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An adaptive scheme for the efficient
evaluation of integrals in two-dimensional

boundary element method

R. Si Hadj Mohand*, , Y. Belkacemi and S. Rechak

Abstract

An efficient analysis with the boundary element method requires an ac-
curate evaluation of all the boundary integrals. Typically, nonsingular
integrals are solved numerically using Gauss quadrature. Therefore, the
development of criteria and schemes that determine the appropriate Gauss
order while maintaining a balance between accuracy and performance is of
great importance.

In the present work, an adaptive integration criterion tailored for two-
dimensional elasticity problems is introduced and verified. This criterion
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is formulated as an empirical formula, incorporating a parameter ranging
from zero to unity. This parameter enables control over computational
effort, making the criterion very efficient across a wide range of applications,
from thick structures to extremely thin ones where near-singularities are
pronounced.

The proposed integration criterion is tested on a very thin structure,
where it showed a high degree of accuracy and effectiveness in solving
problems with a very pronounced boundary layer effect. Additionally, the
criterion demonstrated its advantage by reducing and moderating compu-
tational overhead in the case of pre-treatment of near-singularities by a
semi-analytical technique or a variable transformation technique.

AMS subject classifications (2020): 74S15, 65R20, 65D30.

Keywords: Boundary integrals, Near-singularity, Gauss quadrature, Inte-
gration criterion, Thin structures.

1 Introduction

The accurate evaluation of boundary element integrals is of crucial impor-
tance in any boundary element method (BEM) analysis. The boundary in-
tegrals appearing in the BEM method involve kernel functions with terms of
the form 1

rp or log
(
1
r

)
with r the shortest distance between the source point

and the boundary element. This nature causes a singular behavior when
source points approach the boundary (r tends to zero). Thus, depending on
the ratio λ = r

L (with L the element length) integrals are classified into three
major categories (Regular, Singular and Near-Singular), as schematized in
Figure 1.
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Figure 1: Boundary integral types

When the source point is sufficiently distant from the boundary element,
the integral becomes regular. In this case, its numerical evaluation using
Gauss quadrature with a relatively small order is sufficient. By contrast,
when the source point coincides with the boundary element (λ = 0), the
integral becomes singular. Several techniques have been proposed in the
BEM literature to evaluate singular integrals, including analytical integra-
tion [32, 43, 44, 31, 47, 33], indirect methods [15, 17, 6, 7, 35], semi-analytical
methods [16, 14, 37, 2], coordinate transformation [40, 20], and the use
of singularity-reduced kernels [26]. Other methods directly formulate fun-
damental solutions, as in the novel scaled coordinate transformation BEM
(SCTBEM [42, 19]), which converts the domain integral into a boundary
integral, leading to the elimination of the low-order singularity.

The third type (near-singular integrals) arises when the source point is
very close but not coinciding with the boundary element (λ ≈ 0). While they
are regular in nature and do not exhibit mathematical singularities, their
evaluation is challenging due to steep variations of the integrand around the
projection of the source point. This phenomenon is commonly known as the
boundary layer effect, which arises in several applications of the BEM, such
as thin-walled structures and thin coatings [3, 47, 37, 12, 46], crack-related
problems [37, 5, 26, 30, 2, 33, 34], contact problems [8, 18], and near-boundary
field calculations [6, 32, 13]. To deal with the boundary layer effect and near-
singular integrations causing it, several techniques have been developed:
Element subdivision: A numerical technique proposed by Lachat andWat-
son [25], based on subdividing the original element into smaller subelements,
thereby concentrating Gauss points around the projection of the source point.
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Semi-analytical techniques: Methods such as singularity subtraction, pro-
posed by Cruse and Aithal [9] and Mi and Aliabadi [28], are employed.
Variable transformation: This approach involves applying a nonlinear
variable transformation that weakens the near-singular behavior and smooths
the sharp peak of the integrand. Several transformations have been proposed,
including the polynomial transformation of Telles [40], the optimal transfor-
mations of Sladek and Sladek [38], the distance transformation of Ma and
Kamiya [27], and the sinh transformation of Johnston and Elliott [21], which
was further extended by Gu et al. [12, 13] and Zhang, Gong, and Gao [45].

The use of Gauss quadrature is essential for most of the techniques cited
above, either for evaluating the entire integral in numerical techniques or for
evaluating the regular part and the transformed integral in semi-analytical
techniques and variable transformations, respectively. Thus, determining the
number of Gauss points for a given integral is of great importance. The
set of rules and guidelines that determines the smallest order of quadrature
guaranteeing a specified precision is called an integration criterion. The need
to derive effective and precise criteria has led to several publications on this
subject, where different integration criteria and upper-bound error formulas
have been proposed.

The first work prior to any publications on this subject was the contribu-
tion of Stroud and Secrest [39], who proposed a formula for calculating the
upper-bound error of Gaussian numerical integration. Based on this formula,
Lachat and Watson [25] proposed the first integration criterion for functions
of the form 1

r2 , applicable to three-dimensional (3D) structures, which was
further simplified by Mustoe [29] and Gao and Davies [11], who provided
simpler approximate formulas for the upper-bound error estimate. Jun and
Beer, [22] again used the upper-bound error formula of Stroud and Secrest
[39] and proposed a new criterion for functions of the form ( 1

rp , p = 1, 2, 3),
applicable in both (two-dimensional) 2D and 3D structures, presented in tab-
ular format.

After performing an extensive numerical study on the error distribution
around a flat rectangular 3D element, Bu and Davies [4] developed a new
integration criterion for 3D problems. This criterion is presented both in
tables and as empirical formulas and was further improved by Gao and Davies
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[11], who proposed a unified approximation formula based on Bu and Davies’
[4] numerical experiments.

Eberwien, Duencer, and Moser [10] followed a similar numerical strategy
as Bu and Davies [4] and applied it in the 2D case by considering two reference
elements, one flat and the other slightly curved. Unlike the research works
cited above, the influence of the shape functions and the Jacobian was taken
into consideration. Thus, the considered integrands are of the from

f(ξ) = (r(ξ))p ×Ψm(ξ)× J(ξ), p = 1, 2.

The numerical study performed in [10] showed that the errors predicted by
the previous publications [25, 39, 22, 4, 29, 11] were underestimated. This is
due to the nonconsideration of the shape functions and the Jacobian. The
criterion proposed by Eberwien, Duencer, and Moser was tested on a bench-
mark problem and showed a clear improvement in the results compared to
its predecessors.

In 2020, Junhao, Zhipeng, and Yongqiang [23] accomplished an extensive
numerical study on integrands of the form ( 1

rp , p = 1, 2, 3), and proposed a
new upper-bound error estimate formula, which showed a certain gain in effi-
ciency and precision compared to previous formulas. The gain in performance
is especially visible at very small λ ratios.

In 2023, Zhou, Yang, and Chen [48] introduced a new adaptive scheme
leveraging deep machine learning and AI technologies. Their approach cate-
gorizes the ratio λ into three distinct intervals, incorporates the sinh variable
transformation for small values of λ, and predicts the required number of
Gauss points using a trained neural network or its recorded data. This tech-
nique achieves a good level of precision, with significantly fewer Gauss points
and reduced CPU time.

In the current study, a new integration criterion is introduced. It is for-
mulated through empirical formulas, which determine the required number
of Gauss points to attain one of three precision levels (ϵ = 10−2, 10−3, 10−4),
depending on the λ ratio and the nature of the kernel. Specifically designed
for 2D linear elasticity problems, this criterion was derived following an ex-
tensive numerical testing. Two bounding empirical formulas were established:
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The lower-bound formulas is deduced by considering integrands of the form

f(ξ) =
1

r(ξ)p
, p = 1, 2,

while the upper-bound one by considering the complete form of the integrands
as encountered in 2D-elasticity BEM

f(ξ) = F (P (ξ), P0)×Ψm(ξ)× J(ξ),

where F (P (ξ), P0) represents one of the kernel functions of 2D-elasticity
BEM, P (ξ) and P0 denote the field and source points, respectively, and
Ψm(ξ) and J(ξ) denote the shape function and the Jacobian. Finally, a
third formula is defined by the combination of the two bounding ones, using
a real parameter α ∈ [0, 1], which allows control over the computational effort
and facilitates its adjustment depending on application requirements.

