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A new exact solution method for bi-level

linear fractional problems with

multi-valued optimal reaction maps

F.Y. Feleke and S.M. Kassa*:

Abstract

In many practical applications, some problems are being modeled as
bi-level programming problems where the upper and lower level objectives
are linear fractional functions with polyhedral constraints. If the rational
reaction set of (or the set of optimal solutions to) the lower level is not
a singleton, then it is known that an optimal solution to the linear frac-
tional bi-level programming problem may not occur at a boundary feasible
extreme point. Hence, existing methods cannot solve such problems in
general. In this article, a novel method is introduced to find the set of all

feasible leader’s variables that can induce multi-valued reaction map from
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the follower. The proposed algorithm combines the kth best procedure with
a branch-and-bound method to find an exact global optimal solution for
continuous optimistic bi-level linear fractional problems without assuming
the lower level rational reaction map is single valued. The branching con-
straint is constructed depending on the coefficients of the objective function
of the lower-level problem. The algorithm is shown to converge to the exact
solution of the bi-level problem. The effectiveness of the algorithm is also

demonstrated using some numerical examples.

AMS subject classifications (2020): Primary 90C32, 91A65; Secondary 90C26,
90C57, 65K10.

Keywords: Bi-level programming problem; Bi-level linear fractional pro-
gramming problem; Multi-valued rational reaction map; kth best method;

Branch-and-bound scheme.

1 Introduction

A bi-level problem is a constrained optimization problem where two opti-
mization levels are involved, and one is considered as a constraint for the
other. It models decentralized planning problems with two decision agents
in two levels of hierarchy. Each decision maker is assumed to control a dif-
ferent set of variables, and the decisions are made sequentially according to
a predefined order. The decision makers at the upper and lower levels are
called, respectively, leader and follower. The leader and the follower each try
to optimize their own objective functions, but the decision at one level affects

the objective values and/or the choice of strategies of the other level.

Generally, a bi-level programming problem can be formulated as

max F(z,y),
max  f(z,y), (1)
Y

st. (x,y) €Q,
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where z € R™ is the variable vector controlled by the upper level decision
maker, y € R” is the variable vector controlled by the lower level decision
maker, F, f : R™ x R™ — R are the objective functions of the leader and
follower, respectively, and 2 C R"™ x R™ defines the common constraint

region.

Let Q1 = {x € R™: 3 y such that (z,y) € Q} be a projection of £ onto
the Leader’s decision space. For a fixed choice x € €y of the leader, the

follower is expected to react rationally by solving

max f(x,y),
Y (2)

st yeQu),

where Q(z) = {y € R": (z,y) € Q} is the follower’s feasible set for a given =,
assuming that this problem has a solution. The set of optimal solution of (2)
denoted by R(x) is usually termed as the rational reaction set for the bi-level
problem (1). For any decision (choice z) taken by the leader, we assume that
the follower has some room to respond, that is, R(z) # (. The inducible
region, which represents the set over which the leader may optimize his/her

objective or the feasible region of the upper level decision maker, is given by

R ={(z,y) € Q:y € R(z)}.

Thus, in terms of the inducible region, the bi-level problem can be equiv-

alently [8] written as

max F(z,y)
T,y
s.t. (z,y) € IR.

To assure the existence of the solution of bi-level problem, we may assume
that the constraint set 2 is compact, and the inducible region 7R is nonempty.
When the rational reaction map R(z) is not single-valued, difficulties may
arise in finding a meaningful solution to the bi-level problem, and hence
the problem become not well-posed. Various approaches have been proposed
in literature to avoid this difficulty and to insure the well-posedness of the
bi-level problem (see [8] and the references therein). Among the possible

assumptions, the optimistic approach, where the leader assumes that the
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Feleke and Kassa 4

follower chooses a value that suits the choice of the leader, is more popular

in application.

A linear fractional bi-level programming problem, which is a subclass of
bi-level nonlinear problems, where the objective functions in both levels are
linear fractional and the common constraint region is a polyhedron, can be

given by the form:

T T
11T + CipY + a1

max F(x,y) = ,
x (z,y) i+ ey + ag
diyz + diyy + an
max f(z,y) = ,
y f(zy) diiz +dly + as 3)

st Ajx+ Ay < b,

x,y >0,

where for i, j € {1,2}, a;; are scalars, ¢;;, d;;, b are vectors, A;’s are matrices

with appropriate dimensions, and with a common constraint region given by

Q:{(Ivy)Alx+A2y§bvxvy20}

Linear fractional bi-level programming problems appear in various areas
of application, for instance in problems that optimize some efficiency measure

of a system [5].

