
Journal of Computer and Knowledge Engineering, Vol. , No.. 2023.

DOI:

Fraud Detection Using temporal sequence

embedding and Cluster-Weighted LSTM Models in

Card Transactions

Samiyeh Khosravi1, Mehrdad Kargari2 , Babak Teimourpour3, Mohammad Talebi4, and Abdollah Eshghi 5

Abstract-- Traditional fraud detection models often overlook

the sequential and temporal relationships between transactions,

which can be crucial for identifying fraudulent activities. To

address this, a new data-to-graph mapping approach is proposed,

transforming user data into a transaction graph and constructing

a bipartite graph with source and target nodes. The main goal is

to leverage the temporal order of transactions to capture changes

effectively and identify distinct fraud patterns. The method begins

by creating a weighted graph based on transaction amounts and

their temporal sequence. For feature extraction, the Probabilistic

FraudWalk method—an advanced version of the traditional

FraudWalk algorithm—is used. This method enhances the

random walk process by incorporating probability-based

neighbor selection, dynamically choosing the next node based on

the probability distribution of common neighbors. To balance the

dataset, the Synthetic Minority Over-sampling Technique

(SMOTE) is combined with the Edited Nearest Neighbors (ENN)

method, forming SMOTE-ENN. To reduce information conflict,

data is clustered using K-means clustering. A weighted Long

Short-Term Memory (LSTM) model is then trained on each

cluster, with weights determined by the minimum distance

between samples of different classes within the same cluster. The

proposed LSTM model demonstrates superior performance on

benchmark datasets, effectively detecting fraud in real-world

card-to-card transactions. This approach enhances the security of

financial information for banks and financial institutions, showing

that incorporating temporal and sequential data significantly

improves fraud detection accuracy and reliability.

Index Terms-- Fraud detection, Bipartite graph, Node

embedding, Weighted LSTM, Source neighbor sequence, Target

neighbor sequence, Temporal node embedding

1. INTRODUCTION

In recent years, due to the growth of e-commerce and the use of

online payments, the financial industry has witnessed a

significant increase in the volume and complexity of financial

 Manuscript received Revised, , accepted .

1 Ph.D. Student, Faculty of Industrial and systems engineering,Tarbiat Modares University, Tehran, Iran, Email: samiyeh.khosravi@modares.ac.ir
2 Corresponding author, Associate professor, Faculty of Industrial and systems engineering,Tarbiat Modares University, Tehran, Iran, Email:

m_kargari@modares.ac.ir
3 Associate professor, Faculty of Industrial and systems engineering,Tarbiat Modares University, Tehran, Iran, Email:

 b.teimourpour@modares.ac.ir
4 Associate professor , Faculty of Management, Imam Sadiq University, Tehran, Iran,, Email: Mohammad63.mt@gmail.com
5 PhD in Information Technology, Faculty of Industrial and systems engineering,Tarbiat Modares University, Tehran, Iran, Email:

 a.eshghi@modares.ac.ir

transactions, leading to a surge in fraudulent activities [1],[2].

In the 2022 report from the Canadian Anti-Fraud Centre

(CAFC), it was noted that over 91,190 fraud incidents were

documented, with 57,055 individuals suffering losses that

surpassed $531 million [3]. This highlights the fact that

financial fraud can result in the loss of large amounts of money

and undermine trust in financial institutions and systems. This

recent rise in fraudulent activities underscores the crucial need

for effective fraud detection. And since financial domains

include such as cryptocurrency, online payment transactions,

taxation, medical insurance, and credit cards. There are variants

of fraud, among which this study is focused on card transaction.

The increasing credit card usage has brought about a constant

increase in fraudulent transactions [3].

Fraudulent credit card transactions have severely impacted

the financial industry. According to a recent study, credit card

fraud resulted in losses of approximately 27.85 billion dollars

in 2018, marking a 16.2% rise from the 23.97 billion dollars lost

in 2017. Projections suggest that these losses could escalate to

35 billion dollars by 2023 [4]. Hence, this recent rise in

fraudulent activities underscores the crucial need for effective

fraud detection. Therefore, identifying this form of fraud early

can avert its substantial financial impact.