Tested on an extremely thin structure, the new criterion demonstrated
better and more stable precision compared to existing methods, even in re-
gions of extreme thinness where the achieved relative error is lower than
the target upper bound. The results highlight an underestimation of errors
by existing criteria and error-bound formulas, due to the nonconsideration
of the complete form of the kernels. Another advantage observed is a per-
formance enhancement for moderate values of the λ ratio compared to the
formulas outlined in [23]. These moderate values of λ commonly arise when
employing the element subdivision technique, which is preferred in BEM ap-
plications over the use of high-order quadratures, since very high quadrature
orders lead to floating-point round-off errors. Additionally, Gauss–Legendre
abscissas and weights are not computed dynamically at runtime; instead,
a limited set of predefined abscissas and corresponding weights is typically
available and prescribed in the program.

Finally, the proposed criterion incorporates a parameter that can effec-
tively reduce computational effort, especially in cases where integrands are
treated using coordinate transformation or other semi-analytical techniques
that mitigate or eliminate the near-singular behavior.
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2 A brief review of the BEM for elasticity problems

Solving elasticity problems using the BEM is achieved by interpreting the
partial differential equations that govern the problem in the form of integral
equations.

Figure 2: BEM Modeling of an elastic domain - (a) Source point inside the domain (b)
source point on the boundary

Let us consider a linear elastic domain Ω with boundary Γ = ∂Ω (Figure
2). There are generally six integral equations that arise in any boundary
element analysis. By neglecting the body forces, these equations are defined
as [1, 6, 14]:

ui(Q0) =

∫
Γ

Uij(Q0, P )tj(P )dΓ−
∫
Γ

Tij(Q0, P )uj(P )dΓ, (1)

σij(Q0) =

∫
Γ

Dijk(Q0, P )tk(P )dΓ−
∫
Γ

Sijk(Q0, P )uk(P )dΓ, (2)

ui,k(Q0) =

∫
Γ

Wijk(Q0, P )tj(P )dΓ−
∫
Γ

Vijk(Q0, P )uj(P )dΓ, (3)

Cij(P0)uj(P0) =

∫
Γ

Uij(P0, P )tj(P )dΓ−
∫
Γ

Tij(P0, P )uj(P )dΓ, (4)

1

2
σij(P0) =

∫
Γ

Dijk(P0, P )tk(P )dΓ−
∫
Γ

Sijk(P0, P )uk(P )dΓ, (5)

Cikjluj,l(P0) =

∫
Γ

Wijk(P0, P )tj(P )dΓ−
∫
Γ

Vijk(P0, P )uj(P )dΓ, (6)
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where

• Q0 and P0: the source points inside the domain and at the boundary,
respectively (Q0 ∈ Ω, P0 ∈ Γ);

• P : a field point located at the boundary (P ∈ Γ);

• uj(P ), tj(P ), σij(P ) and ui,k(P ): represent, respectively, the displace-
ment, traction, stress tensor, and displacement derivative components
at a point P ;

• Uij(P0, P ), Tij(P0, P ), Dijk(P0, P ), Sijk(P0, P ),Wijk(P0, P ), Vijk(P0, P ):
the fundamental solutions or the kernels;

• Cij and Cikjl: Free terms that depend on the nature of the boundary.
For a smooth boundary they are given by

Cij =

1/2 i = j,

0 i ̸= j,
and Cijkl =

1/2 ik = jl,

0 ik ̸= jl.

Equations (1), (2), (3) give the displacement, the stress and the displace-
ment derivative at an internal source point Q0 ∈ Ω, respectively. They are
expressed in terms of the boundary variables uj(P ) and tj(P ) at a field point
P ∈ Γ.

Equations (4), (5) and (6) are called boundary integral equations (BIEs).
For a source point located at the boundary P0 ∈ Γ, they give the same
quantities as (1), (2), (3), respectively. To solve (1)–(6), the boundary Γ is
discretized into a finite number N of iso-parametric elements. Each element
Γn is composed of M nodes. Equations (1)–(6) can then be written in their
discrete forms as

ui(Q0) =

N∑
n=1

M∑
m=1

∫ 1

−1

[Uij(Q0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ tnmj

−
N∑

n=1

M∑
m=1

∫ 1

−1

[Tij(Q0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ unmj ,

(7)
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σij(Q0) =

N∑
n=1

M∑
m=1

∫ 1

−1

[Dijk(Q0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ tnmk

−
N∑

n=1

M∑
m=1

∫ 1

−1

[Sijk(Q0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ unmk ,

(8)

ui,k(Q0) =

N∑
n=1

M∑
m=1

∫ 1

−1

[Wijk(Q0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ tnmj

−
N∑

n=1

M∑
m=1

∫ 1

−1

[Vijk(Q0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ unmj ,

(9)

Cij(P0)uj(P0) +

N∑
n=1

M∑
m=1

∫ 1

−1

[Tij(P0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ unmj

=

N∑
n=1

M∑
m=1

∫ 1

−1

[Uij(P0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ tnmj ,

(10)

1

2
σij(P0) =

N∑
n=1

M∑
m=1

∫ 1

−1

[Dijk(P0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ tnmk

−
N∑

n=1

M∑
m=1

∫ 1

−1

[Sijk(P0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ unmk ,

(11)

Cikjluj,l(P0) =

N∑
n=1

M∑
m=1

∫ 1

−1

[Wijk(P0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ tnmj

−
N∑

n=1

M∑
m=1

∫ 1

−1

[Vijk(P0, P (ξ) )ψm(ξ) |Jn(ξ)|] dξ unmj .

(12)

From (7)–(12), we deduce that the boundary integrals involved in a BEM
analysis have the general form:

I =

∫ 1

−1

[F (P0, P (ξ))ψm (ξ) |Jn (ξ)|] dξ, (13)

where

• F (P0, P (ξ)): One of the fundamental solutions (kernels)
{Uij , Tij , Dijk, Sijk,Wijk, Vijk};

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Si Hadj Mohand, Belkacemi and Rechak 10

• ψm(ξ): The linear shape function corresponding to the node of index
m;

• |Jn(ξ)|: The Jacobian of the coordinate transformation from dΓ to dξ,
corresponding to the element of index n.

3 The proposed integration criterion

Most of the existing integration criteria are developed under the assumption
of simplified forms of integrands, such as

{
f(ξ) = 1

r(ξ)p p = 1, 2, 3
}

and{
f(ξ) = log

(
1

r(ξ)

)}
. Some criteria also incorporate shape functions and the

Jacobian with{
f(ξ) = 1

r(ξ)p .ψm(ξ).Jn(ξ) p = 1, 2
}
, as done by Eberwien, Duencer, and

Moser [10]. These simplified assumptions yield satisfactory results in struc-
tures that are not extremely thin, especially in scalar problems like electro-
statics, where kernel functions are typically simple. However, elasticity prob-
lems are vectorial in nature, involving heavy kernel functions that include
directional and normal derivatives of the distance r. These complexities can
exacerbate singularities and amplify the boundary layer effect in extremely
thin structures. As a result, we are motivated to investigate the actual distri-
bution of integration errors by considering the complete form of integrands
encountered in planar elastic boundary element analysis and comparing them
with simplified integrands. Subsequently, we propose a numerical scheme
with a new criterion aimed at meeting high precision requirements, even
in extremely thin structures, while optimizing computational resources and
CPU time.

