[1] Cai, X. and Liu, F. A Reynolds uniform scheme for singularly perturbed parabolic differential equation, ANZIAM Journal, 47 (2005) C633–C648.
[2] Chi-kuang, W. The finite element method of singular perturbation problem, Appl. Math. Mech. 5(1) (1984) 1011–1018.
[3] Clavero, C., Gracia, J.L. and Jorge, J.C. High-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers, Numer. Methods Partial Differ. Equ. 21(1) (2005) 149–169.
[4] Clavero, C., Jorge, J.C. and Lisbona, F. Uniformly convergent schemes for singular perturbation problems combining alternating directions and exponential fitting techniques, Adv. Comput. Methods Bound. Inter. Layers. (1993) 33–52.
[5] Clavero, C., Gracia, J.L. and Lisbona, F. High order methods on Shishkin meshes for singular perturbation problems of convection–diffusion type, Numer. Algorithms, 22(1) (1999) 73–97.
[6] Clavero, C., Gracia, J.L. and Stynes, M. A simpler analysis of a hybrid numerical method for time-dependent convection–diffusion problems, J. Comput. Appl. Math. 235(17) (2011) 5240–5248.
[7] Friedman, A. Partial differential equations of parabolic type, Courier Dover Publications, 2008.
[8] Izadi, M. and Yuzbasi, S. A hybrid approximation scheme for 1-d singularly perturbed parabolic convection-diffusion problems, Math. Commun. 27(1) (2022) 47–62.
[9] Kadalbajoo, M.K. and Yadaw, A.S. Parameter-uniform finite element method for two-parameter singularly perturbed parabolic reaction-diffusion problems, Int. J. Comput. Methods 9(04) (2012) 1250047.
[10] Kaushik, A., Kumar, V., Sharma, M. and Sharma, N. A modified graded mesh and higher order finite element method for singularly perturbed reaction–diffusion problems, Math. Comput. Simul. 185 (2021) 486–496.
[11] Kaushik, A., Kumar, V., Sharma, M. and Vashishth, A.K. A higher order finite element method with modified graded mesh for singularly perturbed two-parameter problems, Math. Methods Appl. Sci. 43(15) (2020) 8644–8656.
[12] Kellogg, R.B. and Tsan, A. Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comput. 32(144) (1978) 1025–1039.
[13] Kopteva, N., Uniform pointwise convergence of difference schemes for convection-diffusion problems on layer-adapted meshes, Comput. 66(2) (2001) 179–197.
[14] Kopteva, N.V., On the convergence, uniform with respect to a small parameter, of a scheme with weights for a one-dimensional nonstationary convection-diffusion equation, Zh. Vychisl. Mat. Mat. Fiz, 37 (1997) 1213–1220.
[15] Kumar, S. and Vigo-Aguiar, J. A parameter-uniform grid equidistribution method for singularly perturbed degenerate parabolic convection–diffusion problems, J. Comput. Appl. Math. 404 (2022) 113273.
[16] Linss, T. Layer-adapted meshes and fem for time-dependent singularly perturbed reaction-diffusion problems, Int. J. Comput. Sci. Math. 1(2-4) (2007) 259–270.
[17] K. Mukherjee and S. Natesan. Parameter-uniform hybrid numerical scheme for time-dependent convection-dominated initial-boundary-value problems, Comput., 84(3) (2009) 209–230.
[18] Mukherjee, K. and Natesan, S. Richardson extrapolation technique for singularly perturbed parabolic convection–diffusion problems, Comput., 92 (2011) 1–32.
[19] Roos, H.G., Stynes, M. and Tobiska, L. Robust numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems, Springer Science & Business Media, volume 24, 2008.
[20] Stynes, M. and Roos, H.G., The midpoint upwind scheme, Appl. Numer. Math. 23(3) (1997) 361–374.
[21] Sun, G. and Stynes, M. Finite-element methods for singularly per-turbed high-order elliptic two-point boundary value problems. I: reaction-diffusion-type problems, IMA J. Numer. Anal. 15(1) (1995) 117–139.
[22] Tian, S., Liu, X. and An, R., A higher-order finite difference scheme for singularly perturbed parabolic problem, Math. Probl. Eng. 2021 (2021) 1–11.
[23] Vulanovic, R. Higher-order monotone schemes for a nonlinear singular perturbation problem, ZAMM Z. fur Angew. Math. 68(5), (1988 ) T428–T430.
[24] Vulanović, R. and Nhan, T.A. Robust hybrid schemes of higher order for singularly perturbed convection-diffusion problems, Appl. Math. Comput. 386 (2020) 125495.
[25] Ng-Stynes, M.J., O’Riordan, E. and Stynes, M. Numerical methods for time-dependent convection-diffusion equations, J. Comput. Appl. Math. 21(3) (1988) 289–310.