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Abstract

In this study, numerical approaches to the singularly perturbed problems
of convection diffusion type are presented. The backward Euler method
is applied to a uniform mesh in the temporal domain, while in the spatial
domain, we utilize both the hybrid midpoint finite difference scheme and
the high order via differential identity expansion scheme on a modified
graded mesh. The solution to the problem introduces a boundary layer on
the right side of the domain. Both of the above methods are proven to have
identical convergence with respect to the perturbation parameter. We also
provide numerical results in order to verify the theoretical conclusions. We
demonstrate that the applied approaches provide uniform convergence of
first-order in the temporal variable and second-order up to a logarithmic
factor with respect to the spatial variable.
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1 Introduction and summary

A singular perturbation problem in the context of parabolic partial differen-
tial equations involves a small parameter (usually denoted by ε) multiplying
the highest-order time derivative term in the equation. One example of a
singular perturbation problem is the parabolic convection-diffusion equation,
which models the transport of a scalar quantity, such as heat or chemical
concentration, in a fluid medium that is subject to both diffusion and con-
vection. The equation takes the form: εut = Duxx − vux, where u(x, t)

is the scalar quantity being transported and ε is the small parameter that
measures the relative strength of diffusion to convection. This equation is
called the parabolic convection-diffusion equation because it is a parabolic
partial differential equation that combines convection and diffusion terms.
The convection term vux represents the transport of the scalar quantity by
the fluid flow, while the diffusion term Duxx represents the spreading of
the scalar quantity due to molecular diffusion. The singular perturbation
aspect of this problem arises because the εut term introduces a time scale
that is much faster than the time scale of the diffusion and convection terms.
As a result, the solution to this equation exhibits behavior that is very dif-
ferent depending on whether ε is small or not. These problems frequently
occur in a variety of applied mathematics fields, including fluid dynamics,
elasticity, and many others. The study of singular perturbation problems
like the parabolic convection-diffusion equation is important in many fields,
including fluid dynamics, chemical engineering, and mathematical biology.
Techniques for analyzing these problems include matched asymptotic expan-
sions, boundary layer theory, and numerical methods that accurately depict
the solution’s behavior as the parameter ε tends towards zero. When the
value of ε is small, the problem exhibits heightened sensitivity to alterations
in initial or boundary conditions, rendering conventional numerical methods
for solving parabolic equations seemingly insufficient and imprecise.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



3 Efficient numerical schemes on modified graded mesh ...

Addressing singular perturbation problems necessitates the application
of specialized techniques like asymptotic analysis, matched asymptotic ex-
pansions, or numerical methods explicitly tailored for these specific types of
problems. The goal is to accurately capture the behavior of the solution in
the boundary layer regions while avoiding excessive computational cost or
numerical instability. Approximate solutions are required in these situations
since it is often impossible or very difficult to find the precise answer to these
mathematical issues. By using perturbation techniques, it is possible to find
a rough answer. These approaches fundamental premise is to start by find-
ing a solution to a reduced problem and thereafter get consistently excellent
estimates. The solution of the singular perturbation in the parabolic partial
differential equations relies on both the resolution at the previous stage and
the resolution at the present stage; it is more analogous to events that oc-
cur in the actual world. Many publications addressing singularly perturbed
parabolic problems are accessible in the literature.

For instance, Claver, Gracia, and Jorge [3] developed high-order numerical
methods for one-dimensional parabolic singularly perturbed problems, pro-
viding valuable insights into handling regular and singular layers. Clavero,
Gracia, and Lisbona [5] extended these methods by implementing higher-
order schemes on Shishkin meshes for convection-diffusion problems, ensuring
uniform convergence. Izadi and Yuzbasi [8] proposed a hybrid approximation
scheme that effectively tackled convection-diffusion problems with singular
perturbations. Mukherjee and Natesan [17] introduced parameter-uniform
hybrid schemes for convection-dominated initial-boundary-value problems,
while their subsequent work [18] employed Richardson extrapolation tech-
niques to enhance solution accuracy and robustness. Furthermore, Tia, Liu,
and An [22] devised a higher-order finite difference scheme for singularly per-
turbed parabolic problems, emphasizing improved computational efficiency.

Despite these advancements, analytical solutions to singularly perturbed
differential equations remain challenging due to the inherent complexity of
boundary and interior layers.

Furthermore, the problem of the solution displays border and interior lay-
ers with a modest perturbation parameter of ε. Also, on a uniform mesh, the
classical numerical technique suddenly needs a lot of mesh points to correctly
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represent the layer in the solution, which is not feasible. In this sense, the
aforementioned approach is unsuccessful. So, a uniform convergent approach
has been developed as a result of the specific consideration needed for the
numerical solution of singularly perturbed partial differential equations.

There are numerous studies focused on the analytical and numerical treat-
ment of singularly perturbed parabolic problems, particularly utilizing finite
difference and finite element methods. For instance, Cai and Liu [1] pro-
posed a Reynolds-uniform scheme for addressing such problems, emphasiz-
ing uniform convergence. Chi-kuang [2] applied finite element methods to
tackle singular perturbation problems, showcasing their versatility in han-
dling boundary layers. Moreover, Clavero, Jorge, and Lisbona [4] devel-
oped uniformly convergent schemes that integrated alternating directions
and exponential fitting techniques, enhancing solution accuracy. Kadalbajoo
and Yadaw [9] investigated parameter-uniform finite element methods for
two-parameter problems, extending their applicability to reaction-diffusion
systems. Additionally, Kumar and Vigo-Aguiar [15] devised a parameter-
uniform grid equidistribution method, offering improved robustness in de-
generate parabolic problems. Sun and stynes [21] employed finite element
methods for high-order elliptic singularly perturbed problems. However, an-
alytical solutions and numerical approaches for singular perturbation convec-
tion diffusion problems are only briefly explored in a few papers. Mukherjee
and Natesan [17] proposed hybrid numerical schemes that maintain uniform
convergence in convection-diffusion settings. Vulanović and Nhan [24] ad-
vanced this by developing robust higher-order hybrid schemes, which effec-
tively handle steep gradients. Similarly, the higher-order monotone schemes
designed by Vulanović [23] demonstrate significant accuracy in nonlinear sin-
gular perturbation problems. In terms of the diffusion parameter, the numer-
ical technique is uniformly convergent, with an order close to two in space,
but in all these works, the authors have described a singularly perturbed
parabolic problem on a Shishkin mesh only.

There are currently no known papers relating to the convergence of dif-
ference schemes on modified graded meshes. As a result, we are now in a
position to develop a different scheme for a modified graded mesh. Moti-
vated by the work of Claver, Gracia, and Jorge [3], who developed high-
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5 Efficient numerical schemes on modified graded mesh ...

order numerical methods for singularly perturbed problems on layer-adapted
meshes, Kaushik et al. [10], who introduced a modified graded mesh for
singularly perturbed reaction-diffusion problems, achieving enhanced accu-
racy, Mukherjee and Natesan [18], who demonstrated robust convergence for
convection-diffusion problems by using the Richardson extrapolation tech-
nique, Clavero, Gracia, and Stynes [6], who provided a simplified analysis of
hybrid numerical methods, and Kaushik et al. [11], who applied higher-order
methods to two-parameter singular perturbation problems, we aim to extend
this research direction.