Traditional approaches for fraud detection are included rule-

based systems and classical machine learning techniques [5].In

general, rule - based systems rely on human-designed rules with

expert knowledge to assess the likelihood that fraud has

occurred, which cannot perform well in complex environments.

Also, the fixed rules limit the algorithm’s ability to adapt to

dynamic fraud patterns [6].To address the limitations of rule-

based systems, new transaction monitoring methods utilizing

data science and machine learning techniques have been

introduced [7],[8].

The review of existing research suggests that a majority of

scholars in this area tend to employ a range of data mining

mailto:Mohammad63.mt@gmail.com
mailto:a.eshghi@modares.ac.ir

techniques [7],[9]. Classical machine learning techniques

achieving statistical features from transaction attributes such as

time, location, and amount is feasible. However, incorporating

unstructured data is challenging to extract. Furthermore,

struggle to handle high-dimensional data, non-linear

relationships, complex patterns that are common in financial

fraud detection, temporal dependence between transactions,

capturing the interaction between transactions presents

difficulties [1],[2]. The origins of these issues can be traced to

the swift advancement of contemporary technologies, which

has rendered traditional methods ineffective against new

fraudulent techniques. Specifically, these conventional

approaches rely on descriptive statistics [1],[2] as features to

incorporate historical data [3]. These statistics typically

describe credit card transactions using factors such as

transaction time, amount, and merchant category, but often fail

to account for precise sequential information.

Put differently, interactions between users can occur on

multiple levels simultaneously. User can interact with each

other and deposit or withdraw their money through several

intermediary nodes cards and also communications between

users can change over time. This means that, the intermediary

nodes between user and the way they interact can change over

time.

So, the time sequence in user's communications with each

other can be a key factor, and different patterns can appear by

changing the time sequence. For example, the descriptive

statistics is the number of transactions or the total amount spent

by the cardholder in the last 24 hours for a merchant category

or country. In these descriptive features, communications

between senders and receivers are extracted without

considering the time sequence of these communications. For

instance, person A deposits amount to person B’s account, and

then person B deposits amount b to person C’s account. In this

case, the connection between A and C is through B, and this

should be considered in extracting transaction fraud, and not

only the source, i.e., depositor and the target, i.e., receiver

should be considered.

Therefore, these embedded connections between users play

an important role in making fraud undetectable.

In this study, the occurrence of fraud in card transaction of

Iranian banks, which are the most vital components of the

country’s economy, has been studied. Consequently, a novel

approach model is proposed, which consists of two phases. In

first phase, the features of communications between users are

extracted and are used in the fraud detection process. In this

way, to extract the embedded features between the source and

target of transactions, the mapping of user's information into a

graph is utilized, and a graph of transactions is created between

the source user as the source Node and the destination user as

the target Node. This graph appears as a bipartite graph, and the

edges are marked with timestamps and amounts. The two

concepts of source neighbor sequence and target neighbor

sequence are exploited for embedding communication between

users.

Then, by forming a weighted graph based on these two types

of sequences, we perform the probabilistic fraud walk and the

embedding features are extracted for each node. The second

phase solves the conflict is created in extracting embedded

information with each other, which makes them either ignored

or ineffective in the learning process. For this purpose, a multi-

model approach is used. Hence, training data is first clustered

so that each cluster maintains its information. Then, , due to

ability to learn intricate features and model nonlinear

relationships in the deep learning models, making them well -

suited for identifying subtle, hidden patterns indicative of

fraudulent activities, is utilized to train each cluster. Each

cluster discovers its information separately.

In experiments, we compared the proposed method on

benchmark datasets such as European and Brazilian in terms of

F1-score, Macro-F1, Micro-F1 and AUC, which shows the

superiority of the proposed method over other existing methods.

