- Castelao Tetila, E., Brandoli Machado, B., Belete, N. A. S., Guimaraes, D. A. & Pistori, H. (2017). Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geoscience and Remote Sensing Letters, 14, 2190-2194. https://doi.org/10.1109/LGRS.2017.27437 15
- Chen, J., Liu, H., Zhang, Y., Zhang, D., Ouyang, H., & Chen, X. (2022). A multiscale lightweight and efficient model based on YOLOv7: Applied to citrus orchard. Plants, 11(23), 3260. https://doi.org/10.3390/plants11233260
- Chowdhury, M. E., Rahman, T., Khandakar, A., Ibtehaz, N., Khan, A. U., Khan, M. S., Al-Emadi, N., Reaz, M. B. I., Islam, M. T., & Ali, S. H. M. (2021). Tomato leaf diseases detection using deep learning technique. Technology in Agriculture, 453.
- Paul, S., Batra, S., Mohiuddin, K., Miladi, M. N., Anand, D., & A. Nasr, O. (2022). A Novel Ensemble Weight-Assisted YOLOv5m-Based Deep Learning Technique for the Localization and Detection of Malaria Parasites. Electronics, 11(23), 3999. https://doi.org/10.3390/electronics11233999
- Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture, 145, 311-318. https://doi.org/10.1016/j.compag.2018.01.009
- Francesco, S. J. (2023). What Is YOLOv8m? The Ultimate Guide. Available online: https://blog.roboflow.com/what-is-yolov8/ (accessed on 22 July 2024).
- Fuentes, A., Yoon, S., Kim, S. C. & Park, D. S. A. (2017). robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors, 17(9). https://doi.org/10.3390/s17092022
- Gallo, I., Rehman, A. U., Dehkordi, R. H., Landro, N., La Grassa, R., & Boschetti, M. (2023). Deep object detection of crop weeds: Performance of YOLOv7 on a real case dataset from UAV images. Remote Sensing, 15(2), 539. https://doi.org/10.3390/rs15020539
- Guo, W., Feng, Q., Li, X., Yang, S., & Yang, J. (2022). Grape leaf disease detection based on attention mechanisms. International Journal of Agricultural and Biological Engineering, 15(5), 205-212.
- Hu, G., Wei, K., Zhang, Y., Bao, W., & Liang, D. (2021). Estimation of tea leaf blight severity in natural scene images. Precision Agriculture, 22, 1239-1262. https://doi.org/10.1007/s11119-020-09782-8
- Jiang, K., Xie, T., Yan, R., Wen, X., Li, D., Jiang, H., ... & Wang, J. (2022). An attention mechanism-improved YOLOv7 object detection algorithm for hemp duck count estimation. Agriculture, 12(10), 1659. https://doi.org/10.3390/agriculture12101659
- Kasper-Eulaers, M., Hahn, N., Berger, S., Sebulonsen, T., Myrland, Ø., & Kummervold, P. E. (2021). Detecting heavy goods vehicles in rest areas in winter conditions using YOLOv5m. Algorithms, 14(4), 114. https://doi.org/10.3390/a14040114
- Kuznetsova, A., Maleva, T., & Soloviev, V. (2020). Detecting apples in orchards using YOLOv3 and YOLOv5m in general and close-up images. In Advances in Neural Networks–ISNN 2020: 17th International Symposium on Neural Networks, Cairo, Egypt, December 4–6, Springer International Publishing, 17, 233-243. https://doi.org/10.1007/978-3-030-64221-1_20
- Lou, Y., Hu, Z., Li, M., Li, H., Yang, X., Liu, X., & Liu, F. (2021). October. Real-time detection of cucumber leaf diseases based on convolution neural network. In 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 5, 1040-1046. https://doi.org/10.1109/ITNEC52019.2021.9587269
- Lu, Y., Yi, S., Zeng, N., Liu, Y., & Zhang, Y. (2017). Identification of Rice diseases using deep convolutional neural networks, Neuro computing, 267, 378-384. https://doi.org/10.1016/j.neucom.2017.06.023
- Ramesh, S., Hebbar, R., Niveditha, M., Pooja, R., Shashank, N., & Vinod, P. V. (2018). Plant disease detection using machine learning. In 2018 International conference on design innovations for 3Cs compute communicate control (ICDI3C)(pp. 41-45). IEEE. https://doi.org/10.1109/ICDI3C.2018.00017
- Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31-43. https://doi.org/10.1017/S0021859605005708
- Rothe, P. R., & Kshirsagar, R. V. (2015). Cotton leaf disease identification using pattern recognition techniques. In 2015 International conference on pervasive computing (ICPC) (pp. 1-6). IEEE. https://doi.org/10.1109/PERVASIVE.2015.7086983
- Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3), 430-439. https://doi.org/10.1038/s41559-018-0793-y
- Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks-based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience, 2016(1), 3289801. https://doi.org/10.1155/2016/3289801
- Soeb, M. J. A., Jubayer, M. F., Tarin, T. A., Al Mamun, M. R., Ruhad, F. M., Parven, A., ... & Meftaul, I. M. (2023). Tea leaf disease detection and identification based on YOLOv7 (YOLO-T). Scientific Reports, 13(1), 6078. https://doi.org/10.1038/s41598-023-33270-4
- Tiwari, V., Joshi, R. C., & Dutta, M. K. (2021). Dense convolutional neural networks based multiclass plant disease detection and classification using leaf images. Ecological Informatics, 63, 101289. https://doi.org/10.1016/j.ecoinf.2021.101289
- Tran, D. N. N., Pham, L. H., Nguyen, H. H., & Jeon, J. W. (2022). City-scale multi-camera vehicle tracking of vehicles based on YOLOv7. In 2022 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia) (pp. 1-4). IEEE. https://doi.org/10.1109/ICCE-Asia57006.2022.9954809
- Wang, Y., Wang, H., & Xin, Z. (2022). Efficient detection model of steel strip surface defects based on YOLO-V7. Ieee Access, 10, 133936-133944. https://doi.org/10.1109/ACCESS.2022.3230894
- Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 7464-7475). https://doi.org/10.48550/arXiv.2207.02696
- Xinming, W., & Hong, T. S. (2023). Comparative study on Leaf disease identification using Yolo v4 and Yolo v7 algorithm. AgBioForum, 25(1).
- Xue, Z., Xu, R., Bai, D., & Lin, H. (2023). YOLO-tea: A tea disease detection model improved by YOLOv5m. Forests, 14(2), 415. https://doi.org/10.3390/f14020415
- Yang, G., Feng, W., Jin, J., Lei, Q., Li, X., Gui, G., & Wang, W. (2020). Face mask recognition system with YOLOV5M based on image recognition. In 2020 IEEE 6th International Conference on Computer and Communications (ICCC) (pp. 1398-1404). IEEE. https://doi.org/10.1109/ICCC51575.2020.9345042
- Zhou, Y., Tang, Y., Zou, X., Wu, M., Tang, W., Meng, F., ... & Kang, H. (2022). Adaptive active positioning of camellia oleifera fruit picking points: Classical image processing and YOLOv7 fusion algorithm. Applied Sciences, 12(24), 12959. https://doi.org/10.3390/app122412959
|