In this article, we propose two finite difference schemes: the hybrid mid-
point finite difference scheme and the high order via differential identity ex-
pansion (HODIE) finite difference scheme on a modified graded mesh for the
convection-diffusion parabolic problem. Consider the singularly perturbed
initial-boundary value problem:

∂y(r, θ)

∂θ
+ Lεy = f(r, θ) on Λ := Λr × Λθ,

where Λr = (0, 1) and Λθ = (0,T ],

y(r, 0) = y0(r) for 0 ≤ r ≤ 1,

y(0, θ) = 0 for 0 < θ ≤ T ,

y(1, θ) = 0 for 0 < θ ≤ T ,

(1)

where

Lεy(r, θ) ≡ −ε
∂2y(r, θ)

∂r2
+ κ1(r)

∂y(r, θ)

∂r
+ κ2(r, θ)y(r, θ), (2)

with κ1(r) > λ > 0 and κ2 = κ2(r, θ) ≥ 0 on Λ, where ε is a small pertur-
bation. In section 2, there will be more presumptions made regarding the
problem of the data. From (8), it can be found that the solution y of (1)
contains an exponential boundary layer at the side r = 1 of Λ. Throughout
this paper, we concentrate on two finite difference techniques (hybrid dif-
ference scheme and second-order HODIE) for (1) that were introduced and
examined in [3, 17]. These studies verify convergence for these approaches,
uniformly in ε, with the caveat that κ2 = κ2(r), but the mesh is the same in
both papers.
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Our main goal in this study is to suggest and examine a higher-order
hybrid finite difference strategy for the problem (1) on the modified graded
mesh, which shall be discussed in the forthcoming section. In Section 3, we
define the meshes for temporal and spatial discretization and introduce some
special difference operators and the finite difference scheme. Also, we will
prove that the methods finite difference techniques (hybrid difference scheme
and second-order HODIE) of [3, 17] are essentially the same. In Section 4,
we show the convergence of these numerical techniques, uniformly in ε when
applied to (1). In Section 5, we present the numerical results for two linear
test problems to validate the theoretical results. Finally, in Section 6, we
summarize the main conclusions.

The functions based on the mesh assumption (16), which proves to be
considerably less limiting compared to the mesh constraint N −k ≤ C∆θ

imposed in [3, 17], where k ∈ (0, 1). When ε ≤ N −1, our convergence result
Theorem 1 becomes

max
i,j

∣∣y(ri, θj)− Y j
i

∣∣ ≤ C [∆θ + (N −1 ln(1/ε))2]. (3)

This sharpens the weaker result

max
i,j

∣∣y(ri, θj)− Y j
i

∣∣ ≤ C [∆θ + N −2+k(ln 1/ε)2].

It was obtained from [3, 17]. The numerical findings shown in these papers
demonstrate that the factor N k in this instance is an antiquity of the analy-
sis; that is, that our bound (3) is sharp. In section 5, we provide yet another
numerical example to demonstrate the accuracy of our convergence results.
In section 6, some final conclusions are given.

Notation: Throughout the paper, the symbol C represents a general
positive constant that remains unaffected by both ε and the mesh size.

2 Assumptions on the data

Before we analyze the problem, some of the compatibility conditions are
necessary. Therefore, the following compatibility conditions at the corners
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7 Efficient numerical schemes on modified graded mesh ...

for functions and their zero-order and first-order derivatives are assumed to
satisfy: 

y0(0) = y0(1) = 0,

−εy
′′

0 (0) + κ1(0)y
′

0(0) = f(0, 0),

−εy
′′

0 (1) + κ1(1)y
′

0(1) = f(1, 0).

(4)

Then (1) has a unique solution in the Holder space C 2+λ,1+λ/2(Λ) see in
[19, 7]. We also make the assumption that the corner compatibility condi-
tions of second order are met, ensuring the validity of C 4+λ,2+λ/2(Λ). These
conditions can be explicitly stated within the terms of the problem of data
in the following manner. Differentiating (1) with respect to θ we get

fθ = yθθ + Lεyθ + κ2θy = yθθ + Lε(f − Lεy) + κ2θy.

Therefore, by invoking (1) and (4), we can express the second-order corner
compatibility conditions as

Lε(Lεy0) = Lεf − fθ (5)

at the corners (0, 0) and (1, 0). Given these assumptions, the solution y to
(1) exhibits an exponential layer along the boundary r = 1 of Λ and adheres
to the specified bound∣∣∣∣∂s+ly(r, θ)

∂rs∂θl

∣∣∣∣ ≤ C (1 + ε−se−λ(1−r)/ε) for (r, θ) ∈ Λ and s+ 2l ≤ 4. (6)

This result was proved in [25] for 0 ≤ s+l ≤ 2. Under necessary compatibility
conditions and sufficient smoothness on the data, the proof of the estimate (6)
for higher values of s, l follows similarly from [3, Lemma 2.1]. The approaches
given in [19] may be used to prove the aforementioned bound. The inequality
(6) a priori is sufficient for the majority of our analysis. It becomes necessary
for us to additionally assume that the data of the problem (1) adhere to the
third-order compatibility condition

fθθ = Lε(fθ − Lε(f − Lεy0)− κ2θy0) at the corners (0, 0) and (1, 0). (7)
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Then, similarly to (6), the bounds on the derivatives can be shown as∣∣∣∣∂s+ly(r, θ)

∂rs∂θl

∣∣∣∣ ≤ C (1 + ε−se−λ(1−r)/ε) for (r, θ) ∈ Λ and s+ 2l ≤ 6. (8)

In [3, 17], authors assumed that (8) is valid for s+ l ≤ 4, l ≤ 2.

Remark 1. The order of convergence of the our numerical technique on a
modified graded mesh, applied the finite difference scheme(midpoint tech-
nique), and the HODIE finite difference scheme is unaffected when (7) is
broken, according to the findings of our calculations. For an illustration, see
section 5.

Remark 2. As the variable ε can assume a range of values, the compatibility
condition (4) indicates that



y0(0) = y0(1) = 0,

κ1(0)y
′

0(0) = f(0, 0),

κ1(1)y
′

0(1) = f(1, 0),

y
′′

0 (0) = y
′′

0 (1) = 0.

(9)

Likewise, by utilizing (9), it becomes apparent that the equivalence of (5) is
contingent upon the condition of requiring.

(κ
′

1 + κ2)f = κ1fr − fθ,

(κ
′′

1 + 2κ2r)y
′

0 = frr,

y40 = 0

at the corners (0, 0) and (1, 0).