Moreover, according to the research case study dataset of card-

to-card banking transactions of Iranian customers, the results

demonstrate the obvious superiority of the proposed method.

 The contributions of this paper are as follows:

Temporal Sequence Embedding: Unlike traditional

methods that rely on descriptive statistics of transactions, this

approach explicitly models the temporal sequence of

transactions. By transforming user data into a transaction graph,

constructing a bipartite graph with source and target nodes, and

utilizing source and target neighbor sequences, the method

captures the dynamic interactions between users over time. This

is a key improvement, as the time sequence in user

communications can reveal distinct fraud patterns.

Cluster-Weighted LSTM: To address the issue of

information conflict, where different data points or areas with

varying densities can interfere with the learning process, the

training data is first clustered using K-means. This allows for

the learning of local information of data with similar behavior.

A weighted LSTM model is then trained on each cluster,

with weights determined by the minimum distance between

samples of different classes within the same cluster. This

approach allows each cluster to learn its information separately,

effectively capturing the subtle and hidden patterns indicative

of fraudulent activities. The weighting mechanism enhances the

LSTM’s ability to classify marginal samples, which are often

the most challenging to identify, thus leading to improved

accuracy in fraud detection.

 Enhancement of the Random Walk: The proposed method

enhances the random walk by incorporating probability-based

neighbor selection and temporal order consideration. This is an

improvement because the traditional FraudWalk method selects

the next node randomly during walks and does not consider

intermediary nodes. By prioritizing the selection of the next

node based on the highest number of common neighbors within

a temporal window, the Probabilistic FraudWalk generates

more effective walks and embeddings, and is more sensitive to

complex patterns of collaboration. By considering temporal

constraints and the probability distribution of common

neighbors, the method ensures a more comprehensive

representation of the network.

 The reminder of the paper is organized as follows. Section 2

introduces the related literature. Section 3 explains the concepts

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 3

related to the extraction of embedded temporal

communications. Section 4 introduces the proposed method,

and Section 5 describes the real-world and benchmark datasets

and presents the experimental results and discussion. Finally,

conclusions are given in Section 6.

2. RELATED WORK

 The increasing prevalence of credit card fraud, driven by the

rise in online transactions, has spurred extensive research into

advanced fraud detection techniques. This section

systematically categorizes prior studies into three main

approaches: traditional machine learning, deep learning, and

graph-based methods. Each category is discussed, followed by

a comparative table summarizing the key features of the

reviewed studies.

2.1 Traditional Machine Learning Approaches

Traditional machine learning methods, such as logistic

regression and random forests, have been widely applied to

fraud detection due to their interpretability and effectiveness

with structured data. Wu et al. [10] utilized an advanced

management information system combining logistic regression,

random forests, and Long Short-Term Memory (LSTM)

networks to detect Mastercard fraud during the COVID-19

pandemic. Their approach leveraged statistical features but

struggled with capturing temporal dependencies. Similarly,

Esenogho et al. [4] proposed a neural network ensemble with

feature engineering, achieving improved performance on credit

card fraud datasets by incorporating domain-specific features.

However, these methods often fail to model complex

relationships and temporal dependencies.

2,2 Deep Learning Approaches

Deep learning methods have gained popularity in fraud

detection due to their ability to learn complex and non-linear

patterns in transactional data. Xie et al. [11] developed a time-

aware historical-attention-based LSTM (TH-LSTM) model that

automatically detected fraudulent patterns by capturing

behavioral changes induced by sequential user transactions.

