- Alex, E. C., Ramesh, K. V., & Sridevi, H. (2017). Quantification and understanding the observed changes in land cover patterns in Bangalore. International Journal of Civil Engineering and Technology, 8(4), 597-603.
- Adam, E., Mutanga, O., & Odindi, J., & Abdel-Rahman, E. M. (2014). Land-use/cover classification in a heterogeneous coastal landscape using Rapid Eye imagery: Evaluating the performance of random forest and support vector machines classifiers. International Journal of Remote Sensing, 35, 3440-3458. https://doi.org/10.1080/01431161.2014.903435
- Adugna, T., Xu, W., & Fan, J. (2022). Comparison of Random Forest and Support Vector Machine Classifiers for Regional Land Cover Mapping Using Coarse Resolution FY-3C Images. Remote Sensing, 14(3), https://doi.org/10.3390/rs14030574
- Avalos, J. M. M., & Araujo, E. S. (2021). Optimization of Vineyard Water Management: Challenges Strategies, and Perspectives. Water, 13(6), 1-32. https://doi.org/10.3390/w13060746
- Ahmad, F. (2012). Detection of change in vegetation cover using multi-spectral and multi-temporal information for district Sargodha, Pakistan. Sociedade & Natureza, 24(3), 557-571. https://doi.org/10.1590/S1982-45132012000300014
- Andalibi, F., & Esmaeily, A. (2015). Vegetation Water Content Estimation Using Vegetation Indices of Low Resolution Satellite Data. Geospatial Engineering Journal, 6(2), 11-16. (in Persian).
- Arab, S. T., Noguchi, R., Matsushita, S., & Ahamed, T. (2021). Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach. Remote Sensing Applications: Society and Environment, 22, 1-14. https://doi.org/10.1016/j.rsase.2021.100485
- Biau, G., & Scornet. E. (2016). A random forest guided tour. Test, 25(2), 197-227. https://doi.org/10.1007/s11749-016-0481-7
- Borgogno-Mondino, E., & Lessio, A. (2018). A FFT-Based approach to explore periodicity of vines/soil properties in vineyard from time series of satellite-derived spectral indices. IEEE International Geoscience and Remote Sensing Symposium(pp. 9078-9081). https://doi.org/10.1109/igarss.2018.8519437
- Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Brinkhoff, J., Vardanega, J., & Robson, A. J. (2019). Land Cover Classification of Nine Perennial Crops Using Sentinel-1 and -2 Data. Remote Sensing, 12(1), 1-26. https://org/10.3390/rs12010096
- Bovolo, F., & Bruzzone, L. (2007). A split-based approach to unsupervised change detection in large-size multitemporal images: Application to tsunami-damage assessment. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1658-1670. https://doi.org/10.1109/tgrs.2007.895835
- Basheer, S., Wang, X., Farooque, A. A., Nawaz, R. A., Liu, K., Adekanmbi, T., & Liu, S. (2022). Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques. Remote Sensing, 14(19), 1-18. https://doi.org/10.3390/rs14194978
- Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018
- Egbert, S. L., Park, S., & Price, K. P. (2002). Using conservation reserve program maps derived from satellite imagery to characterize landscape structure. Computers and Electronics in Agriculture, 37(1-3), 141-156. https://doi.org/10.1016/S0168-1699(02)00114-X
- Ezzatabadipour, H. (2015). Introducing Sentinel2 satellite images. The third national conference on recent innovations in civil engineering, architecture and urban planning in Tehran. (in Persian).
- Filgueiras, R., Mantovani, E. C., Althoff, D., FernandesFilho, E. I., & Cunha, F. F. D. (2019). Crop NDVI monitoring based on sentinel 1. Remote Sensing, 11(12), 1-21. https://doi.org/10.3390/rs11121441
- Faizizadeh, B., Valizadeh Kamran, K., & Haydari, H. (2008). Estimation of the cultivated area of vineyards in Malekan city using satellite images SPOT5. Geography and Planning, 14(27), 47-60. (in Persian).