Further requirements are imposed on the data by assumption (7), al-
though as Remark 1 shows, they may not be necessary in reality. Despite
the fact that these requirements place limits on the types of data that are
allowed, it is nonetheless evident that some types of data meet these require-
ments. For instance, if enough derivatives of the y0 and f disappear at the
corners (0, 0) and (1, 0).
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3 Numerical discretization

Grids for spatial and temporal direction and bounds on them are defined in
this section. We apply two finite difference schemes (the hybrid difference
scheme and second-order HODIE) for the spatial derivative and the Euler-
backward difference for the temporal derivative to discretize the problem (1).

3.1 The uniform mesh

In the time domain interval [0,T ], we employ a uniform mesh with a time
step ∆θ, ensuring that

ΛM
θ = {θk = k∆θ, k = 0, 1, . . . , M , ∆θ =

T

M
},

Here, M represents the number of mesh points in the θ-direction within the
interval [0,T ].

3.2 Spatial discretization

We generate a modified graded mesh, ΛN
r in the interval [0, 1] and order to

resolve the boundary layer at r = 1, which is plotted in Figure 1 as follows:

σi = 1− χN −1 for i = 1, . . . ,N ,

where χ is defined as follows:

χ0 = 0,

χi = 2ε i
N , 1 ≤ i ≤ N

2 ,

χi+1 = χi(1 + ρh), N
2 ≤ i ≤ N − 2,

χN = 1,

(10)
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where the parameter h satisfies the following nonlinear equation:

ln(1/ε) = (N /2) ln(1 + ρh). (11)

The above section of the parameter h ensures that there are N /2 grid points
in the interval [0, 1−ε], which are distributed gradedly in the interval [0, 1−ε].

Numerical verification stimulate us that the interval (χN −1, 1) is not too
small in comparison with the previous one (χN −2, χN −1). In the subinterval
[1 − ε, 1] we distribute N /2 points with uniform step length 2ε/N , while
in the subinterval [0, 1 − ε] we first find h for some fix N by means of the
nonlinear equation (11), and corresponding to that h we distribute N /2

points in the interval [0, 1−ε]. The mesh length is denoted by hi = χi−χi−1,
for i = 1, 2, . . . , N .

Remark 3. The mesh size in piecewise uniform and the modified graded
region is given by

hi =

 2ε/N for i = 1, 2, . . . , N /2,

ρhχi−1 for i = N /2 + 1, N /2 + 2, . . . , N .

Lemma 1. The mesh defined in (10) satisfies the following estimates:

|hi+1 − hi| ≤

 0 for i = 1, 2, . . . , N /2,

Ch for i = N /2 + 1, N /2 + 2, . . . , N .

Proof. Initially, we consider i = 1, 2, . . . , N /2. As the mesh is uniform in
this portion, so nothing to prove.
For i = N /2 + 1, N /2 + 2, . . . , N . We have

|hi+1 − hi| = |ρhχi − ρhχi−1|

= ρh|χi − χi−1|

= ρ2h2χi−1

≤ Ch.

Here, we have taken 0 < ρ, h < 1.
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11 Efficient numerical schemes on modified graded mesh ...

Lemma 2. For the modified graded mesh defined in (10), the parameter h
satisfies the following bound:

h ≤ C N −1 ln(1/ε).

Proof. Let K1 be the number of points χi in the partition (10) such that
χi ≤ ε, for i = 1, 2, . . . , N /2. Clearly K1 ≤ C /h and K2 be the number
of points in the partition (10) such that χi > ε. Let χN /2+1 be the smallest
point such that χi > ε. We have to estimate the bound for K2. Assuming
ρh ≤ 1, we have

K2 =

N∑
N /2+1

1 =

N∑
N /2+1

(χi+1 − χi)
−1

∫ χi+1

χi

dχ

=

N∑
N /2+1

(hi+1)
−1

∫ χi+1

χi

dχ

=

N∑
N /2+1

(ρhχi)
−1

∫ χi+1

χi

dχ

≤
N∑

N /2+1

(2/ρhχi+1)
−1

∫ χi+1

χi

dχ,

because χi+1 < 2χi. For any χ ∈ [χi, χ+1], we have

K2 ≤
N∑

N /2+1

2(ρh)−1

∫ χi+1

χi

1

χ
dχ

≤ 2(ρh)−1

∫ 1

ε

1

χ
dχ

≤ 2(ρh)−1 ln(1/ε).

Recalling N = K1 + K2, we have

N ≤ C /ρh+ 2(ρh)−1 ln(1/ε),

N ≤ 1/h(C ρ+ 2(ρ)−1 ln(1/ε)),

N ≤ 1/h(C ln(1/ε)),
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Finally, we get

h ≤ C N −1 ln(1/ε),

where N is the number of grid points in the r-direction.

0 1

(a) N = 32, ε= 10−1
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1

(b) N = 128, ε= 10−2

Figure 1: Distribution of modified graded mesh points for the problems with the layer
on the right side of the boundary, that is, r = 1, which is plot in Figure 1.

Figure 1a shows the distribution of the domain [0, 1], while Figure 1b
illustrates the layer within the domain [0, 1].

3.3 The finite difference scheme

In this section, we used the backward-Euler difference in the time direc-
tion and two finite difference schemes (the hybrid midpoint method and the
HODIE method) for the spatial direction on the modified graded mesh. Now,
a free parameter p1i that is defined by the following, is utilized to character-
ize the second-order HODIE finite difference scheme of [3], which is used to
discretize the spatial derivative of (1):

p1i =


di

di−1+di
for i = 1, 2, 3, . . . ,N /2,

0, for i = N /2 + 1, . . . ,N − 1.
(12)

Here, we suppose that H ||d||∞ ≥ 2ε (see [3]). Let us denote the step sizes
in space by hi := ri−ri−1 and ĥi := (hi+hi+1)/2 for all i, and ∆θ = θj−θj−1
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13 Efficient numerical schemes on modified graded mesh ...

for all j. Then, Y j
i is the analytical solution at the grid point (ri, θi), and

also we define the HODIE and midpoint difference scheme of [3] is

p1i
Y j
i−1 − Y j−1

i−1

∆θ
+ (1− p1i )

Y j
i − Y j−1

i

∆θ
+ [L N ,M

ε Y ]ji = p1jf
j
i−1 + (1− p1i )f

j
i

(13a)
for i = 1, 2, 3, . . . ,N /2, and

Y j
i − Y j−1

i

∆θ
+ [L N ,M

ε Y ]ji = f j
i , for i = N /2 + 1, . . . ,N − 1, (13b)

where
L N ,M

ε Y ]ji = q−ijY
j
i−1 + qcijY

j
i + q+ijY

j
i+1 (13c)

with 
q−ij = − ε

hiĥi

− 2p1i di−1

hi
+ p1iκ2

j
i−1,

q+ij = − ε

hi+1ĥi

,

qcij = −q−ij − q+ij + p1iκ2
j
i−1 + (1− p1i )κ2

j
i

(13d)

for i = 1, 2, 3, . . . ,N /2, and
q−ij = − ε

hiĥi

− di

2ĥi

,

q+ij = − ε

hi+1ĥi

+
di

2ĥi

,

qcij = −q−ij − q+ij + κ2
j
i

(13e)

for i = N /2 + 1, . . . ,N − 1.