Given a feasible choice z € §2; of the leader, the solution of the lower level

problem:
_ dhzt+dhy+an
dgli + d%éy + (a9 ’ (4)

max f(z,y)
Y

st. ye Q)
where Q(z) = {y : Asy < b— Ayz,y > 0}, is the rational reaction set R(z).

Since linear fractional problems are quasi-monotonic [5], their solutions
are known to appear on a vertex of the inducible region. In terms of the

inducible region, problem (3) can be equivalently written as

T T
r _ Tt ey +an

max (x»y) =T T )

Y Co1 % + Cap¥ + Q12

st.  (x,y) € IR,
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and the relaxation for the upper level problem can be given by

T T
max F(z,y) = ClTlirC%,?ijan’
Ty 31T + Gy + Q12 (5)

st (zy) e

Related Works — A theoretical framework for solving problem (3) was
developed in [5] and is used to justify the use of the kth best algorithm to
solve linear fractional bi-level problems when R(z) is single-valued for each
feasible x. This algorithm produces exact solution for a linear fractional bi-
level programming problem. An enumerative method is further tuned in [7]
by applying an upper bound filter scheme. Earlier studies [4] used parametric
approach (which was introduced by [12]) to solve bi-level linear fractional
programming problems.

A weighting method together with the analytic hierarchy process is used
to convert the bi-level problem into a single level problem in [11] to solve a
bi-level linear fractional programming problem, while Toksari [15] proposed
the Taylor series approach to transform the bi-level linear fractional pro-
gramming problem into equivalent linear objective functions by using first
order approximation. A duality gap approach is used in [16] to transform the
bi-level problem into an equivalent single-level one and used an enumerative
scheme to search vertices that produce the best duality gap.

Vertex search methods, like the kth best solution approach in [5], upper
bound filter scheme in [7], and the enumerative scheme used in [16], search
over the vertex of the constraint region {2, with the assumption that the set
R(z) is single-valued for any feasible . In the case when R(x) is a single-
valued map, the set of vertices of the inducible region of the problem is shown
in [5] to be the subset of the vertex set of the constraint region. However,
when R(z) is not single-valued the set of vertices of the inducible region is not
necessarily a subset of the vertices of the polyhedral constraint region €2, and
the optimal solution for bi-level linear fractional problem does not necessarily
occur at the vertices of Q (for further discussion on this, interested readers
may refer to [8].) That means, even if the optimistic approach is used, then
vertex search methods cannot be applied in their usual sense unless all the

vertices of the inducible region are known in advance.

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 7?7 pp 77
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Linear fractional optimization problems can also be equivalently con-
verted to linear optimization problems by using either variable transforma-
tion approach [2, 14] or through the first order Taylor series approximation
[1, 9, 13]. However, the resulting bi-level linear programming problem only
locates its solutions if they are at the extreme points of the constraint region
[3, 18, 17], which still fails to identify solutions that lie on the boundaries
but not on the extreme points of the constraint region.

To the best knowledge of the authors, there is no exact method so far that
can solve the general form of problem (3) if R(x) is multi-valued for some
feasible x. This is due to the fact that if R(x) is multiple-valued for some
feasible x, then the inducible region is not necessarily formed by the union
of the faces of the polyhedral constraint region €2 as indicated in [10]. This
implies that some vertices of the inducible region do not coincide with the
vertices of the polyhedral region. Therefore, the methods that are reviewed
above, including those described in [5, 7] cannot solve problem (3) when R(x)
is multi-valued for some feasible x as they miss some vertices of the inducible

region that do not belong to the vertex set of the constraint region.

Contributions — The purpose of this article is to propose a procedure
that can solve linear fractional bi-level problems by using the kth best solution
technique together with the branch-and-bound method. A novel method
is proposed in this article that helps to find the set of all feasible leader’s
variables that can induce multi-valued reaction map from the follower. Then,
the coeflicients of the objective function of the lower level problem are used
to define the branching constraints, which contributes to formulation of an
easily implementable solution algorithm for a general linear fractional bi-level
programming problem. The proposed algorithm can also solve problems with

single-valued reaction maps.

Outline — The paper is organized as follows: Section 2 provides re-
view of some definitions and background concepts for the proposed method.

Furthermore, the dependence of the actual relation between extreme points
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7 A new exact solution method for bi-level linear fractional problems ...

of the inducible region and extreme points of the constraint region, on the
structure of the optimal solution set of the lower level are shown using ex-
amples. The proposed algorithm is presented in Section 3. Section 4 shows
the effectiveness of the algorithm by giving illustrative examples. Finally,
some limitations of the proposed method and their possible extensions are

highlighted in the conclusion part, Section 5.