- Ghayour, L., Neshat, A., Paryani, S., Shahabi, H., Shirzadi, A., Chen, W., Ansari, N. A., Geertsema, M., Amiri, M. P., Gholamnia, M., Dou, J., & Ahmad, A. (2021). Performance evaluation of sentinel-2 and landsat8 OLI data for land cover/use classification using a comparison between machine learning algorithms. Remote Sensing, 13(7), 1-21. https://doi.org/10.3390/rs13071349
- Geudtner, D., Torres, R., Snoeij, P., & Davidson, M. (2012). Sentinel-1 System Overview. In Proceedings of the 9th European Conference on Synthetic Aperture Radar, Nurnberg, Germany. 23-26.
- Goa, B. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing Environment, 58(3), 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
- Gogtay, N. J., & Thatte, U. M. (2017). Principles of correlation analysis. Journal of the Association of Physicians of India, 65(3), 78-81.
- Hartling, S., Sagan, V., Sidike, P., Maimaitijiang, M., & Carron, J. (2019). Urban tree species classification using a WorldView-2/3 and LiDAR data fusion approach and deep learning. Sensors, 19(6), 1284. https://doi.org/10.3390/s19061284
- Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11), 1417-1434. https://doi.org/10.1080/01431168608948945
- Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing, 8(3), 166. https://doi.org/10.3390/rs8030166
- Junges, A. H., Fontana, D. C., Anzanello, R., & Bremm, C. (2017). Normalized difference vegetation index obtained by ground-based remote sensing to characterize vine cycle in Rio Grande do Sul, Brazi. Ciencia E Agrotecnologia, 41(5), 543-553. https://doi.org/10.1590/1413-70542017415049016
- Karimi, N., Sheshangosht, S., & Eftekhari, M. (2022). Crop type detection using an object-based classification method and multi-temporal Landsat satellite images. Paddy Water Environment, 20(3), 395-412. https://doi.org/10.1007/s10333-022-00901-x
- Kumar, L., & Mutanga, O. (2018). Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sensing, 10(10), 1509. https://doi.org/10.3390/rs10101509
- Lewis, H. G., & Brown, M. (2001). A generalized confusion matrix for assessing area estimates from remotely sensed data. International Journal of Remote Sensing, 22(16), 3223-3235. https://doi.org/10.1080/01431160152558332
- Liaw, A., & Wiener, M. (2002). Classification and Regression by RandomForest. R News, 2, 18-22.
- Lopez-Martinez, C., & Fabregas, X. (2002). Modeling and reduction of SAR interferometric phase noise in the wavelet domain. IEEE Transactions on Geoscience and Remote Sensing, 40(12), 2553-2566. https://doi.org/10.1109/tgrs.2002.806997
- Lu, S., Xuan, J., Zhang, T., Bai, X., Tian, F., & Ortega-Farias, S. (2022). Effect of the shadow pixels on evapotranspiration inversion of vineyard: A high-resolution UAV-based and ground-based remote sensing measurements. Remote Sensing, 14(9), 2259. https://doi.org/10.3390/rs14092259
- Mirzaei, M., Abbasi, M., Marofi, S., Solgi, E., & Karimi, R. (2018). Spectral discrimination of important orchard species using hyperspectral indices and artificial intelligence approaches, Journal of RS and GIS for Natural Resources, 9(2), 76-92. (in Persian).
- MohamadiManavar, H., & Zibazadeh, S. (2022). Distinguishing rain-fed and irrigated crops in Hamadan province using spectral indices of satellite images. Journal of Agricultural Machinery, 12(4), 529-542. (in Persian with English abstract). https://doi.org/10.22067/jam.2021.69074.1022
- Nematollahi, H., Ashourloo, D., Alimohammadi, A., Khodabandehloo, & Radiom, S. (2018). Development and application of crop and field condition indices using time-series satellite images of Sentinel-2. Iranian Journal of Remote Sensing & amp: GIS. 10(3), 105-122. (in Persian with English abstract). https://doi.org/10.52547/gisj.13.4.1
- Negri, R. G., Dutra, L. V., Sant'Anna, S. J. S., & Lu, D. (2016). Examining region-based methods for land cover classification using stochastic distances. International Journal of Remote Sensing, 37(8), 1902-1921. https://doi.org/10.1080/01431161.2016.1165883
- Pal, S., Pandey, S. K., Sharma, S. K., & Nair, R. (2022). Land use and land cover classification of Jabalpur district using minimum distance classifier. The Pharma Innovation, 11(11), 1161-1163.