3.1 The numerical testing

Due to the absence of mathematical tools and techniques to define ana-
lytically error bounds for integrands in their complete form as specified in
(13), numerical experimentation remains the primary recourse. The numer-
ical testing methodology followed by Eberwien, Duencer, and Moser [10] is
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adopted. It involves the utilization of a rectangular region encompassing
a reference quadratic iso-parametric element. Within this region, a highly
dense grid of points is established, creating the illusion of a continuous area.
Two iso-parametric elements are considered, one flat and the other slightly
curved (Figure 3). The relative error under consideration is determined as
the maximum value obtained from these two reference elements.

Figure 3: The two reference boundary elements

The numerical experimentation strategy involves evaluating the boundary
integrals at each point of the dense grid twice. Initially, the first integral, IN ,
is computed using a prescribed Gauss order N . Subsequently, a reference
integral, I100, is calculated with a fixed 100 Gauss points. Next, for each
point P , the relative error is determined as ϵ(P ) ≈

∣∣∣ IN (P )−I100(P )
I100(P )

∣∣∣. Once
the distribution of the relative errors is established, an iso-error curve, or
an error contour curve (as named in [4]), is plotted for a target maximum
relative error, ϵ0. From this curve, the minimum allowable ratio λ0 = r0

L is
derived, ensuring a relative error ϵ < ϵ0 for λ = r

L > λ0.
By repeating the steps described above for various Gauss orders, a curve

N = f(λ) is constructed. By utilizing curve fitting techniques, an empirical
formula is derived to express the number of Gauss points N as a function
of the λ ratio. This process is conducted for various orders of singularity,
including

{
log( 1r ),

1
r ,

1
r2

}
, and for three target maximal relative errors

ϵ0 = 10−2, 10−3, 10−4.
Numerical tests are conducted on two cases. The first case represents

the lower limit, where errors are underestimated by assuming simplified in-
tegrands that only include terms responsible for the singularity. In contrast,
the second case provides a realistic estimation of the error by considering the
complete expressions of the kernels, shape functions, and the Jacobian, as
outlined in (13).
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3.1.1 Case one: Simplified integrands

The following integrals are considered:

I1 =

∫ 1

−1

log
(

1

r(ξ)

)
dξ ⇒ O

(
log
(
1

r

))
,

I2 =

∫ 1

−1

1

r(ξ)
dξ ⇒ O

(
1

r

)
,

I3 =

∫ 1

−1

1

r(ξ)2
dξ ⇒ O

(
1

r2

)
.

For each integral, the procedure detailed in section 3.1 is executed.

The resulting iso-error curves exhibit a closed form characterized by mul-
tiple lobes, akin to those observed in the work [10]. These distinctive curves,
commonly referred to as butterfly curves, are depicted in Figures 4 and 5.
The dataset in Table 1 defines, for the lower limit case, the minimum al-
lowable ratios λ0 for quadrature orders ranging from 2 to 35. These re-
sults are computed for singularity orders of

{
log( 1r ),

1
r ,

1
r2

}
, and precisions

ϵ0 = 10−2, 10−3, 10−4.

Table 1 shows that the minimum allowable ratio λ0 decreases with in-
creasing Gauss order N , as fewer Gauss points lead to higher errors, requir-
ing greater distances from the boundary to stay below the error threshold.
This effect intensifies with stronger singularities, especially for O

(
1
r2

)
, and

as the error threshold ϵ0 becomes stricter, with the highest λ0 observed at
ϵ0 = 10−4.

3.1.2 Case two: Full form integrands

In this case the full form of integrals given in (13) is considered:

I =

∫ 1

−1

F (P0, P (ξ)) · ψm(ξ) · J(ξ)dξ,

where F (P0, P (ξ)) is one of the fundamental solutions (kernels)
{Uij , Tij , Dijk, Sijk,Wijk, Vijk}
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Figure 4: Relative error distribution around the curved reference element, for integral
I2 with 4 Gauss points

Figure 5: Iso-error curve and envelope, corresponding to integral I2 with 4 Gauss points
and a relative error 10−3



F (P0, P (ξ)) = Uij ⇒ O

(
log
(
1

r

))
,

F (P0, P (ξ)) = Tij , Dijk,Wijk ⇒ O

(
1

r

)
,

F (P0, P (ξ)) = Sijk, Vijk ⇒ O

(
1

r2

)
.

The relative error is computed for each function by varying the indices
i = 1, 2; j = 1, 2; k = 1, 2;m = 1, 2, 3 to encompass all possible combinations,
from which the maximum error is identified. Subsequently, the maximum

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??
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Table 1: The numerical results obtained for the lower limit case

Precision ϵ0 = 10−2 ϵ0 = 10−3 ϵ0 = 10−4

N O
(
log
(
1
r

))
O
(
1
r

)
O
(

1
r2

)
O
(
log
(
1
r

))
O
(
1
r

)
O
(

1
r2

)
O
(
log
(
1
r

))
O
(
1
r

)
O
(

1
r2

)
2 1.125718 0.732523 1.053462 1.722896 1.69977 2.476304 3.119036 4.06014 6.231677
3 0.378903 0.39962 0.554979 1.047436 0.749395 1.00197 1.396343 1.318512 1.759226
4 0.223531 0.274538 0.378153 0.472037 0.483714 0.628713 1.010303 0.76963 0.981932
5 0.154594 0.21098 0.290135 0.310726 0.357336 0.460149 0.535374 0.540789 0.676164
6 0.11511 0.169262 0.235735 0.234901 0.28358 0.364319 0.381201 0.419096 0.517973
7 0.093778 0.142997 0.19878 0.188934 0.235656 0.301954 0.300095 0.342807 0.422116
8 0.076123 0.122481 0.171704 0.156941 0.201674 0.258723 0.248345 0.290531 0.356786
9 0.065062 0.107721 0.151201 0.133973 0.175814 0.225891 0.211074 0.251334 0.307793
10 0.055238 0.09541 0.134793 0.115931 0.156121 0.200444 0.183201 0.221721 0.272248
11 0.048691 0.086535 0.121919 0.103183 0.140165 0.180581 0.161941 0.198604 0.24436
12 0.042454 0.077927 0.111508 0.091398 0.126997 0.164631 0.145019 0.179886 0.220847
13 0.038029 0.071969 0.102493 0.083067 0.116594 0.15077 0.131184 0.164631 0.201681
14 0.033912 0.065875 0.094861 0.074748 0.107349 0.138989 0.119406 0.15146 0.186122
15 0.03105 0.061564 0.088616 0.068554 0.099716 0.129108 0.11012 0.140369 0.172947
16 0.027884 0.057352 0.082592 0.063127 0.092762 0.12079 0.101328 0.130294 0.161163
17 0.025693 0.054003 0.077653 0.058508 0.086813 0.11317 0.09407 0.122375 0.150767
18 0.023196 0.050654 0.07316 0.05407 0.081657 0.10693 0.087638 0.114613 0.141575
19 0.021674 0.047976 0.069224 0.050654 0.077048 0.100757 0.082193 0.107954 0.133874
20 0.019848 0.045297 0.065766 0.047306 0.073029 0.095438 0.076952 0.101978 0.126629
21 0.018508 0.043105 0.062709 0.044644 0.069224 0.090771 0.07297 0.096695 0.120459
22 0.017054 0.040698 0.05969 0.042248 0.065891 0.08681 0.068605 0.092073 0.114522
23 0.015891 0.039147 0.056977 0.039922 0.062791 0.082871 0.065434 0.08811 0.109204
24 0.015116 0.037209 0.054651 0.037597 0.060078 0.079265 0.061669 0.08415 0.104181
25 0.013953 0.035659 0.052713 0.036047 0.057364 0.076128 0.059154 0.080194 0.099794
26 0.013178 0.034109 0.050388 0.034109 0.055201 0.072991 0.05637 0.076993 0.096029
27 0.012403 0.032946 0.048837 0.032558 0.053101 0.070205 0.053876 0.074054 0.092266
28 0.011598 0.031701 0.046796 0.030928 0.051179 0.067698 0.051619 0.071368 0.089129
29 0.011082 0.03067 0.045249 0.029639 0.049374 0.065206 0.049548 0.068712 0.085678
30 0.010567 0.029381 0.043702 0.028351 0.047569 0.062952 0.047484 0.066279 0.082934
31 0.010052 0.028608 0.042413 0.02732 0.046022 0.060976 0.045935 0.064 0.080128
32 0.009278 0.027577 0.041123 0.026031 0.044475 0.059171 0.044072 0.061952 0.077605
33 0.009021 0.026546 0.039834 0.025258 0.043186 0.057366 0.042526 0.060129 0.075173
34 0.008505 0.025773 0.038545 0.024227 0.041639 0.055562 0.040979 0.058065 0.072906
35 0.008247 0.025 0.037514 0.023196 0.040608 0.054015 0.039691 0.056516 0.070641