When i = 1, 2, 3, . . . ,N /2, it is easy to see that

p1i =
1

2
+O(hi), and 2p1i di−1 = di−1/2 +O(h2

i ), (14)

where di−1/2 := (di−1+di)/2. thus, replacing 2p1i di−1 by di−1/2 in (13d) and
p1i by 1/2 elsewhere, the scheme (13) becomes

1

2

(
Y j
i−1 − Y j−1

i−1

∆θ

)
+

1

2

(
Y j
i − Y j−1

i

∆θ

)
+ [L N ,M

ε Y ]ji =
1

2

(
f j
i−1 + f j

i

)
, (15a)

for i = 1, 2, 3, . . . ,N /2, and
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Y j
i − Y j−1

i

∆θ
+ [L N ,M

ε Y ]ji = f j
i , for i = N /2 + 1, . . . ,N − 1, (15b)

where
[L N ,M

ε Y ]ji = q−ijY
j
i−1 + qcijY

j
i + q+ijY

j
i+1, (15c)

with 
q−ij = − ε

hiĥi

−
di−1/2

hi
+

1

2
κ2

j
i−1,

q+ij = − ε

hi+1ĥi

,

qcij = −q−ij − q+ij +
1

2
κ2

j
i−1 +

1

2
κ2

j
i

(15d)

for i = 1, 2, 3, . . . ,N /2, and
q−ij = − ε

hiĥi

− di

2ĥi

,

q+ij = − ε

hi+1ĥi

+
di

2ĥi

,

qcij = −q−ij − q+ij + κ2
j
i

(15e)

for i = N /2 + 1, . . . ,N − 1,

According to the description above, the numerical solution of the problems
(1) in section 5 will demonstrate that the schemes (13) and (15) provide
outcomes that are almost equal.

4 Analysis of the uniform convergence

In this section, we aim to establish uniform convergence using a new concept
involving modified graded meshes. Our examination will focus on the hybrid
midpoint finite difference method (15). This choice is made due to the rela-
tively simpler coefficients in the midpoint finite difference scheme compared
to the HODIE finite difference scheme (13). It is important to note that
the analysis presented here for the hybrid midpoint finite difference method
can be readily extended to apply to the HODIE finite difference scheme (13).
The analysis of the schemes (15) and (13) will be second order of convergence
with respect to the perturbation parameter �, and also show that the schemes
(15) and (13) are identical.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



15 Efficient numerical schemes on modified graded mesh ...

Lemma 3. Assume that

η||d||∞ <
N

ln(1/ε) and λN ≥ (||κ2||∞ + (∆θ)−1). (16)

Then, the coefficient of (15) satisfies the following for every j:
(a) q+ij ≤ 0, (b) q−ij + (2∆θ)−1 ≤ 0 and (c) qcij + (2∆θ)−1 ≥ 0,

for i = 1, 2, 3, . . . ,N /2,

(d) q−ij ≤ 0, (e) qcij + (∆θ)−1 ≥ 0, and (f) q+ij ≤ 0 for i =

N /2 + 1, . . . ,N − 1.

Moreover, the tridiagonal matrix associated with computing the discrete
solution at each time level θj is an M-matrix.

Proof. In the case of 1 ≤ i ≤ N /2, the proofs are provided as follows. Since
q+ij = − ε

hi+1ĥi

, which is less than zero for all i, j. Therefore we have q+ij ≤ 0,

hence the result (a). In order to prove the result (b), we observe that the
term q−ij + (2∆θ)−1 satisfies

q−ij + (2∆θ)−1 = − ε

hiĥi

−
di−1/2

hi
+

1

2
κ2

j
i−1 +

1

2∆θ

≤ − ε

hiĥi

−
di−1/2

hi
+

1

2
κ2

j
i−1 +

1

2
(||κ2||+ (∆θ)−1)

≤ − ε

hiĥi

−
di−1/2

hi
+

1

2
κ2

j
i−1 + λN ,

using λN ≥ ||κ2||+ (∆θ)−1 and (16).

The inequality κ1(r) > λ > 0 implies that λ < di as well as λ < di−1.
Therefore we have, 2λ < κ1i + κ1i−1, that is λ <

κ1i + κ1i−1

2
. Moreover,

κ1i−1/2

λ

hi
<

κ1i−1/2

hi
results λN <

λ

hi
<

κ1i−1/2

hi
, which leads to the in-

equality λN <
κ1i−1/2

hi
< 0, thus we have q−ij + (2∆θ)−1 ≤ 0, which proves

the result in the case of 1 ≤ i ≤ N /2.

From (15d), we get

qcij + (2∆θ)−1 = −q−ij − q+ij +
1

2
κ2

j
i−1 +

1

2
κ2

j
i

=
ε

hiĥi

+
ai−1/2

hi
− 1

2
κ2

j
i−1 +

ε

ĥihi+1

+
1

2
κ2

j
i−1 +

1

2
κ2

j
i
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=
ε

ĥi

(
hi+1 + hi

hi+1hi
) +

κ1i−1/2

hi
+

1

2
κ2

j
i ⩾ 0.

Hence, q−ij + (2∆θ)−1 ≥ 0. Thus we have the result (c).
In the case of i = N /2+1, . . . ,N −1, the results are provided as follows.

From (15e), it follows that q−ij ≤ 0 since q−ij = − ε

hiĥi

− di

2ĥi

, Hence we have

established the result (d), that is, q−ij ≤ 0.
Observing from (15e), we have

−q−ij − q+ij + κ2
j
i + (∆θ)−1 =

ε

hiĥi

+
d

2ĥi

+
ε

hi+1ĥi

− d

2ĥi

+ κ2
j
i +

1

∆θ
≥ 0.

Therefore, qcij + (∆θ)−1 ≥ 0. Hence we have established the result (e).
In order to prove the result (f), we note that

q+ij = − ε

hi+1ĥi

+
di

2ĥi

≤ ε

hi+1ĥi

+
||di||
2ĥi

≤ ε

hi+1ĥi

+
N

ln(1/ε)
1

2ĥi

=
ε

hi+1ĥi

+
N ε

(1− ε)

1

2ĥi

=
−ε

ĥi

(
1

hi+1
− N

2(1− ε)

)
.

From the inequality 1

N
> hi+1 it is straight forward to observe that

N

2(1− ε)
<

1

hi+1
. Substituting this in the previous inequality we obtain

q+ij ≤ 0, which proves the result for the case (f). This completes the proof.