2 Background of the proposed method

Before we start the solution procedure for a bi-level linear fractional problem,
let us consider the maximization form of a linear fractional problem:
T
1T+
max h(z) = ;71,
z T+ Qg (6)

st. z €S ={Ax <bx >0}

To assure existence of a solution, assume that the constraint set S is
nonempty, closed, and bounded. Since the solution of a quasi-monotonic
problem occurs at the extreme points of the feasible region and every linear
fractional function is explicitly quasi-monotonic in its domain, the optimal
solution of a linear fractional problem lies at some of the extreme points of
the polyhedral constraint region [5, 6, 16]. Therefore, we search the optimal
solution over extreme points of the constraint region. To do that, we start
from one vertex of the constraint region, then move along a side adjacent to
it such that the functional value increases. The process continues until an
extreme point is obtained, where one cannot find a point at which the value
of the function increases any more. The solution procedure is similar to the
simplex method except for the formulation of the objective row. Since the
objective function is linear fractional, it is a ratio of two linear functions.
Then we can use a simplex-like method to solve the linear fractional problem

by applying a few modifications as described in [2].

To formulate the appropriate modification, we consider the gradient of

the objective function, which becomes
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Feleke and Kassa 8

ci(cd x4+ ag) — ca(cf o + aq)
(o + ag)?

vh=

After rearranging, we get

1
h=———79—— (a1 —aica).
\Y (02x+a2)2( 2C1 1€2)
. 1 . . .
Since — is always positive for nonzero as, the sign of \yh depends

(cox + ag)?
on the sign of ascy — aqce, and hence it is usually called the reduced cost.

At each iteration of the simplex method, the value of ascy — aijco determines
the direction of increase or decrease of h. Therefore, depending on the value
of the coefficient asc; — ajcy corresponding to the nonbasic variables, we
have three possibilities for the next move in solving problem (6). The first
possibility is when ascy —agca > 0 corresponding to some nonbasic variables.
In this case, the current extreme point is not an optimal solution for problem
(6). The second possibility is when ase; — ajeg < 0 corresponding to all
nonbasic variables. In this case, we cannot make any improvement on the
value of h, which means the current extreme point is an optimal solution for
problem (6). However, when asc; — ajce = 0 for some nonbasic variables
while age; — apea < 0 for all other nonbasic variables, the current extreme
point is an optimal solution for problem (6) and there is a possibility for
another alternative optimal solution.

At a basic feasible solution z, let 2, = —(cf'x + ;) and 2z = —(cl'z +
a) be the numerator and the denominator functions, respectively, of the
objective function h. Then the corresponding simplex tableau becomes like
in Table 1.

Now, by using the above concept, we have the following properties.

Theorem 1. For any linear fractional problem (6), with objective function
T
QT+ . . . . .
h(z) = ;71, the problem has multiple optimal solutions if and only if
T+ Qg
(crag — coaq); = 0 for some 4, and (c1a2 — co); < 0 for all j # ¢, where ¢
and j are indices for the nonbasic variables which make the reduced cost to

be zero and negative, respectively.

Proof. Let the problem have multiple optimal solutions, say 1 and x2, which

are distinct. Then
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9 A new exact solution method for bi-level linear fractional problems ...

Table 1: Simplex tableau for linear fractional problem given in (6)

clT:L‘ + a1
h ac] — a1C2 -
T —+ ao
21 f —(cfz+a1)
z9 cg —(ch + az2)
BV T RHS
B A b

1. the reduced costs for zy and xs satisfy yh(z1) < 0 and Vh(zs) < 0,
that is, (ciae — caap )k < 0,Vk, where k is the index for the nonbasic

variables at the given iteration.

2. h(l‘l) = h(il?g),

or equivalently,
(cFay + an) (T oo 4+ ag) = (¢Fag + o) (cEzy + ag).
After rearranging the values in the equality, we get
(a1co — agey) T (21 — 2) = 0.

Indeed since x; and x5 are assumed to be distinct optimal solutions of

the problem, (1 — x2); # 0 for some i. Then we must have
(ciaa — caaq); = 0 for some ¢,

and

(c1aa — cgaq); <0 for all other indices j.

Conversely, let 1 and x5 be distinct feasible points that have different
values corresponding to their ith components and the same values for each
of their other components and both satisfy (¢;as — cocry); = 0 for some i and
(crag — cgaq); < 0 for all other indices j. Then since the components of

the reduced cost of the problem (6) at both x; and x5 are zero or negative,
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Feleke and Kassa 10

depending on their corresponding functional values, either x; or xo or both

are optimal solutions.

Let us check which condition is satisfied. From the given conditions, we
have

(arco — ager)t (21 — a2) = 0.

Equivalently we can write it as
(cFay 4+ an)(cd g + o) = (cT g + 1) (kw1 + ag).