error value is selected among functions sharing the same singularity order, as
follows:

ϵmax

(
O

(
log
(
1

r

)))
= ϵmax (Uij) ,

ϵmax

(
O

(
1

r

))
= max (ϵmax (Tij) , ϵmax (Dijk) , ϵmax (Wijk)) ,

ϵmax

(
O

(
1

r2

))
= max (ϵmax (Sijk) , ϵmax (Vijk)) ,

In this case, the iso-error curves obtained do not exhibit closed contours
akin to those described in section 3.1.1. Rather, they feature sharp fila-
ments that become thinner as they extend further from the element (Figures
6–7). This characteristic is particularly noticeable when lower Gaussian or-
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15 An adaptive scheme for the efficient evaluation of integrals in ...

ders are employed. Generating envelopes for the iso-error curves is not as
straightforward as in the previous case. Therefore, the adopted solution is
to solely consider the points located within denser regions of the iso-error
curve. Specifically, a point is considered valid only if it has at least three
adjacent points that have an error greater than or equal to the target error.
This automated approach yields satisfactory results, as depicted in Figures
6 and 7. Another notable observation is that numerical testing with fewer
than 4 Gauss points results in significantly large errors and exceedingly high
λ0 ratios. Consequently, quadrature orders of 2 and 3 cannot be considered
in this case.

The dataset in Table 2 defines, for the upper limit case, the minimum
allowable ratios λ0 for quadrature orders ranging from 4 to 35. These results
are computed for singularity orders of

{
log( 1r ),

1
r ,

1
r2

}
, and precisions ϵ0 =

10−2, 10−3, 10−4.

The same patterns observed in Table 1 regarding the variation of λ0 with
respect to Gauss order N , singularity order, and the imposed error threshold
are also evident in Table 2. Notably, the λ0 values in Table 2 are significantly
higher than their counterparts in Table 1, which can be attributed to the
consideration of the full form of the integrals.

Figure 6: Relative error distribution around the reference curved element, for integral
with Tij kernel with 5 Gauss points
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Si Hadj Mohand, Belkacemi and Rechak 16

Table 2: The numerical results obtained for the upper limit case

Precision ϵ0 = 10−2 ϵ0 = 10−3 ϵ0 = 10−4

N O
(
log
(
1
r

))
O
(
1
r

)
O
(

1
r2

)
O
(
log
(
1
r

))
O
(
1
r

)
O
(

1
r2

)
O
(
log
(
1
r

))
O
(
1
r

)
O
(

1
r2

)
4 1.731452 3.466213 4.605432 2.26537 5.621703 9.956321 / / /
5 0.990553 1.789411 2.234695 1.549063 2.258132 2.916322 1.916653 4.349683 5.034239
6 0.641329 1.210843 1.446829 0.847523 1.485321 1.71883 1.291281 2.211769 2.869445
7 0.506101 0.869918 0.948868 0.644162 1.147801 1.28719 0.938622 1.470089 1.717305
8 0.40158 0.594745 0.703197 0.483972 0.798056 0.936451 0.659695 1.09948 1.179583
9 0.339498 0.509217 0.621206 0.418563 0.610964 0.764019 0.567532 0.786614 0.98676
10 0.287768 0.441216 0.576349 0.346524 0.529581 0.670176 0.463009 0.662586 0.795725
11 0.24508 0.392913 0.524175 0.307237 0.458307 0.577628 0.411636 0.551755 0.6866
12 0.217618 0.361741 0.44923 0.265209 0.419566 0.533782 0.363731 0.494877 0.613864
13 0.184143 0.329125 0.404135 0.232998 0.384247 0.462339 0.316576 0.437666 0.561505
14 0.172671 0.302964 0.371398 0.219531 0.360468 0.438523 0.288139 0.40124 0.527596
15 0.153868 0.296416 0.349031 0.201693 0.337231 0.401847 0.255058 0.36921 0.451162
16 0.14172 0.258965 0.319079 0.183379 0.308434 0.361102 0.228336 0.342827 0.40318
17 0.13214 0.22594 0.309555 0.168858 0.295729 0.343361 0.211628 0.31895 0.365151
18 0.127365 0.209414 0.276741 0.163691 0.261573 0.323737 0.198633 0.307648 0.346978
19 0.119226 0.197478 0.261351 0.15 0.244915 0.315091 0.187495 0.300695 0.334115
20 0.111972 0.188242 0.232066 0.142254 0.230969 0.30471 0.178216 0.272005 0.323738
21 0.108583 0.178362 0.211824 0.136444 0.216996 0.273097 0.168004 0.243959 0.315953
22 0.102817 0.169428 0.202378 0.130282 0.199078 0.262495 0.160862 0.237681 0.31163
23 0.098592 0.166204 0.198193 0.125306 0.189353 0.226737 0.155008 0.225242 0.271844
24 0.09507 0.165334 0.186731 0.119718 0.185464 0.216276 0.147583 0.222462 0.245897
25 0.091549 0.164062 0.175876 0.115096 0.170425 0.208829 0.142943 0.20568 0.233789
26 0.088028 0.163364 0.172232 0.111383 0.162875 0.191682 0.136445 0.185374 0.221683
27 0.085211 0.145735 0.165063 0.107042 0.158314 0.186731 0.130875 0.184582 0.213032
28 0.082394 0.136129 0.158037 0.103957 0.154121 0.181879 0.128091 0.172242 0.202653
29 0.079577 0.134008 0.155645 0.100245 0.14795 0.177025 0.123084 0.167684 0.194871
30 0.077465 0.132594 0.151986 0.097183 0.144613 0.167816 0.117881 0.163207 0.188816
31 0.075184 0.130938 0.144066 0.093747 0.14207 0.166256 0.115096 0.158548 0.180169
32 0.072535 0.129645 0.14263 0.091549 0.138743 0.16298 0.111384 0.154713 0.174119
33 0.070423 0.128353 0.134518 0.089106 0.136108 0.161409 0.107671 0.15079 0.16897
34 0.069014 0.127706 0.131838 0.086322 0.134169 0.151348 0.103958 0.146912 0.164346
35 0.066901 0.124931 0.128298 0.083803 0.13223 0.149121 0.101984 0.145145 0.159715

Figure 7: Iso-error curve and envelope, corresponding to integral with Tij kernel with 5

Gauss points and a target relative error 10−3
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17 An adaptive scheme for the efficient evaluation of integrals in ...

3.2 Determination of the empirical formulas for the two
limit cases

Tables 1 and 2 present the numerically obtained results for the lower and
upper limit cases, respectively. These data are then translated into two em-
pirical formulas aimed at determining the Gauss order N necessary to attain
a desired precision

(
10−2, 10−3 and 10−4

)
for a given λ ratio. The empirical

formulas are deduced using curve–fitting techniques, assuming an exponen-
tial decay profile that closely mirrors the relationship between N and the λ
ratio.