Assuming the validity of (16), we proceed to establish that Lemma 3
implies the existence of a unique solution for the scheme (15) at each time
level. Furthermore, the solution adheres to a discrete maximum principle.
By incorporating the maximum principle with a barrier function expressed
as C (1 + r), a priori bound ||Y ||∞,d ≤ C ||f ||∞ with a constant C is derived.
Here, the discrete maximum norm is defined as ||z||∞,d := max

i,j
|zji | for each

mesh function z.

Now, we will presented our main result. To obtain the estimation we will
follow the Koptewa’s methodology [13, 14] and also the result presented in
[16].
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17 Efficient numerical schemes on modified graded mesh ...

Theorem 1. Assume (16) is valid. Then there exists a constant C such that

max
i,j

|y(ri, θj)− Y j
i | ≤ C [∆θ + εN −1 + (N −1 ln(1/ε))2]. (17)

Proof. Suppose that ζji = yji − Y j
i is the error of discrete solution of the

problem (1) on the modified graded mesh applied the scheme (15) at each
grid point (ri, θj). We can write the scheme of midpoint, which is given in
(15) as

[γ̃θY ]ji+[L N ,M
ε Y ]ji = f̂ j

i for i = 1, 2, 3, . . . ,N −1, and j = 1, . . . ,M , (18)

where

f̂ j
i =


1

2
[f(ri−1, θj) + f(ri, tj)] if i ≤ N

2 , j ≤ M
2 ,

f(ri, θj) if i > N
2 , j > M

2 ,
(19)

and the backward difference operator γ̃θ can be defined analogously. There-
fore, at each point (ri, θj) ∈ Λ, the truncation error of the scheme is

[γ̃θζ + L N ,M
ε ζ]ji = ϑj

1;i + ϑj
2;i, (20)

where
ϑj
1;i := [L N ,M

ε y]ji − (L εy)
j
i and ϑj

2;i := γ̃θy
j
i − (ỹθ)

j
i (21)

with (ỹθ)
j
i define similarly to (19), and

(L εy)
j
i =


1

2
[(Lεy)(ri−1, θj) + (Lεy)(ri, θj)], if i ≤ N /2,

(Lεy)(ri, θi), if i > N /2.

Decompose ζ as ζ = µ+ν. the functions {µj
i}, j = 0, . . . ,M are the solutions

to the discrete boundary value problem with two-point,

[L N ,M
ε µ]ji = ϑj

1,i for i = 1, . . . ,N − 1, µj
0 = µj

N = 0, (22)

while {νji } are the solution of a discrete parabolic problem defined by
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[γ̃θν + L N ,M
ε ν]ji = ϑj

2;i − γ̃θµ
j
i for i = 1, . . . ,N − 1, (23a)

with the boundary conditions

νj0 = νjN = 0 for j = 1, . . . ,M , (23b)

and the initial condition

ν0i = −ν0i for i = 0, . . . ,N . (23c)

Equation (22) precisely represents the identity obtained when examining the
error µ in a two-point boundary value problem that has undergone discretiza-
tion using Lε, with ϑj

1;i serving as the truncation error. Utilized the bound
(6) with the value of l = 0, we obtained the same bound on the ϑj

1;i as for
a convection-diffusion two point boundary value problems. As a result, it is
possible to use the error bound determined in [20],

|µj
i | ≤ C [εN −1 + (N −1 ln(1/ε))2] for all i, j. (24)

Again, we include the one-more error component ν. Lemma 1 implies that
the problem (23) satisfies a discrete maximum principle just as (15) does, so

||ν||∞,d ≤ C

(
max

i
|µ0

i |+ ∥ϑ2 − γ̃θµ∥∞,d

)
≤ C [∆θ + εN −1 + (N −1 ln(1/ε))2 + ∥γ̃θµ∥∞,d], (25)

where we used (24) with j = 0 and also

|ϑj
2;i| ≤ C∆θ for i = 1, . . . ,N − 1, and j = 1, . . . ,M , (26)

The verification has been completed using Taylor’s series expansion and (6).
It remains to estimate γ̃θµ appears in (23). Utilizing the assumption that
κ1 = κ1(r) is independent of θ, a straightforward calculation reveals that, for
each fixed j, the definition (22) implies satisfaction for γ̃θµ

[L N ,M
ε (γ̃θµ)]

j
i = γ̃θϑ

j
1;i − ((γ̃θκ2)µ

j−1)i for i = 1, . . . ,N − 1, (27a)
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19 Efficient numerical schemes on modified graded mesh ...

(γ̃θµ)
j
0 = (γ̃θµ)

j
N = 0, (27b)

The notation (̃)i employed here carries the same meaning as in (18).

Based on the decomposition γθµ = Φ + Ψ, wherein, for each fixed j ∈
1, 2, . . . ,M , the following relationship holds:

[L N ,M
ε Φ]ji = γ̃θϑ

j
1;i for i = 1, . . . ,N − 1 with Φj

0 = Φj
N = 0, (28a)

[L N ,M
ε Ψ]ji = −((γ̃θκ2)µ

j−1)i for i = 1, . . . ,N − 1 with Ψj
0 = Ψj

N = 0.

(28b)
To examine the discrete two-point boundary value problem (28a), an analysis
will be conducted and observe that for i ≤ N /2 the right-hand side of (28a)
is

γ̃θϑ
j
1;i =

1

2∆θ
(ϑj

1;i−1 − ϑj−1
1;i−1) +

1

2∆θ
(ϑj

1;i − ϑj−1
1;i )

=
1

2∆θ
[([L N ,M

ε y]ji−1 − [L N ,M
ε y]j−1

i−1 )− ([Lεy]
j
i−1 − [Lεy]

j−1
i−1 )]

+
1

2∆θ
[([L N ,M

ε y]ji − [L N ,M
ε y]j−1

i )− ([Lεy]
j
i − [Lεy]

j−1
i )].

Set Lεy = −εyrr + κ1yr. Let [L
N ,M
ε Y ]ji be defined by setting κ2 ≡ 0 in

[L N ,M
ε y]ji for all i, j; that is, L

N ,M
ε is the discretization of L ε. Then for

i ≤ N /2, we can expressed the above formula in the form

γ̃θϑ
j
1;i =

1

2∆θ

∫ θj

θj−1

[(L
N ,M
ε yθ(ri−1, θ) + L

N ,M
ε yθ(ri, θ))

− (L εyθ(ri−1, θ) + L εyθ(ri, θ))]dθ.