Rearranging this equations gives

c{xl + aq . c{xz + oq

chl + cgmg + o

Hence h(z1) = h(x2), which means both 2 and x5 are optimal solutions that

the problem has at least two optimal solutions. O

When we return to the bi-level form of the problem, one searches the
optimal solution over extreme points of the inducible region ZR. If R(z) is
single-valued, then the solution of (3) occurs at the extreme points of the
constraint region €2, because extreme points of the inducible region ZR are
also extreme points of  [5], but this may not be the case when R(x) is a

nonsingleton map for some x [10].

To see what ZR, may look like for a bi-level linear fractional problem, one

may refer to Examples 1 and 2.

Example 1. Consider
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3z + 2y
max ————,
z 4dr+4+y+6
—br—3y—9
max ———————,
y r+2y+3
s.t.
r+y <5,
z + 3y < 10,
y <3,
z,y > 0,
3
25
2
-
15
1
0.5
] .
o o5 1 15 2 25 3 35 4 45 &
*

Figure 1: Constraint and inducible regions of Example 1

The common constraint region, €2, and the inducible region 7R of these
examples are shown in Figure 1 and Figure 2, respectively. The hatched lines
in these figures denote ZR. The lower-level problem of Example 1 has multiple
optimal solutions corresponding to the point x = —1.2857, which is not part
of the feasible region ;. This means R(z) of Example 1 is single-valued for
all x in y; hence, IR is the union of faces of the polyhedron 2 as shown
in Figure 1. That means, the set of extreme points of ZR of Example 1 is
{(5,0),(0,3),(1,3),(2.5,2.5)}, which is a subset of the set of extreme points
of Q, {(0,0),(5,0),(0,3),(1,3),(2.5,2.5)}. In this case, the optimal solution
is (1,3) found by using kth best or graphical method.
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Example 2. Consider

3z + 2y
max ————,
z 4dr+4+y+6
4z 4 3y
max —————,
y dx + 6y + 3
s.t.
z+y <5,
z + 3y < 10,
y <3,
z,y > 0,
3 T
I
I
25| :
I
I
24 I
|
s :
I
I
1 I
I
1
0.5 :
I
I
] 1 ;
o o5 1 15 2 25 3 35 4 45 5§

Figure 2: Constraint and inducible regions of Example 2

However, in Example 2, the lower level problem has multiple optimal
solutions at x = 0.75 € Q;, which means R(z) of Example 2 is not single-
valued for at least one x in ;. In this case, it can be observed that some
elements of 7R are in the interior of €, and 7R is not the union of faces of
the polyhedron €2 as shown in Figure 2. The set of extreme points of Q of
Example 2 is {(0,0), (5,0), (0, 3), (1, 3), (2.5,2.5)} whereas the set of extreme
points of ZR of Example 2 is {(5,0), (0,3), (0.75,0), (0.75,3)}, which is not
a subset of the set of extreme points of ). Using kth best method one can

obtain (0, 3) as the maximum point. However, this point is not the optimal

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 7?7 pp 77



13

A new exact solution method for bi-level linear fractional problems ...

solution of the problem. The optimal solution is (0.75, 3) found by inspection,
and it is not part of the set of extreme points of €2, rather, it is a boundary
point of Q.

Our main focus in this article is the case where R(z) is a nonsingleton set
for some x. To design a solution approach for such cases in general, we need

to establish the following preliminary results.

Theorem 2. The optimal solution of the bi-level linear fractional problem

(3) occurs generally at the boundary points of its constraint region.

Proof. For a fixed point z, we have IR = {(z,y) € Q:y € R(z)} C {(z,y) :
y e Qz)} C Q.

The intersections of the plane that contains z and the constraint set (2 is
the set {(z,y) : y € Q(z)}. The extreme points of the set {(z,y) : y € Q(x)}
lie on the boundaries of €2.

Since the objective functions are linear fractional, R(x) is either an ex-
treme point of Q(z) (if it is single-valued), or it is a convex combination of
some extreme points of Q(z) (if it is multi-valued). In both cases, the set
of extreme points of R(x) is the subset of extreme points of Q(x). Extreme
points of IR are extreme points of the set {(z,y) € 2 :y € R(z)} and hence
the subset of extreme points of {(x,y) € Q : y € Q(z)}. From these argu-
ments, one can conclude that extreme points of IR lie on the boundaries of
Q. O

When R(z) is nonsingleton, the difficulty in the use of the kth best al-
gorithm (or any of the so far known methods, for that matter), is obtaining
the extreme points of ZR, which are not part of the extreme points of €2, but
those are boundary points of €.