3.2.1 The lower limit curve

Based on the numerical results in Table 1, Figure 8 presents the variation
curves of the required Gauss order N versus the minimum allowable ratio λ0
for three singularity orders: (O

(
log
(
1
r

))
, O
(
1
r

)
and O

(
1
r2

)
), with a target

error of ϵ0 = 10−3.

A closer examination of the three graphs shown in Figure 8 reveals a clear
exponential decay pattern in the relationship between the Gauss order N and
the ratio λ0. Specifically, the curves decrease from infinity and approach a
horizontal asymptote at N = 2. This behavior is consistently observed for
the other error thresholds as well, namely ϵ0 = 10−2 and ϵ0 = 10−4.
Consequently, we propose the following formula:

Nl(λ) = 2 + Al × λBl , (14)

where Al and Bl are constants, with Al > 0, Bl < 0 and λ = r
L .

N.B. The subscript “l” stands for Lower limit curve.
lim
λ→0

Nl(λ) = +∞,

lim
λ→+∞

Nl(λ) = 2.
(15)

The coefficients Al and Bl are derived through exponential curve fitting. The
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Si Hadj Mohand, Belkacemi and Rechak 18

results are outlined in Table 3. Figure 9 displays the variation curves of the
required Gauss order N needed to achieve a target precision of ϵ0 = 10−3 for
a singularity of order O

(
1
r

)
, based on both the empirical formula in (14) and

the numerical results from Table 1.
A closer examination of the two graphs in Figure 9 reveals strong agreement
between the numerical data and its empirical representation by 14. This
consistency also holds for the other singularity orders

{
O
(
log
(
1
r

))
, O
(

1
r2

)}
and error thresholds

{
10−2, 10−4

}
.

Table 3: Al and Bl coefficients for the lower limit curve

ϵ0 = 10−2 ϵ0 = 10−3 ϵ0 = 10−4

Al Bl Al Bl Al Bl

O
(
log
(
1
r

))
0.9923 −0.7332 1.226 −0.8785 1.693 −0.9214

O
(
1
r

)
0.6712 −1.059 1.133 −1.054 1.695 −1.034

O
(

1
r2

)
0.8708 −1.11 1.419 −1.08 2.052 −1.049

Figure 8: Numerical results of variation of N as function of λ ratio for lower limit case
with a precision 10−3

3.2.2 The upper limit curve

Similar to Figure 8, Figure 10 illustrates the variation ofN with respect to the
minimum allowable ratio λ0, based on the numerical results of the full-form
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19 An adaptive scheme for the efficient evaluation of integrals in ...

Figure 9: Comparison between empirical formula of (14) and numerical results of the
lower limit case with singularity O

(
1
r

)
and precision 10−3

integrands, as recorded in Table 2, for a target error bound of ϵ0 = 10−3.
An analysis of the curves in Figure 10 reveals a similar exponential decay
pattern; however, in this case, the horizontal asymptote is located at N = 4

instead of N = 2.
Accordingly, we propose another empirical formula analogous to that previ-
ously introduced in (14).

Nu(λ) = 4 + Au × λBu , (16)

where Au and Bu are constants, with Au > 0, Bu < 0 and λ = r
L .

N.B. The subscript “u” stands for Upper limit curve.
lim
λ→0

Nu(λ) = +∞,

lim
λ→+∞

Nu(λ) = 4.
(17)

Similar to section 3.2.1, the coefficients Au and Bu are derived through ex-
ponential curve fitting techniques. The results are outlined in Table 4 To
validate the consistency of the empirical formula in (16) with the numerical
results in Table 2, Figure 11 illustrates the variation of the Gauss order N as
a function of λ, required to achieve a target accuracy of ϵ0 = 10−3 for a sin-
gularity of order O

(
1
r

)
. The figure compares the predictions of the empirical
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model with the corresponding numerical data.
A detailed comparison of the two curves in Figure 11 reveals excellent agree-
ment between the empirical and numerical results. This consistency also ex-
tends to rest cases involving different singularity orders

{
O
(
log
(
1
r

))
, O
(

1
r2

)}
and alternative error thresholds, including

{
10−2, 10−4

}
.

Figure 10: Experimental upper limit curves of variation of N as function of λ ratio in
case of precision 10−3

Figure 11: Comparison between empirical formula and experimental results for the case
of the upper limit curve O

(
1
r

)
and precision 10−3
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Table 4: Au and Bu coefficients for the upper limit curve

ϵ0 = 10−2 ϵ0 = 10−3 ϵ0 = 10−4

Au Bu Au Bu Au Bu

O
(
log
(
1
r

))
1.169 −1.21 1.596 −1.195 2.376 −1.12

O
(
1
r

)
2.002 −1.283 3.065 −1.116 3.953 −1.048

O
(

1
r2

)
3.323 −1.082 4.2 −1.038 5.16 −0.9721

3.3 Determination of the generalized empirical formula
of the proposed integration criterion

While the lower limit formula of (14) offers improved performance by reduc-
ing computational time, it tends to yield less accurate results. Conversely,
the upper limit formula of (16) achieves high accuracy but at the expense
of significantly slower performance. Therefore, an optimal approach requires
striking a balance between performance and accuracy. This is accomplished
by introducing a formula that describes a curve positioned between the two
defined extremes, leaning toward one limit or the other depending on the
structure type or the method employed for near-singular treatment. This
approach can be particularly useful in the case of variable transformation
techniques and semi-analytical algorithms that reduce or cancel the bound-
ary layer effect, where unnecessary computational overhead can be avoided
to take full advantage of these techniques.
For instance, in the case of a thin structure analyzed solely through the ele-
ment subdivision method with a straightforward application of the Gaussian
integration technique, a curve closer to the upper limit is preferable. How-
ever, when employing a nonlinear transformation technique to address the
same problem, the curve can be shifted toward the lower limit, thereby con-
serving computational resources. A parameter α ∈ [0, 1] is introduced to
control the curve position, such that α = 0 corresponds to the lower curve
and α = 1 to the upper curve. Any value of α between 0 and 1 produces an
intermediate curve.

Equations (14) and (16), are written in the new following form:
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Si Hadj Mohand, Belkacemi and Rechak 22Nl(λ) = N0l +Al × λBl ,

Nu(λ) = N0u +Au × λBu ,
(18)

where N0l = 2, N0u = 4, (Al, Bl) are given in Table 3 and (Au, Bu) is given
in Table 4.

To maintain the same exponential profile observed in the lower and upper
limit curves, we propose a formula similar to (14) and (16).

N(λ, α) = N0(α) +A(α)× λB(α), (19)

where N0(α), A(α) and B(α) are given as functions of the parameter α de-
duced by linear combinations of (N0l , N0u), (Al, Au) and (Bl, Bu), respec-
tively.
Let {∆N0 = N0u −N0l = 2}, {∆A = Au −Al} and {∆B = Bu −Bl}.
The linear combinations will have the following form:

N0(α) = N0l + α×∆N0 = 2.(α+ 1),

A(α) = Al + α×∆A,

B(α) = Bl + α×∆B.

(20)

Thus, (19) becomes

N(λ, α) = 2.(α+ 1) + A(α)× λB(α) (21)

with the functions A(α) and B(α) given in Table 5.