It is important to note that here we employed the assumption that κ1 = κ2(r)

is not dependent on θ, since this yields L εyθ = (L εy)θ. Hence, we employed
the Peano kernel theorem that is also used in the article [12], and we get

|γ̃θϑj
1;i| =C ε

∫ ri+1

ri−1

max
θ∈[θj−1,θj ]

|yrrrθ(r, θ)|dθ

+ Chi

∫ ri

ri−1

max
θ∈[θj−1,θj ]

(|yrθ|+ |yrrθ|+ |yrrrθ|)(r, θ)dθ.
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The bounds of (8) are unaffected by the addition of the θ–derivative, resulting
in an estimate that is equivalent to the corresponding truncation error limits
appearing in [20] for a typical two-point boundary value problem. When
i ≥ N /2, then the bound from the last inequality in the proof of a bound
that is identical to the equivalent truncation error bound derivative [20].
These results show that analysis of (28a) may be performed in a similar
manner to that of (22), with the exception that one utilizes the bound (8)
with l = 1. We therefore obtain

|Φj
i | ≤ C [εN −1 + (N −1 ln(1/ε))2] for all i and j. (29)

To handle (27b), note that Lε is an M -matrix and therefore fulfills the dis-
crete maximum principle. The easy conclusion that one has to satisfy for
every j

max
i

|Ψj
i | ≤Cmax

i
|((γ̃θb)µj−1)i|

≤ C max
i

|µj−1
i | ≤ C [εN −1 + (N −1 ln(1/ε))2], (30)

where we used |γ̃θκ2| ≤ C and (24).

Combining (24), (25), (29), and (30), we get (17)

max
i,j

|y(ri, θj)− Y j
i | ≤ C [∆θ + εN −1 + (N −1 ln(1/ε))2].

and Theorem 1 also holds true for the scheme (13). This completes the
proof.

5 Examples and their numerical results

In this section, we shall present the numerical results obtained by the two
finite difference schemes, the hybrid midpoint method (15) and the HODIE
method (13) of the problem (1) on the modified graded mesh and also calcu-
late the maximum point-wise error and order of convergence with the different
values of ε and N ,M . We tackled two Examples to showcase the effective-
ness and efficiency of the proposed schemes. It’s important to note that this
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21 Efficient numerical schemes on modified graded mesh ...

article does not provide an exact solution for Examples 1 and 2. Instead,
we employ the double mesh approach outlined below to assess the maximum
point-wise errors and determine the order of convergence. We demonstrate
the efficiency of the proposed numerical scheme by two examples to show
that the schemes (13) and (15) yield very similar results and confirm the
convergence estimate of Theorem 1.

Example 1. Consider the following parabolic initial-boundary value prob-
lem:

yθ − εyrr +

(
1 + r2 +

sin(πr)
2

)
yr + (1 + r2 + sin(πθ))y = f(r, θ),

f(r, θ) = r3(1− r)3 + θ(1− θ) sin(πθ), for (r, θ) ∈ (0, 1)× (0, 1),

y(0, θ) = y(1, θ) = y(r, 0) = 0 for (r, θ) ∈ [0, 1],

(31)

The exact solution of the y(r, θ) of (31) is not provided and also the
results of this problem satisfy only the first-order and second-order corner
compatibility conditions (4) and (5). The point-wise errors |y(ri, θi) − Y j

i |
are obtained on the our mesh ΛM ,N . The double mesh technique can also
be found in the reference [3, 17]. That is a new approximate solution {Ŷ j

i } is
computed using the same scheme but on the mesh the comprises the points
of the original mesh and their midpoints ((ri−1+ri)/2, θi), ((ri, (θi−1+θi)/2)

and ((ri−1+ri)/2, (θi−1+θi)/2). Thus, the values Y j
i and Ŷ 2j

2i are computed
at the same physical point (ri, θi) of ΛM ,N . Then at the mesh points of
the original mesh ΛM ,N one calculates the maximum and uniform two mesh
differences defined by

dN ,M
ε = max

0≤j≤M
max

0≤i≤N
|Y j

i − Ŷ 2j
2i |, dN ,M = max

ε∈S
dN ,M
ε , (32)

where S := {2−3, 2−6, 2−9, 2−12, 2−15, . . . , 2−30}. From these values one com-
putes the order of convergence and the uniform orders of convergence in the
standard way:

pN ,M
ε :=

log(dN ,M
ε / log(d2N ,2M

ε )

log 2 , pN ,M
uni :=

log(dN ,M/ log(d2N ,2M )

log 2 .

We employ the proposed schemes (15) and (13), the hybrid midpoint finite
difference scheme and the HODIE finite difference scheme on the modified
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graded mesh to solve the Examples 1 and 2 for different values of perturba-
tion parameter ε with the spatial mesh grid size N and time grid size M . We
have also calculated the maximum point-wise errors and their corresponding
order of convergent. From Tables 1 to 4, we can analyze that the proposed
schemes (15) and (13) with the modified graded mesh are ε−uniformly con-
vergent for distinct values of ε and N ,M . Because of this as a result of
this observation, we can assert that the computationally achieved order of
convergence surpasses the one predicted in the preceding section. It has
been demonstrated that the theoretical rate of convergence for the developed
method is second order in the spatial direction and first order in the time
direction. Besides, the comparison of numerical results obtained by the pro-
posed scheme and results in [3] and [17] are tabulated in Tables 5 and 6 for
Example 1. From these tables, one can conclude that the proposed scheme
gives better results than the scheme considered in [3] and [17].

Figure 2 shows the numerical solution profile for Example 1 for various val-
ues of ε and step sizes N and M for schemes (13) and (15), respectively. The
calculated maximum point-wise errors dN ,M and the corresponding order of
convergence pN ,M

uni for Example 1 with schemes (13) and (15) on modified
graded mesh are shown in Tables 1 and 2, respectively. From these results
one can observe the ε-uniform second-order convergence of the numerical
solution.

Example 2. Consider the following parabolic initial-boundary value prob-
lem:

yθ − εyrr +

(
1 + r2 +

sin(πr)
2

)
yr + (1 + r2 +

1

2
sin(πθ/2))y = f(r, θ)

f(r, θ) = r3(1− r)3θ(1− θ) sin(πθ), for (r, θ) ∈ (0, 1)× (0, 1)

y(0, θ) = y(1, θ) = y(r, 0) = 0, for (r, θ) ∈ [0, 1],

(33)

for which the exact solution is again unknown. Similarly, numerical so-
lution profiles for Example 2 for various values of ε and step sizes N and
M are provided in Figure 3 for the schemes (13) and (15). The results re-
veal the presence of a boundary layer on the right side of the domain. The
calculated maximum point-wise errors dN ,M and the corresponding order of
convergence pN ,M

uni for Example 2 with schemes (13) and (15) on modified
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graded mesh are shown in Tables 3 and 4, respectively. From these results
one can observe the ε-uniform second-order convergence of the numerical so-
lution. The maximum point-wise errors are plotted in log-log scale in Figure
4, for the solution. From these figures,one can easily observe the second-order
ε-uniform convergence.
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(a) N = 128,M = 32, ε= 10−3, Scheme (13)
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Figure 2: Solution profile for Example 1 using schemes (13) and (15) on modified graded
mesh
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Figure 3: Solution profile for Example 2 using schemes (13) and (15) on modified graded
mesh.
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Table 1: Maximum point-wise errors and the corresponding order of convergence for
Example 1 on a modified graded mesh using scheme (13)