- Pal, M., & Mather, P. M. (2005). Support vector machines for classification in remote sensing. International Journal of Remote Sensing, 26(5), 1007-1011. https://doi.org/10.1080/01431160512331314083
- Pearson, K. (1896). Mathematical contributions to the theory of evolution III. Regression, heredity and panmixia. Philosophical Transactions of the Royal Society of London. Series A, 187, 253-318. https://doi.org/10.1098/rsta.1896.0007
- Robinson, N. P., Allred, B. W., Jones, M. O., Moreno, A., Kimball, J. S., Naugle, D. E., Erickson. T. A., & Richardson, A. D. (2017). A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sensing, 9(8), 64-77. https://doi.org/10.3390/rs9080863
- Sekertekin, A., & Zadbagher, E. (2021). Simulation of future land surface temperature distribution and evaluating surface urban heat island based on impervious surface area. Ecological Indicators, 122, 1-11. https://doi.org/10.1016/j.ecolind.2020.107230
- Tomas, P., Samuel, O. F., Dongryeol, R. (2018). Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard. Sensors, 18, 397. https://doi.org/10.3390/s18020397
- Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
- Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E. & Rostan, F. (2012,). GMES Sentinel-1 mission. Remote sensing of Environment, 120, 9-24. https://doi.org/10.1016/j.rse.2011.05.028
- Vélez, S., Barajas, E., Blanco, P., Rubio, J. A., & Castrillo, D. (2021). Spatio-temporal analysis of satellite imagery (NDVI) to identify terroir and vineyard yeast differences according to appellation of origin (AOP) and biogeographic origin. Multidisciplinary Scientific Journal,4(3), 244-256. https://doi.org/10.3390/j4030020
- Vintrou, E., Desbrosse, A., Begue, A., Traore, S., Baron, C., & Lo seen, D. (2012). Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products. International Journal of Applied Earth Observation and Geoinformation, 14(1), 83-93. https://doi.org/10.1016/j.jag.2011.06.010
- Wacker, A. G., & Landgrebe, D. A. (1972). Minimum Distance Classification in Remote Sensing. LARS Technical Reports. Paper 25, 1-20.
- Yu, H., & Kim, S. (2012). SVM Tutorial: Classification, Regression and Ranking. Handbook of Natural Computing, 1, 479-506. https://doi.org/10.1007/978-3-540-92910-9_15
- ZareKhoramizi, H., GhafarianMalamiri, H., & Mortaz, M. (2020). Evaluation of supervised classification capability of Landsat-8 and Sentinel-2A Satellite images in determining type and area of Pistachio Cultivars. Journal of Rs and Gis for natural Resources, 11(1), 84-103. (in Persian with English abstract).
- Zhang, Q., Chen, J., & Zhang, Y. (2018). Evaluating the performance of NDVI and NDWI for urban vegetation coverage assessment. Remote Sensing, 10(7), 1156.
- Zhao, L., Li, Q., Zhang, Y., Wang, H., & Du, X. (2019). Integrating the Continuous Wavelet Transform and a Convolutional Neural Network to Identify Vineyard Using Time Series Satellite Images. Remote Sensing, 11(22), 2641. https://doi.org/10.3390/rs11222641
- Zhou, Y., & Huang, J. (2019). Comparison of NDWI and NDVI for assessment of vegetation water content in a semiarid area. Environmental Monitoring and Assessment, 191(4), 228.
- Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83-94. https://doi.org/10.1016/j.rse.2011.10.028
|