To address this difficulty, we first need to find all feasible variables of the
leader that make the optimal reaction set of the follower multi-valued. The

following theorem helps us to obtain those points.
Theorem 3. For a fixed Z in problem (3), if

1. (Dz + f); =0 for some i and (Dz + (3); < 0 for all i # j, where

D= (d12 d22) (_%j;) and 8 = (d12 d22) (_()221) ;
11

Iran. J. Numer. Anal. Optim., Vol. 7?7, No. 7?7, 7?7 pp 77



Feleke and Kassa 14
2. @9y = gy +d5 T #0,
then the lower level problem has multiple optimal solutions.

Proof. The lower level problem (4) of (3) at a fixed point Z, can be rewritten

as
L dijz4diy+an  dhy+an
maxy f(xvy)* T - T =T —
dy) T 4 dyoy +zp dyoy + o
st.  yeQx),
where

_ T — _ T —
Qo] = Q9] + dllx and 92 = (X2 + d21.’E,

and the problem is well defined for gy # 0.
Let (Dz + (3); = 0 for some ¢ and (DZ + 3); < 0 for all j # i.
Then

Dz + 3= (dlz d22) (_f;) z+ (d12 d22) (_0;221)

11
= (d12d3; — doad];) T + diz0s — dopiy
=d9 (dglf + 0422) — doo (d?l.f + ()421)

=dy2022 — da20i9;.

Since (DZ + 3); = 0, so (d120i92 — do2di21); = 0 for some i. Then by Theorem

1 the lower level problem (4) has multiple optimal solutions. O

In the following section, we shall formulate a solution procedure for bi-
level linear fractional problems with possible multiple optimal reaction values

from the lower level, based on the above preliminary results.

3 The proposed solution algorithm

It has been indicated in [5, 7] that bi-level linear fractional problems of type
(3) can be solved by using the kth best (or vertex-searching) approach when
the reaction set is a singleton for each feasible decision of the upper level.
Since optimal solutions of problem (3) occur at the extreme points of the

inducible region, the kth best solution approach cannot solve problem (3)
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15 A new exact solution method for bi-level linear fractional problems ...

when the rational reaction map is multi-valued for some feasible decision of
the upper level. This is due to the fact that if the rational reaction map is
multi-valued for some feasible points, then there are some extreme points of
the inducible region, which are not part of extreme points of the constraint
region, and they cannot be visited by the kth best solution approach. How-
ever, if we branch the problem at those feasible points, where the reaction
map is multiple-valued, then we can make the kth best method to visit all
extreme points of the inducible region. The branching constraints are formu-

lated by using Theorem 3 and then incorporated into the relaxed problem

(5).

To this end, let D have n rows. Then by Theorem 3, problem (4) has
multiple solutions if D;z = —f; and Dz < —p; for all j # i. To get the
branching constraint, we consider D;x < —f; and D;x > —f; in place of

D;x = —f3;. Therefore, for each i < n, we get two problems:

T T
€117 + C10Y + 11

max F(z,y) = —F——% :
z,y 1T + CooY + Q12

s.t.
Az + Agy < b,
Dz < -3, 0
Djz < —B;,
r,y >0,

i # J;

and

T T
€117 + €10y + 11

max F(z,y) = ———5 ,
z,y 1T + Gy + Q12

s.t.
Az + Asy <0,
Dz > —fi, ®)
Djz < —Bj,

Vv
o

T,y

)

LS
.

1
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Feleke and Kassa 16

This branching procedure will result in 2 X n problems in total. However,
the first part (problem (7)) of the branching appears in all the cases. That
means, the same problem is to be repeatedly solved in each case (n times).

To avoid this repetition, we first consider

T T
C11% + Ciay + a1

Ha}i;x F(z,y) = Lx+cLy+ay
s.t.
Ajz + Agy <, Y
Dz < -8,
x,y >0,

once, and then we solve the next branch for each i. Finally, we only have
n + 1 problems to be solved all together. In proposing the algorithm, we
assume that the inducible region ZR is nonempty and an optimistic version

of the problem is considered.

At each iterations, first, we solve either problem (9) (in the first iteration)
or (8) by using the simplex procedure. There may be a solution to each of
the branched bi-level problems or not. If we have a solution, then the next
step is to find a bi-level solution by using the kth best approach. Indeed the
obtained solution could be infeasible, or it may have appeared in one of the
previous iterations, or the objective value at this iteration may not be better

than those in the other branches.