Number of Intervals N ,M
N = 84 N = 168 N = 336 N = 672 N = 1344

ε M = 5 M = 20 M = 80 M = 320 M = 1280
2−3 9.4000e− 03 2.7000e− 03 6.9703e− 04 1.7986e− 04 4.7299e− 05

1.8260 1.9338 1.9544 1.9270
2−6 1.1000e− 03 3.6000e− 03 1.0000e− 03 2.8406e− 04 8.2442e− 05

1.6292 1.8075 1.8428 1.7847
2−9 1.1100e− 03 3.8000e− 03 1.2000e− 03 3.6372e− 04 1.1823e− 04

1.5443 1.6842 1.7058 1.6212
2−12 1.0700e− 03 3.7000e− 03 1.2000e− 03 3.9593e− 04 1.3800e− 04

1.5221 1.6259 1.6130 1.5205
2−15 1.0400e− 03 3.6000e− 03 1.3000e− 03 4.7031e− 04 1.5294e− 04

1.5315 1.4188 1.5127 1.6206
2−18 1.0500e− 03 3.8000e− 03 1.7000e− 03 6.3183e− 04 1.9519e− 04

1.4580 1.1733 1.4249 1.6947
2−21 1.2500e− 03 4.7000e− 03 2.0000e− 03 8.0241e− 04 2.5652e− 04

1.3934 1.2186 1.3449 1.6453
2−24 1.4600e− 03 5.6000e− 03 2.4000e− 03 9.7847e− 04 3.2349e− 04

1.3731 1.2492 1.2745 1.5968
2−27 1.6600e− 03 6.4000e− 03 2.7000e− 03 1.2000e− 03 3.9531e− 04

1.3648 1.2618 1.2152 1.5495
2−30 1.8400e− 03 7.2000e− 03 3.0000e− 03 1.3000e− 03 4.7123e− 04

1.3617 1.2538 1.1680 1.5035
dN ,M 1.8400e− 03 7.2000e− 03 3.0000e− 03 1.3000e− 03 4.7123e− 04

pN ,M
uni 1.3617 1.2538 1.1680 1.5035

Table 2: Maximum point-wise errors and the corresponding order of convergence for
Example 1 on a modified graded mesh using scheme (15)

Number of Intervals N ,M
N = 84 N = 168 N = 336 N = 672 N = 1344

ε M = 5 M = 20 M = 80 M = 320 M = 1280
2−3 9.4000e− 03 2.7000e− 03 7.0292e− 04 1.8291e− 04 4.9051e− 05

1.8112 1.9293 1.9422 1.8988
2−6 1.1100e− 03 3.5000e− 03 9.9420e− 04 2.7750e− 04 8.2428e− 05

1.6599 1.8145 1.8411 1.7513
2−9 1.1300e− 03 3.7000e− 03 1.1000e− 03 3.2987e− 04 1.0683e− 04

1.6180 1.7392 1.7442 1.6266
2−12 1.1300e− 03 3.7000e− 03 1.1000e− 03 3.5990e− 04 1.2389e− 04

1.6181 1.6834 1.6735 1.5385
2−15 1.1300e− 03 4.3000e− 03 1.6000e− 03 4.7883e− 04 1.3894e− 04

1.6119 1.4536 1.6975 1.7850
2−18 1.1900e− 03 5.2000e− 03 2.1000e− 03 6.6140e− 04 1.8765e− 04

1.7785 1.6518 1.6354 1.8175
2−21 1.3100e− 03 6.1000e− 03 2.6000e− 03 8.6310e− 04 2.5027e− 04

1.8940 1.6578 1.5750 1.7861
2−24 1.4200e− 03 7.0000e− 03 3.1000e− 03 1.1000e− 03 3.2024e− 04

1.6196 1.7805 1.5176 1.7547
2−27 1.5200e− 03 7.8000e− 03 3.6000e− 03 1.3000e− 03 3.9701e− 04

1.9542 1.6154 1.7623 1.7233
2−30 1.6000e− 03 8.6000e− 03 4.1000e− 03 1.6000e− 03 4.8006e− 04

1.9022 1.5571 1.6089 1.6922
dN ,M 1.6000e− 03 8.6000e− 03 4.1000e− 03 1.6000e− 03 4.8006e− 04

pN ,M
uni 1.9022 1.5571 1.6089 1.6922
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Table 3: Maximum point-wise errors and the corresponding order of convergence for
Example 2 on a modified graded mesh using scheme (13)

Number of Intervals N ,M
N = 84 N = 168 N = 336 N = 672 N = 1344

ε M = 5 M = 20 M = 80 M = 320 M = 1280
2−3 1.0565e− 04 3.0122e− 05 8.3177e− 06 2.3937e− 06 7.6229e− 07

1.8104 1.8565 1.7970 1.6508
2−6 1.5408e− 04 5.3824e− 05 1.6708e− 05 5.2492e− 06 1.8022e− 06

1.5173 1.6877 1.6704 1.5424
2−9 1.6659e− 04 6.3801e− 05 2.1436e− 05 7.2210e− 06 2.6525e− 06

1.3846 1.5735 1.5698 1.4448
2−12 1.6920e− 04 6.6955e− 05 2.3753e− 05 8.4545e− 06 3.2711e− 06

1.3375 1.4951 1.4903 1.3699
2−15 1.7144e− 04 6.8827e− 05 2.5610e− 05 9.5467e− 06 3.8417e− 06

1.3166 1.4263 1.4236 1.3133
2−18 1.8052e− 04 7.0612e− 05 2.7351e− 05 1.0617e− 05 4.4059e− 06

1.3542 1.3683 1.3651 1.2689
2−21 2.0035e− 04 7.5085e− 05 2.9004e− 05 1.1683e− 05 4.9695e− 06

1.4160 1.3723 1.3118 1.2332
2−24 2.3038e− 04 9.8989e− 05 3.0620e− 05 1.2744e− 05 5.5335e− 06

1.2187 1.6928 1.2646 1.2036
2−27 2.7570e− 04 1.2149e− 04 3.2179e− 05 1.3797e− 05 6.0980e− 06

1.1822 1.9167 1.2217 1.1780
2−30 3.1311e− 04 1.4101e− 04 3.7471e− 05 1.4841e− 05 6.6619e− 06

1.1509 1.9119 1.3362 1.1556
dN ,M 3.1311e− 04 1.4101e− 04 3.7471e− 05 1.4841e− 05 6.6619e− 06

pN ,M
uni 1.1509 1.9119 1.3362 1.1556

Table 4: Maximum point-wise errors and the corresponding order of convergence for
Example 2 on a modified graded mesh using scheme (15)

Number of Intervals N ,M
N = 84 N = 168 N = 336 N = 672 N = 1344

ε M = 5 M = 20 M = 80 M = 320 M = 1280
2−3 1.0178e− 04 2.9341e− 05 8.0678e− 06 2.2905e− 06 7.0284e− 07