Table 5: A(α) and B(α) functions for our final empirical formula

ϵ0 = 10−2 ϵ0 = 10−3 ϵ0 = 10−4

A(α) B(α) A(α) B(α) A(α) B(α)
O
(
log
(
1
r

))
0.9923 + 0.1767α −0.7332− 0.4768α 1.226 + 0.37α −0.8785− 0.3165α 1.693 + 0.683α −0.9214− 0.1986α

O
(
1
r

)
0.6712 + 1.3308α −1.059− 0.224α 1.133 + 1.932α −1.054− 0.062α 1.695 + 2.258α −1.034− 0.014α

O
(

1
r2

)
0.8708 + 2.4522α −1.11 + 0.028α 1.419 + 2.781α −1.08 + 0.042α 2.052 + 3.108α −1.049 + 0.0769α

We propose a new integration criterion for the 2D elasticity BEM, defined
by the empirical formula in (21). The corresponding linear functions A(α)
and B(α) are listed in Table 5. The parameter α is application-dependent
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and may vary according to factors such as the thinness of the structure or
the use of near-singular treatment techniques. Figure 12 presents a series
of curves generated with the proposed empirical formula for a singularity of
order O

(
1
r

)
, with a target accuracy of 10−3. These curves lie consistently

between the two limiting curves and display a uniform exponential behavior.
The proposed empirical formula of (21), like existing ones, follows an expo-
nential form that naturally leads to very high Gauss quadrature orders for
small λ ratios. This behavior is consistent with the formulations in (15) and
(17). However, excessively high quadrature orders may introduce floating-
point round-off errors. Moreover, computing or retrieving the corresponding
Gauss–Legendre nodes and weights at runtime can create significant perfor-
mance bottlenecks.
To overcome this issue, most BEM software relies on precomputed tables of
Gauss–Legendre nodes and weights. Consequently, when (21) prescribes a
Gauss order exceeding the available predefined values, the element must be
subdivided. To address this, we provide an additional formula to determine
the required number of subelements:

M =
1

λ
×
(
Navl − 2(1 + α)

A(α)

) 1
B(α)

+ 1, (22)

whereM is the number of subelements and Navl is the maximum Gauss order
available in the program.

3.4 Guidelines on the choice of the α parameter

An optimal selection of the parameter α would require a comprehensive opti-
mization study that considers multiple factors, including the geometry of the
structure, the value of the ratio λ, and the type of variable transformation
technique if any is employed. Such an in-depth investigation is not addressed
in the current manuscript.
Nevertheless, preliminary guidance for choosing α can be provided based on
practical experience and supported by the results from the validation example
presented in Section 4. Table 6 summarizes these guidelines with respect to
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Figure 12: Limit and intermediate curves of the new criterion, singularity order O
(
1
r

)
)

and precision 10−3

structural thinness and the presence or absence of near-singularity treatment
techniques.

Table 6: Guidelines on the choice of the α parameter

Nonthin
structures

Moderately thin
structures

Extremely thin
structures

Without
semi-analytical

treatment
α = 0 to 0.3 α = 0.3 to 0.7 α = 0.7 to 1

With
semi-analytical

treatment
N.A α = 0 to 0.3 α = 0.3 to 0.6

3.5 Numerical implementation

One of the main advantages of the empirical formula approach is its sim-
plicity and ease of numerical implementation. The proposed expressions can
be directly coded as a function that receives the relevant input arguments
and returns the required Gauss order. This function is then invoked within
the subroutine that performs the numerical integration. If needed, the sub-
routine can subdivide the boundary element into smaller subelements and
re-evaluate the corresponding Gauss order for each by calling the same func-
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tion.
The implementation details of the algorithm used to perform the BEM nu-
merical integrations, corresponding to the general form of (13), are summa-
rized as follows: Step 0: To evaluate the integral I over the boundary
element E with

I =

∫ 1

−1

f(ξ)dξ

such that
f(ξ) = F (P ∗, P (ξ))ψ(ξ)J(ξ).

Gather all the necessary input data: {Source point P ∗, boundary element
E (of length L), the singularity order of the integration kernel F (P ∗, P (ξ)),
the selected value of α, the required precision (10−2, 10−3 or 10−4) }.
Step 1: Evaluate r: the shortest distance between the source point P ∗ and
the boundary element E.
Step 2: Calculate the λ ratio with λ = r

L .

Step 3: Calculate N : the number of Gauss points necessary to obtain the
target precision by using (21), which returns a real number that is rounded
to the nearest integer.
Step 4: Verify if the obtained Gauss order N is less than or equal Navl, the
maximum available order in the program (N ≤ Navl).
Step 5: IF TRUE, evaluate the integral using N Gauss points, with

I =

∫ 1

−1

f(ξ)dξ ≈
N∑
i=1

f(ξi)wi. (23)

Return I and terminate the algorithm.
Step 6: ELSE, the element E has to be subdivided into M subelements,
with M determined through (22).
Step 7: For each subelement Ek, {k = 1, 2, . . . ,M} calculate the necessary
number of Gauss points by repeating the steps from Step 0 to Step 3, then
calculate the integral Ik by using the following formula [1]:

Ik =

∫ 1

−1

f(η)dη ≈
N∑
i=1

f(η̄i)wi (24)

with η̄i = 1
M (M − 2k + 1 + ηi).

Step 8: Calculate the global integral over the boundary element E with

I ≈ 1

M

M∑
k=1

Ik. (25)

Return I and terminate the algorithm.
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3.6 Comparison between the proposed criterion and the
existing ones

In order to compare the existing criteria with the proposed one, the corre-
sponding functions N(λ) are plotted on a log-log graph (Figure 13). A closer
examination of the curves in Figure 13 reveals the following observations:

The formula of Lachat andWatson suggests relatively low Gauss orders for
large values of the λ ratio. However, the required order increases drastically
for small λ values, tending to infinity as λ approaches 1

4 . This behavior is
confirmed by the approximation formula proposed by Gao and Davies [11],
which appears in (26)–(27)

N(λ, ϵ0) =
p′ log

(
ϵ0
2

)
2 log

(
1
4λ

) , (26)

lim
λ→ 1

4

N(λ, ϵ0) = lim
λ→ 1

4

p′ log
(
ϵ0
2

)
2 log

(
1
4λ

) = +∞. (27)

This divergence of the Gauss order at λ ≈ 1
4 makes the Lachat andWatson

criterion very resource-consuming, introducing unnecessary computational
overhead, especially in the case of thin structures. A closer look at the other
curves shows that the Gao and Davies formula suggests the lowest N , making
it less resource-consuming but at the expense of reduced accuracy, which will
be demonstrated further in the validation example of Section 4. The newly
proposed criterion, with its different values of the parameter α, appears in the
log-log graph as a band of nearly parallel lines, particularly for λ < 0.5. The
upper-limit curve (α = 1) intersects with the Junhao curve at λ = 0.002843

and λ = 1.5323. Within the interval λ ∈ [0.002843, 1.5323], the proposed
criterion with α = 1 suggests fewer Gauss points than the formula of [23].
For values of α < 1, this interval becomes wider. From these observations,
we note that the proposed formula produces fewer Gauss points at moderate
λ values, which are predominant when element subdivision is applied, as in
most BEM applications where only a limited number of Gaussian weights and
abscissas are available in the program. Furthermore, it is worth noting that
the numerical implementation of empirical criteria is simpler compared to
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tabular criteria. In the tabular case, the programmer must check the value of
the λ ratio and extract the corresponding Gauss order based on the interval
in which it falls. In contrast, with the empirical approach, one only needs to
pass the value of λ as an argument to the formula’s function, which directly
returns the appropriate Gauss order as an integer. Finally, Table 7 presents a
comparative summary that situates the proposed criterion within the broader
framework of existing methods while emphasizing their key distinctions.

Table 7: Recapitulative table for the comparison between the different criteria

Criterion Form Mathematical
error estima-
tion

Numerical
testing

Intended
for

Further im-
provements

Disadvantages

Lachat
and Wat-
son [25]

Empirical
formulas

YES:
Based on
Stroud and
Secrest [39] for
( 1
r2 )

NO 3D struc-
tures, but
usable in 2D

- Simplified
by Mustoe
[29]
- Simplified
by Gao and
Davies [11]

- Less accurate in thin structures;
- Diverges at λ = 1

4 , gives very
high Gauss orders for small λ.

