hymenoptera: Cephidae) in Colorado wheat fields. Plos One, 20(4), e0320497. https://doi.org/10.1371/journal.pone.0320497
- Wang, Z., & Li, S. (2002). Effects of water deficit and supplemental irrigation at different growing stages on uptake and distribution of nitrogen, phosphorus, and potassium in winter wheat. Journal of Plant Nutrition and Fertilizers, 8(3), 265–270. https://dx.doi.org/10.11674/zwyf.2002.0302
- Yaghoubi, F., Bannayanm, M., & Asadi, G. (2020). Performance of predicted evapotranspiration and yield of rainfed wheat in the northeast Iran using gridded AgMERRA weather data. International Journal of Biometeorology, 64, 1519–1537. https://doi.org/10.1007/s00484-020-01931-y
|