1.7945 1.8626 1.8165 1.7044
2−6 1.2021e− 04 3.9857e− 05 1.1346e− 05 3.1890e− 06 9.6295e− 07

1.5926 1.8127 1.8310 1.7276
2−9 1.1696e− 04 4.1225e− 05 1.2193e− 05 3.5503e− 06 1.1220e− 06

1.5044 1.7575 1.7801 1.6619
2−12 1.1120e− 04 4.0477e− 05 1.2584e− 05 3.8367e− 06 1.2732e− 06

1.4580 1.6856 1.7136 1.5913
2−15 1.1026e− 04 3.9240e− 05 1.2814e− 05 4.1096e− 06 1.4249e− 06

1.4906 1.6146 1.6407 1.5281
2−18 1.1865e− 04 5.6710e− 05 1.2882e− 05 4.3681e− 06 1.5760e− 06

1.7650 2.1382 1.5603 1.7708
2−21 1.4002e− 04 7.2639e− 05 1.7165e− 05 4.6091e− 06 1.7255e− 06

1.9468 2.0813 1.8969 1.4175
2−24 1.7524e− 04 8.5364e− 05 2.4497e− 05 4.8268e− 06 1.8733e− 06

1.8376 1.8010 2.3435 1.3655
2−27 2.2202e− 04 9.6868e− 05 3.2831e− 05 5.5598e− 06 2.0192e− 06

1.6966 1.5610 2.0620 1.7612
2−30 2.7531e− 04 1.0342e− 04 4.1820e− 05 7.3340e− 06 2.1624e− 06

1.8125 1.9063 2.0115 1.7619
dN ,M 2.7531e− 04 1.0342e− 04 4.1820e− 05 7.3340e− 06 2.1624e− 06

pN ,M
uni 1.8125 1.9063 2.0115 1.7619
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Table 5: Comparison of maximum point-wise errors and the corresponding order of
convergence for Example 1 on a modified graded mesh using scheme (13)

HODIE scheme on modified graded mesh
N = 32 N = 64 N = 128 N = 256 N = 512

ε ∆t = 0.025 ∆t = 0.025/4 ∆t = 0.025/42 ∆t = 0.025/43 ∆t = 0.025/44

2−6 8.999e− 3 3.8000e− 03 1.2000e− 03 3.6372e− 04 1.1823e− 04

1.6443 1.6842 1.7058 1.6212
2−8 9.322e− 3 3.7000e− 03 1.2000e− 03 3.9593e− 04 1.3800e− 04

1.6221 1.6259 1.6130 1.5205
2−10 1.0400e− 03 3.6000e− 03 1.3000e− 03 4.7031e− 04 1.5294e− 04

1.5315 1.4188 1.5127 1.6206
Result in [3] On the Shishkin mesh

2−6 8.998e− 3 2.906e− 3 1.033e− 3 3.298e− 4 1.032e− 4

1.630 1.492 1.647 1.677
2−8 9.322e− 3 3.009e− 3 9.817e− 4 3.128e− 4 1.059e− 4

1.631 1.616 1.650 1.563
2−10 9.411e− 3 3.038e− 3 9.961e− 4 3.201e− 4 1.007e− 4

1.631 1.609 1.638 1.669

Table 6: Comparison of maximum point-wise errors and the corresponding order of
convergence for Example 1 on a modified graded mesh using scheme (15)

Midpoint Scheme on Modified graded mesh
N = 32 N = 64 N = 128 N = 256 N = 512

ε ∆t = 0.025 ∆t = 0.025/4 ∆t = 0.025/42 ∆t = 0.025/43 ∆t = 0.025/44

10−1 9.4000e− 03 2.7000e− 03 7.0292e− 04 1.8291e− 04 4.9051e− 05

1.8112 1.9293 1.9422 1.8988
10−2 1.1100e− 03 3.5000e− 03 9.9420e− 04 2.7750e− 04 8.2428e− 05

1.6599 1.8145 1.8411 1.7513
10−3 1.1300e− 03 3.7000e− 03 1.1000e− 03 3.2987e− 04 1.0683e− 04

Result in [17] On the Shishkin mesh
10−1 2.3969e− 3 8.6402e− 4 3.5400e− 4 1.5854e− 47 7.4832e− 5

1.4720 1.2873 1.1589 1.0831
10−2 1.2246e− 2 4.4419e− 3 1.6249e− 3 6.0951e− 4 2.3759e− 4

1.4631 1.4509 1.4146 1.3592
10−3 1.1994e− 2 4.3716e− 3 1.6070e− 3 6.0543e− 4 2.3789e− 4

1.4561 1.4438 1.4084 1.3477
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(a) Log-log plot of Example 1 using scheme (13)
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(b) Log-log plot of Example 1 using scheme (15)
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(c) Log-log plot of Example 2 using scheme (13)
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(d) Log-log plot of Example 2 using scheme (15)

Figure 4: Log-log plot of Examples 1 and 2

6 Discussion and conclusions

In this article, for the first time, we propose a modified graded mesh for
convection-diffusion problems that provides second-order uniform conver-
gence with respect to the perturbation parameter. We have presented ef-
fective numerical approaches in this work that are based on a modified
graded mesh. In this two schemes are discussed namely hybrid finite differ-
ence schemes (15) and HODIE finite difference schemes (13), on a modified
graded mesh. Both the above schemes show identical convergence, which can
be viewed from the theoretical and numerical results established in this work.

In order to verify the theoretical estimation established, we conduct nu-
merical experiments for two test problems for various values of ε and step
sizes N and M . In order to find maximum point-wise error and correspond-
ing order of convergence, we double the number of mesh points in the spatial
direction and quadruple the number of mesh points in the time direction and
apply the schemes (15) and (13) on the modified graded mesh. Through this
procedure, we get the second-order convergence. These can be observed from
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the results presented in Tables 1–2 for Example 1 and Tables 3–4 for Exam-
ple 2. From the above tables, it can be confirmed that overall second-order
uniform convergence. Corresponding log-log plots are provided for Examples
1 and 2. Figure 4 shows the overall second-order of convergence for various
values of ε for Examples 1) and 2 with the schemes (15) and (13) on modified
graded mesh.

It has been shown theoretically that the proposed methods, namely the
hybrid finite difference scheme and the HODIE finite difference scheme, are
uniformly convergent with first-order accuracy in time and almost second-
order accuracy in space. We have also provided numerical results in order to
verify the theoretical conclusions. The uniform convergence of the proposed
methods is shown by the numerical results obtained for two test problems.
Though the proposed method provides second-order convergence in space, the
overall convergence rate of the method is not improved due to the backward-
Euler approach used for the temporal direction. The ability to build higher-
order, more time-accurate numerical schemes using the current setting is
a feasible extension that may be used to improve accuracy while reducing
computing costs.
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