Jun and
Beer [22]

Table for-
mat

YES:
Based on
Stroud and
Secrest [39] for
( 1r ,

1
r2 ,

1
r3 )

NO Both 3D and
2D

- Less accurate in thin structures;
- Table format only.

Bu and
Davies
[4]

Empirical
+ Table

NO YES:
Testing on
( 1r ,

1
r2 ,

1
r3 )

3D struc-
tures, usable
in 2D

Simplified
by Gao and
Davies [11]

Less accurate in thin structures.

Eberwien,
Duencer,
and
Moser
[10]

Table for-
mat

NO YES:
Testing on
f(ξ) =
1
rpΨ(ξ)J(ξ), p =
{1, 2}

2D struc-
tures

Table format only.

Junhao,
Zhipeng,
and
Yongqiang
[23]

Empirical
formulas

NO YES:
Testing on
(ln( 1r ),

1
r ,

1
r2 )

2D struc-
tures

Computational gain only for very
small λ (rare in element subdivi-
sion).

Zhou,
Yang,
and
Chen
[48]

Neural
network
(AI)

NO YES:
NN trained
to propose
Gauss order
(depends on
source point,
geometry,
kernel, …)

2D struc-
tures

Needs a trained neural network.

Proposed
criterion

Empirical
formulas

NO YES:
Testing on
full kernel
functions of
2D elasticity
BEM

Tailored for
2D elasticity
(extendable
to other 2D
apps)

Requires choice of control param-
eter α.
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Figure 13: Variation of N versus λ for the new criterion and existing ones

4 Validation example

Let us consider a long and very thin fin, characterized by a length L = 10 cm
and a maximum height H = 5 mm at its left end. The fin is uniformly
subjected to a normal load P = −2 bar on its upper surface and is fully
constrained at its left end, as illustrated in Figure 14.

The fin is made of steel with E = 200 GPa and ν = 0.3, and follows a
plane stress state.
The classical problem of an infinite elastic wedge, solved by Timoshenko
[41, 24], serves as the benchmark solution. This problem is modeled in a
polar coordinate system (r, θ), where r = 0 is located at the apex of the
wedge. The angle θ ranges from 0 to β, with β = 0.05 rad being the wedge
angle. The upper surface of the wedge is loaded at θ = 0, as illustrated in
Figure 15.

Figure 14: Very thin fin subjected to a bending effort
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Figure 15: Model of an infinite elastic wedge subjected to a uniform pressure on its
upper surface

According to [41, 24], the stress components depend only on θ and are
given by

σrr(θ) =
q

k

(
−k + 1

2
tanβ − θ +

1

2
tanβ cos 2θ − 1

2
sin 2θ

)
,

σθθ(θ) =
q

k

(
−k + 1

2
tanβ − θ − 1

2
tanβ cos 2θ + 1

2
sin 2θ

)
,

σrθ(θ) =
q

2k
(1− tanβ sin 2θ − cos 2θ) ,

(28)

where k = tanβ − β. The displacement field is obtained by integrating the
strains, which are derived from the linear-elastic constitutive law (Hooke’s
law), while satisfying the compatibility equations. The resulting integration
constants are determined by imposing displacement boundary conditions at
r = L (L being the length of the fin), as follows:


ur(L, 0) = ur

(
L,
β

2

)
= 0,

uθ

(
L,
β

2

)
= 0.

(29)

The resulting displacement field is

ur(r, θ) =
q

Ek

[
(1− ν)

(
1

2
tanβ − (k + θ)

)
+ (1 + ν)

sin(β − 2θ)

2 cosβ

]
r

+ C1 cos θ + C2 sin θ,

uθ(r, θ) =
q

Ek

[
2 log r

L
+

1 + ν

2 cosβ (1− cos(β − 2θ))

]
r

+ C1

(
sin
(
β

2

)
r

L
− sin θ

)
+ C2

(
cos θ − cos

(
β

2

)
r

L

)
,

(30)

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Si Hadj Mohand, Belkacemi and Rechak 30

with the constants C1 and C2 given by
C1 =

qL

Ek
((1− ν)k − tanβ) ,

C2 =
qL

Ek

(
tanβ
tan β

2

+ (1− ν)k
1− 2 cos β

2

2 sin β
2

)
.

(31)

To perform the computational tasks, a BEM code was developed, using the
C++ programming language. The problem is then solved using this code,
employing both existing integration criteria and the newly proposed criterion.

The analytically obtained results for the infinite wedge should align with
the numerical results except at locations near the fixed base, where the re-
sulting errors are not accounted for in the evaluation of the different criteria.
More specifically, the obtained results confirmed that the analytical solution
aligns well with the numerical results at x > 3cm.

The relative errors are evaluated by

ϵ =

∣∣∣∣Resanalytical −ResBEM

Resanalytical

∣∣∣∣ . (32)

The effectiveness of the proposed criterion is assessed across various values
of α aiming for a target precision of 10−3.

4.1 The displacement solution

To analyze the displacement solution, a series of 40 probe points are placed
along the horizontal direction of the fin at θ = β

2 . The displacement magni-
tude U =

√
U2
1 + U2

2 is evaluated at each point within this set.

The curves presented in Figure 16 illustrate the variation of the displace-
ment magnitude along the length of the fin. Whereas, Figure 17 illustrates
the variation of the relative error versus the horizontal location. Upon anal-
ysis of the results depicted in Figure 16, a notable correspondence between
the displacement magnitudes obtained from the analytical solution and the
numerical (BEM) solutions when employing the criterion of Junhao and the
new criterion with α values of 0.8 and 1 is observed. However, utilizing

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



31 An adaptive scheme for the efficient evaluation of integrals in ...

the remaining existing criteria (Lachat and Watson, Jun and Beer, Gao and
Davies and Eberwien) or the new criterion with low α values leads to fluctu-
ating results, particularly near the fin tip, resulting in higher errors.

Additionally, Figure 17 illustrates how the relative error tends to escalate
in thinner regions when employing either existing criteria or the new criterion
with lower α values. However, when using the new integration criterion with
α values close to 1, the error begins to decrease and remains relatively stable,
even in extremely thin regions. Specifically, for α = 1, the error decreased
slightly below the target error upper bound of 10−3. Moreover, although the
Junhao criterion produced acceptable and good quality results, the resulting
relative error remained above the required upper bound. In contrast, the new
criterion yielded better results even with α = 0.8, with a net gain in efficiency
as stated previously in section 3.6 and illustrated in Figure 13, where the new
criterion’s curves are situated below Junhao’s curve in the case of moderate
values of the λ ratio. Furthermore, this favored interval grows wider as α
is decreased. As, for α = 0.8, this interval becomes [0.000381564, 2.09121].
Based on the preceding analysis, the new criterion demonstrated a high level
of accuracy in displacement results, offering improved and more consistent
precision, even in regions of extreme thinness. In contrast, the existing crite-
ria were unable to satisfy the required upper error bound, largely due to the
strong influence of boundary layer effect, especially in the thinner sections of
the fin.