Roseline et al. [12] proposed an LSTM-RNN with an attention

mechanism, enhancing fraud detection performance by

leveraging intricately connected feature vectors. Guo et al. [13]

introduced a Historical Attention-based and Interactive LSTM

(HAInt-LSTM) model to identify sequential patterns and flag

deviations as potential fraud. Agarwal et al. [14] employed a

hybrid CNN-BiLSTM-Attention model, combining

convolutional neural networks (CNN) and bidirectional LSTM

with an attention mechanism, achieving commendable accuracy

in detecting fraudulent activities. Similarly, Fakiha [15]

proposed an LSTM-Attention model that improved

performance by selecting relevant features and transaction

sequences. Zioviris et al. [16] presented a multistage deep

learning framework using autoencoders and deep convolutional

neural networks for fraud detection through feature selection

and latent representation. Raval et al. [17] integrated

explainable artificial intelligence (XAI) with LSTM,

developing an explainable LSTM (X-LSTM) model that

enhanced transparency and accuracy in identifying fraud

patterns.

2.3 Graph-Based Approaches

 Graph-based methods focus on the relationships and

interactions between users in transactional networks, making

them suitable for modeling complex fraud patterns. Wang et al.

[18] proposed a semi-supervised attentive graph neural network

(SemiGNN) with a hierarchical attention mechanism, utilizing

both labeled and unlabeled data to identify factors contributing

to fraud. Jiang et al. [19] extracted source and target neighbor

sequences from a temporal bipartite network and integrated the

Hawkes process into LSTM to enhance historical influence

learning. Liu et al. [20] developed a Hierarchical Attention-

based Graph Neural Network (HA-GNN) with weighted

adjacency matrices to detect fraudulent activities while

mitigating camouflage risks. Wang et al. [21] proposed a

Community-based Framework with Attention mechanism for

analyzing large-scale Heterogeneous graphs (C-FATH),

improving detection accuracy by filtering structurally

inconsistent nodes. Lastly, the FraudWalk method in [22]

extracted connections between source and target nodes in a

bipartite graph but was limited by random node selection and

lack of intermediary node consideration. Our proposed method

overcomes these limitations by incorporating probability-based

neighbor selection and temporal sequence consideration,

enhancing fraud detection performance.

Recent studies have further advanced temporal and

imbalanced data handling in fraud detection. Imran and Yakoob

[23] proposed a credit card fraud detection system that

integrates Synthetic Minority Oversampling Technique

(SMOTE) with an attention mechanism and dual LSTM layers

to model long-term dependencies in transaction sequences,

achieving high accuracy in predicting fraudulent transactions..

Kim et al. [24] proposed a dynamic graph convolutional

network (DGCN) that incorporates temporal constraints and

attention mechanisms to detect evolving fraud patterns in real-

time transaction streams, offering a robust solution for dynamic

financial environments.

Table I compares the key features of the reviewed studies,

including the model used, dataset, key techniques, and

evaluation metrics. This table and systematic categorization

provide a comprehensive overview of existing methods,

highlighting the strengths and limitations of each approach. Our

proposed method, by integrating temporal sequence

embedding, cluster-weighted LSTM, and probability-based

neighbor selection, overcomes the limitations of prior methods

and improves fraud detection performance.

.