Now, let us define some sets, which are to be used in Algorithm 1. Let
N denote the set of bi-level infeasible points from among the extreme points
of the feasible region, let S be the set of bi-level feasible points, let E? be
the set of extreme points, which are candidates of optimal solution at the
ith iteration, and let A’ be the set of adjacent extreme points of (z%,y*) at
the ith iteration. By making each of the nonbasic variables as an entering
variable in the tableau corresponding to (x%,%%), we obtain elements of E*
and the set A® at each iteration i. Let LB be a lower bound of problem (3),
and its value can be updated if a bi-level feasible point with a better upper

level objective value is obtained.
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17 A new exact solution method for bi-level linear fractional problems ...

Algorithm 1 Algorithm for bi-level linear fractional problem with possible
multiple optimal responses

Step 0. i=0,N=0,S =0,LB = —o0, and n is equal to the number of rows of D.
Step 1. Solve problem (9) by using the simplex method.

o If it has no solution, then go to Step 3.
o If it has a solution (x?,y?), then set E? = {(x?,y*)} and go to Step 2.
Step 2. Solve the lower-level problem (4) by fixing z*, using the simplex procedure to get
7.
o If § =1yt then set LB = F(z%,y?), (z*,9*) = (2%, 4%), S = SU{(2%,y")}, and
go to Step 3.
e If not, then

— find the set of adjacent extreme points, A?, of (2%,4*) and N = N U
{(z%,y")}, E* = (E* U A")\N.
— solve max { F(z,y) : (z,y) € E'} to obtain (z',7") and set (z%,y") =
(@, 9").
* If (z%,9%) € S, then go to Step 3.
* Otherwise, repeat Step 2 with the updated values of z* and y*.
Step 3. Seti=17+1
e If i < n, then go to Step 4.

e If i > n (all the branching options are already explored), then stop, and set
the optimal solution to be (z*,y*).

Step 4. Solve problem (8) by using the simplex procedure.
o If it has no solution, then go to Step 3.
o If the problem has a feasible solution, then let (2%, y*) be the solution and
— if F(2,y") < LB or (2%,y*) € S or (2%,y%) € N, then go to Step 3,
— otherwise let E* = {(z*,y*)}, and go to Step 2.
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Theorem 4. The solution procedure described in Algorithm 1 terminates

to the solution of problem (3) after finite iterations.

Proof. In Algorithm 1, there are at most n + 1 iterations, where n is the
dimension of the lower level decision variable vector, and at each iteration
the kth best algorithm was used to solve the problem. The convergence of kth
best algorithm is proved in [5]. At each iteration if the problem has a solution,
then we must check whether we need to further use kth best algorithm or not
by using three conditions. The first one is comparing the value of the optimal
solution with LB and if it has worst value, then we do not consider it any
further. The second condition is existence of the solution in the nonfeasible
set V. Again if the solution is in N, then we do not consider it further.
The final condition is about the occurrence of the solution in the set S. If
the solution is in .S, then we do not consider it further as it was already
considered in the previous steps and its value was compared with LB. These
three conditions remove the unwanted repetition in the algorithm. After
completing the n + 1 iterations, the point corresponding to the LB becomes
the solution of (3).

Since the branching constraints make the boundary points of £ that co-
incide with extreme points of ZR to be vertices of the branched region, all the
feasible extreme points of the inducible region IR are visited by Algorithm

1. Hence the final solution is the global optimal solution of problem (3). O

4 Illustrative examples

In order to test our proposed Algorithm, we consider some numerical exam-
ples below, some taken from literature to check the validity of the output of
the algorithm, and others are newly constructed to test for the additional
conditions.

Here below, we present the solution of two examples by showing all the
detailed procedures to demonstrate how the steps in the proposed algorithm

work.

Example 3.
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3z + 2y
max ————,
z 4dr+4+y+6
4z 4 3y
max ———,
Yy dx + 6y + 3
s.t.
r+y <5,
z + 3y < 10,
y<3,
z,y > 0.

This is the problem presented in Example 2 above and the procedures of
the solution are presented in the following detailed steps. Note that, existing
methods cannot automatically address such a problem as it has a nonsingle-
ton reaction map.

To check existence of multi-valued reaction, we first formulate

D= (36) <_44> =12, and § = (36) (3) _9.

Then we follow the steps below.
Step 0. :=0,N=0,S=0,LB = —occ and n =1 (as D has only 1 raw).

Step 1. Solve

3z + 2y

max ————,

= 4dr4+y+6
s.t. z+y <5,
z + 3y < 10,
Yy <3
— 122 < -9,
z,y > 0.

e When we solve this linear fractional problem using the simplex
like method, we obtain a solution (1,3) with 2° = 1,5° = 3. Then
we set E° = {(1,3)} and go to Step 2.