4.2 The stress solution

4.2.1 Stress assessment in the horizontal direction

In contrast to the displacements, which exhibit significant variations along
the horizontal direction, the major stress variations occur along the verti-
cal direction of the fin, as it is confirmed by the stress analytical solution
of the infinite wedge problem, which varies only in terms of θ (see (28)).
Consequently, the previously utilized probe points are not used for stress
assessment. Given that stress reaches its maximum values at the boundary

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Si Hadj Mohand, Belkacemi and Rechak 32

Figure 16: Variation of the displacement magnitude along the horizontal direction of
the fin

Figure 17: The variation of the relative error for displacement magnitude along the
horizontal direction of the fin

of the fin, the initial analysis of the stress solution involves probing 40 points
positioned on the top side of the fin.
The curves in Figure 18 illustrate the variation of von Mises equivalent stress
along the upper surface of the fin. Whereas, Figure 19 depicts the variation
of the corresponding relative error with respect to the horizontal location.
A detailed examination of the curves in Figure 18 reveals significant fluctua-
tions and the presence of very important errors in stress solution, particularly
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when utilizing existing criteria or the new criterion with relatively low values
for the α coefficient. These fluctuations and errors increase drastically as the
fin tip is approached. Notably, these errors are more pronounced compared to
the displacement solution, attributable to the higher singularity order O

(
1
r2

)
of the kernels employed in the stress solution.
However, with the adoption of the Junhao criterion and the new integration
criterion using α values of 0.8 and 1, satisfactory results are obtained, even
in extremely thin sections very close to the fin tip, without necessitating any
analytical or semi-analytical treatment.
Figure 19 depicts, akin to Figure 17, the significant increase of errors in thin-
ner regions, with values reaching approximately a twenty (20) times higher
than displacement errors in some cases. Nonetheless, the proposed criterion
with α = 1 yields acceptable errors, below the target upper bound of 10−3.
Moreover, although the Junhao criterion produced acceptable and good qual-
ity results, the resulting relative error remained above the required up-
per bound. While, the proposed criterion yielded better results even with
α = 0.8. and remain stable even in thinner sections, with a gain in efficiency,
as seen in section 4.1.
From the results above, it is evident that the new criterion was capable of
producing very accurate results in stress response, with improved and more
stable precision in regions of extreme thinness, despite the augmented order
of the near-singularities appearing in stress kernel functions. In contrast, the
existing criteria resulted in excessively high errors, exceeding those reported
in section 4.1 by approximately a factor of twenty.

4.2.2 Stress assessment in the vertical direction

To further assess the stress solution, especially the variation in terms of θ,
three cross sections are considered, having these respective distances from the
apex {r = 50 mm, 20 mm, 5 mm} corresponding to {x = 5 cm, 8 cm, 9.5 cm},
respectively.
The three graphs in Figures 20, 21, and 22 illustrate the variation of the
relative errors for the Von-Mises stress along these 3 delineated sections.
Upon comparing the results presented in Figures 20–22, it is evident that the
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von Mises stress computed using the various existing criteria (Lachat and
Watson, Jun and Beer, Bu and Davies, and Eberwien) exhibits significantly
high errors, all exceeding the required upper bound. These errors become
more pronounced near the boundaries, specifically at θ ≈ 0 and θ ≈ β = 0.05

rad, as clearly illustrated in Figures 20–22 when approaching the left and
right ends.

Furthermore, these errors increase drastically as the cross-section ap-
proaches the apex. Thus, errors illustrated in Figure 22 at r = 5 mm are the
most pronounced.

Nevertheless, by using our new integration criterion with α = 1, we
obtained a highly stable precision that meets the target upper bound of
ϵ = 10−3, even in the extremely thin cross section at r = 5 mm and at points
very close to the boundary (θ ≈ 0 and θ ≈ β = 0.05 rad).

Once again, the proposed criterion demonstrated its ability to accurately
represent the stress field distribution, even in extremely thin cross-sections
and at points very close to the boundary, while maintaining a highly stable
relative error with respect to the imposed error threshold.

Figure 18: Variation of the von Mises equivalent stress along the fin
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Figure 19: The variation of the relative error of von Mises stress along the horizontal
direction of the fin

Figure 20: Relative error for the von Mises stress in terms of θ across the the section at
(r=50 mm)

4.3 Further computational improvement

As stated in the introduction, analytical and semi-analytical techniques,
particularly nonlinear variable transformations, are employed to treat near-
singularities. Most of these methods aim to mitigate or eliminate the effects
of near singularities, resulting in a less pronounced singular behavior. How-
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Figure 21: Relative error for the von Mises stress in terms of θ across the the section at
(r=20 mm)

Figure 22: Relative error for the von Mises stress in terms of θ across the the section at
(r=5 mm)

ever, in the case of very thin bodies, despite reducing the boundary layer
effect, its influence remains significant.
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This will be demonstrated in the current section using the sinh variable
transformation technique in combination with different integration criteria
to solve the previously discussed example. One of the major advantages of
the proposed criterion will also be illustrated, namely, its ability to reduce
computational effort by lowering the parameter α, taking advantage of the
dampened singularity.
The same 40 probe points used in sections 4.1 and 4.2.1 are employed here
to evaluate the displacement magnitude and Von Mises stress, respectively.
The results are presented in Figures 23 and 24, showing the relative error of
both quantities.
Figures 23 and 24 reveal that, despite applying the sinh transformation, the
existing criteria (Lachat and Watson, Jun and Beer, Gao and Davies, and
Eberwien) still yield poor accuracy, with relative errors exceeding the desired
error threshold.
In contrast, the proposed criterion combined with the sinh transformation
and a reduced value of α = 0.6 delivers excellent results, comparable to those
obtained with α = 1 without variable transformation.
The combination of the Junhao criterion and the sinh transformation also
produced acceptable accuracy, though not as high as that achieved by the
proposed criterion.
Furthermore, as discussed in section 3.6 and shown in the log-log plot of
Figure 13, the Junhao criterion’s error upper-bound formula leads to more
Gauss points for moderate values of λ. In this case, with α = 0.6, the interval
over which the proposed criterion outperforms the Junhao criterion is wider
than when α = 1, becoming λ ∈ [2.36258× 10−5, 3.19886].
In conclusion, the application of the sinh variable transformation allowed fur-
ther computational improvement with accurate results that satisfy the pre-
scribed precision requirements while reducing computational cost through
lower values of α. Additionally, in the case of extremely thin structures,
although the combination of existing criteria with the sinh transformation
showed some improvement, the results remained unsatisfactory, with relative
errors still exceeding the required precision threshold.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Si Hadj Mohand, Belkacemi and Rechak 38

Figure 23: Relative error for the displacement magnitude when utilizing the sinh variable
transformation

Figure 24: Relative error for the von Mises stress when utilizing the sinh variable trans-
formation

5 Conclusion

The utilization of Gaussian quadrature for numerical integration within the
BEM is practically indispensable. Consequently, the choice of quadrature or-
der significantly impacts the accuracy and efficiency of computational codes
and programs based on this method. Various criteria and error bound for-
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mulas existing in BEM literature, were used for the purpose of an optimal
selection of the Gauss order. The majority of these criteria and upper bound
error formulas were developed under the assumption of a simplified form for
the integration kernels.

In order to develop a criterion that meets high precision requirements in
extremely thin bodies, a numerical testing procedure was performed to esti-
mate the errors due to numerical integration using Gauss-Legendre quadra-
ture, but in contrast to previous research works the complete form of the
integrands is considered. From the numerically obtained results, a new inte-
gration criterion is proposed, formulated as empirical formulas with a unified
structure incorporating a parameter named α. This parameter facilitates
the adjustment of computational efforts, by enabling its reduction in case
of nonthin bodies or after the use of semi-analytical algorithms and variable
transformation techniques. Simulations are conducted on an extremely thin
structure (a thin wedge), and the results are compared to the analytical solu-
tion for an infinite wedge. The comparison showed that results align well at
locations relatively far from the fixed base and demonstrated the criterion’s
ability to achieve highly accurate results. For the optimal parameter value
α = 1, the proposed criterion outperformed existing criteria, delivering re-
sults with stable precision that satisfied the upper bound error requirement of
ϵ = 10−3, even in regions close to the wedge apex. Furthermore, the proposed
criterion showed its advantage in controlling computational efforts, which is
demonstrated through the application of the sinh transformation technique,
where additional computational time is reduced by lowering the value of α
to 0.6.
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