Step 2. Solve the lower level problem (4) of Example 3 by fixing 20 = 1, to get
4y = 0. Then
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o i # y". Hence we obtain adjacent extreme points of (z°,°):

o A% ={(0.75,3),(2.5,2.5)},
N =NU{(%y")} ={(1,3)}, E® = (E°UA")\N = A°.

o Solve max {F(z,y) : (z,y) € E°}, to get (0.75,3) ¢ S. Then up-
date % = 0.75,y° = 3 and repeat Step 2.

Solve the lower level problem (4) of Example 3 by fixing 2° = 0.75, to
obtain § = 3.

« Since j = 1°, set LB = F(0.75,3) = 0.6875, 5 = S J{(0.75,3)} =
{(0.75,3)}, (z*,y*) = (0.75,3) and go to Step 3.

Step 3. i=0+1=1
e Since ¢ satisfies ¢ < n, go to Step 4.

Step 4. Solve
3z + 2y
max

v Ar+y+6
s.t. r+y<5h,
z + 3y < 10,
y<3,
— 122 > -9,
z,y > 0.

e Then we get a solution: (0.75,3), with 2! = 0.75,y! = 3.

— Since (0.75,3) € S, go to Step 3.
Step 3. i=14+1=2
e Since i does not satisfy i < n, Stop.

Hence the optimal solution is (z,y) = (0.75,3) with the upper level optimal
value F' = 0.6875 and the lower level optimal value f = 0.5.

Example 4. A newly constructed problem with nonunique reaction set.
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—T1+ 22+ 2y1 —2y2 —yz3 — 1
max ,

x —r1 — 2y1 +y2 + Sy3 + 8
T1+x2—2y1+y2 —ys — 2
max 9
y 21 +y1 +y2 +3y3 +1

S.t.
—y1+y2+ys <1,
221 — 1+ 2y2 + 0.5y3 < 3,
2294+ 2y1 —y2 +0.5y3 <9,

L1,22,Y1,Y2,Y3 > Oa

with = = (21, 22),y = (Y1, Y2, Y3)-

Solution of Example 4: In this case we have
-21 -5 -1 21 0
2 0 1
D=1]11 ( ) 1 —1],and =] 11 ()3
—-1-1 2
-1 3, -5 -3 -13 5
Step 0. i =0,N =0,5 =0, LB = —oc0, and n = 3 (number of rows of D).

Step 1. Solve

—r1+ T2+ 2y1 —2y2 —y3 — 1
max
T,y —x1 — 2y +y2 +5y3 + 8

s.t.
—y1 +y2 +y3 <1,
2z1 —y1 + 2y2 + 0.5y3 < 3,
222 +2y1 —y2 + 0.5y3 < 9,

—dx1 — 22 <0,
T — 22 < =3,
—5{E1 — 3%2 < —5,

T1,%2,Y1,Y2,Y3 > 0.
« After solving, we obtain a solution: (0,3,1.5,0,0) with 20 =
(0,3),y° = (1.5,0,0). Then set E° = {(0,3,1.5,0,0)} and go
to Step 2.

Step 2. Solve the lower level problem (4) of Example 4 by fixing 2% = (0, 3), to
get g = (1.5,0,0).
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« Since § = y°, set LB = F(0,3,1.5,0,0) = 1, S = SJ{(0,3,1.5,0,0)} =
{(0,3,1.5,0,0)}, (z*,y*) = (0,3,1.5,0,0) and go to Step 3.

Step 3. i =1

e Since 7 satisfies 1 < n, go to Step 4.

Step 4. Solve the branched problem (complementing the condition: —5x1—x9 <

0):
—x1+T2+2y1 —2y2 —ys — 1
max
Ty —x1 —2y1 +y2 + 5ys + 8
s.t.

—y1+y2+ys <1,
2x1 —y1 + 2y2 + 0.5y3 < 3,
21‘2 + 2y1 — Y2 + 05y3 S 9,

—5x1 —x9 > 0,
r1 — X2 < =3,
—5501 — 31‘2 S —5,

Z1,%2,Y1,Y2,Yy3 = 0.

e Since we have no solution for this problem, go to Step 3.

Step 3. i =2

e Since ¢ satisfies ¢ < n, go to Step 4.

Step 4. Solve the branched problem (complementing the condition that z; —
To S —3)1
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—T1+22+2y1 -2y —ys — 1
max
z,y —x1 — 2y +y2 +5y3 + 8
S.t.

—y1+y2+ys <1
211 —y1 + 2y2 + 0.5y3 < 3,
22 +2y1 —y2 +0.5y3 < 9,

—dx1 — 22 <0,
T1 — Ty > —3,
—5.’171 — 3.’L‘2 S —5,

T1,%2,Y1,Y2,Ys = 0.

 Then we obtain a solution, (3.75,0,4.5,0,0) with 22 = (3.75,0),y? =
(4.5,0,0).

o Since F'(3.75,0,4.5,0,0) = —0.89 < LB, go to Step 3.
Step 3. i =3
e Since ¢ satisfies 1 < n, go to Step 4.

Step 4. Solve the branched problem (complementing the condition that —5z1 —

33’22 S 75):
—T1+ T2+ 2y1 —2y2 —y3 — 1
max
T,y —x1 — 2y +y2 +5ys + 8
s.t.

—y1+y2+y3 <1,
221 —y1 + 2y2 + 0.5y3 < 3,
219 + 2y1 — Y2 + 0.5y3 <9,

*55171 — T2 >V,
xp — 22 < =3,
—5371 — 3$2 Z —5,

v
o

Z1,%2,Y1,Y2,Y3

e Since this problem has no solution, go to Step 3.
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Step 3. i =4

« Since i dose not satisfy i < n, Stop.

Therefore, the optimal solution is (z7,x5,v7,v5,v5) = (0,3,1.5,0,0) with
F = 1 is the upper level optimal value and f = —0.8 is the lower level

optimal value.

The same algorithmic procedure can be used to solve linear fractional bi-
level optimization problems with unique optimal response from the follower
for each of the choices of variables of the leader. The examples below are
taken from literature whose exact solutions were calculated; and we obtain
the same result (shown in Table 2) for each one of them as in the references

indicated.

Note that the purpose of the examples here below is not to compare the
efficiency of the algorithm rather to show that the same exact solution can
be obtained using the proposed algorithm as well, while it solve problems with
multiple optimal response from the lower level. It is known that the methods
given in each of the references for these problems fail to solve if the optimal

response from the lower level is nonunique.

Example 5. Consider a bi-level problem from [5]

—xr—3y—3
max ——————,
T T+y+5
x—2y—"7
max ———,
Yy r+y+2

s.t. z + 2y < 20,

r+y <12,

2z +y < 20,

3z —4y <19,
x—4y <5,

z,y >0,

Example 6. Consider a bi-level problem from [10]
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—y+2
max ———,
—5x —4y — 5
max —————————
Y 5z + 5y + 10
s.t. 3z — 2y > =5,
2z 4+ 9y < 69,
3z — 2y < 26,
r — 6y < -2,
T4y >0,

z,y > 0.

Example 7. Consider a bi-level problem from [6]

—2r —3y1 —y2 — 2
max ,
x T4+ 6ys +5
=3 — 2y1 — Y2
max ————— 7
v Tty +2y2+1

s.t. 4y <1,

y1+y2 <1,

T, Y1,Y2 2 Oa

Yy = (yhyz)-

Example 8. Consider a bi-level problem from [5]

-1+ 22 —2ys — 1
max ,
x  —wx1—2y1 + Y2 + 5ys + 8
-1 — T2 — 21 +y2—ys— 1

max )
y 2z1 +y1 +y2 —3yz +6
s.t. —y1+y2+ys <1,

221 —y1 +2y2 — 0.5y3 < 1,
21‘2 —|— 2y1 — yg — O5y3 S 1,

T1,72,Y1,Y2,Y3 > 07

r=(r1,22),y = (y1,yz,y3)-
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Table 2: Summery of solutions for the problems in the examples.

Examples | optimal solution using the proposed algorithm
5 (1,0)
6 (3,2)
7 (0.2,0,0.8)
8 (0.75,0.75,0,0, 1)

5 Conclusion

In this paper, we presented a vertex search method to find an exact global
optimal solution to the continuous bi-level linear fractional programming
problem. Our algorithm is a combination of the kth best method and a
branch-and-bound procedure. The existing kth best method is known to find
a global optimal solution for bi-level linear fractional problems with single
valued reaction set for all upper level decisions. To overcome the limita-
tions of the kth best method when there are nonsingleton optimal reaction
sets for some upper level decisions, a new algorithm that combines the kth
best method together with a branch-and-bound mechanism is proposed. In
this algorithm, iterative solution procedure is applied, where the branch-and-
bound method is used to branch the problem into two problems of the same
type in each branching step. We implemented the algorithm using the MAT-
LAB software and it can solve the optimistic version of any bi-level linear
fractional problem. The algorithm can also be applied for solving bi-level
problems when the objective functions are generally quasi-convex and the

constraints are polyhedral.

The algorithm performs well in solving linear fractional bi-level program-
ming problems of any kind. However, if the optimal response map of the
lower-level is single valued for all feasible upper level variables, then some
steps of the algorithm will still run to check if there are possible feasible
solutions outside of the vertices of the constraint region. This might cre-
ate unnecessary delay in the solution process. In the future one may try to
develop a mechanism to avoid the process of execution of the unnecessary

iterations within the framework of the proposed algorithm.
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