 Figure 1. Temporal bipartite network

TABLE I

Comparison of key features of the reviewed studies

Reference Model Dataset Key Techniques Evaluation Metrics

[4] Neural Network

Ensemble

Credit Card Data

Feature Engineering,

Neural Network

Ensemble

Accuracy, F1-Score

[10] Logistic Regression,

Random Forest,

LSTM

Mastercard Data

Information System,

Deep Learning

Accuracy, AUC

[11] TH-LSTM

Transactional Data

Time-aware Historical

Attention, LSTM

F1-Score, AUC

[12] LSTM-RNN

Credit Card Data

Recurrent Network,

Attention Mechanism

Accuracy, F1-Score

[13] HAInt-LSTM

Sequential Behavioral

Data

Historical Attention,

LSTM

F1-Score, Accuracy

[14] CNN-BiLSTM-

Attention

Credit Card Data

Convolutional

Network, Bidirectional

LSTM, Attention

Accuracy, F1-Score

[15] LSTM-Attention

Credit Card Data

Feature Selection,

Attention, LSTM

F1-Score, AUC

[16] Autoencoder, Deep

CNN

Transactional Data

Multistage

Framework, Feature

Selection

F1-Score, AUC

[17] X-LSTM Credit Card Data Explainable AI,

LSTM

Accuracy, F1-Score

[18] SemiGNN

Transactional Data

Semi-supervised

Graph Network,

Hierarchical Attention

F1-Score, AUC

[19] Hawkes-LSTM

Temporal Bipartite

Network

Hawkes Process,

Historical Attention,

LSTM

F1-Score, AUC

[20] HA-GNN

Transactional Data

Hierarchical

Attention-based Graph

Network, Weighted

Adjacency

F1-Score, AUC

[21] C-FATH

Heterogeneous Graphs

Community-based

Framework, Attention

Mechanism

F1-Score, AUC

[22] FraudWalk

Bipartite Network Source and Target

Sequence Extraction

F1-Score, AUC

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 5

3. PRELIMINARIES

 In the real world, the communications between the financial

accounts of the sender and receiver at different times form a

temporal bipartite network, where sender accounts act as source

users, receiver accounts act as target users, and a directional

edge with a timestamp indicates that a specified amount has

been sent from the sender's account to the receiver’s account.

Definition of temporal bipartite graph

A temporal bipartite graph is a graph that has edges between

source and target nodes along with temporal connections

between nodes. A temporal bipartite graph is defined as 𝐺 =<
𝑈, 𝑉, 𝐸 >, where 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} represents the source

nodes, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚} represents the target nodes, and 𝐸 is

a set of edges formed through the communications between 𝑈

and 𝑉 at different times 𝑡 [19]. , consider the temporal bipartite

graph shown in Fig. 1.

 With the help of this graph, the dynamic changes in the graph

can be clearly displayed. The target nodes can be expressed as

a sequence of nodes arranged in ascending order, called the

target neighbor sequence, as follows:

Definition of target neighbor sequence

According to a source node 𝑢 in a temporal bipartite graph and

its target nodes 𝑇𝑁(𝑢), the target neighbor sequence for the

user 𝑢 is displayed as 𝑇𝑁𝑆(𝑢) = [(𝑡1, 𝑣1), (𝑡2, 𝑣2), … , (𝑡𝑛, 𝑣𝑛)]
in time order. Each tuple shows the communication between the

source node 𝑢 and the target neighbor node 𝑣𝑖 ∈ 𝑇𝑁(𝑢) at time

𝑡𝑖.

 In other words, connections between source nodes can be

achieved by any target node, so that for each target node, a time

sequence of source nodes that have interacted with the target

node at different times is obtained. This sequence of source

nodes represents the embedded communications between these

nodes [19].

Definition of source neighbor sequence

According to a target node 𝑣 in a temporal bipartite graph and

its related source nodes 𝑆𝑁(𝑣), the source neighbor sequence

for the user 𝑣 is displayed as 𝑆𝑁𝑆 =
[(𝑡1, 𝑢1), (𝑡2, 𝑢2), … , (𝑡𝑚, 𝑢𝑚)] in time order, in which each

tuple shows the connection between the target node 𝑣 and the

source neighbor node 𝑢𝑖 ∈ 𝑆𝑁(𝑣) at time 𝑡𝑖.

4. PROPOSED METHOD

In the proposed method, we need to obtain different features of

users and their behavior in interaction with each other to

distinguish fraudulent user from normal user. Many features are

embedded and can be extracted by analyzing users' behavior

over time via deep learning methods.

For example, consider the network shown in Fig. 2. In this

network, 𝑎𝑖, representing the financial transaction amount, and

𝑡𝑖, representing the transaction time, have great impacts on the

communication of nodes.

 Figure 2. Card-to-card transfer network.

 The general algorithm of the proposed method is as follows.

 The first step, Construct source neighbor sequences and the

second step Construct target neighbor sequences.

Then, we created a weighted directed graph. In the fourth step,

extract node embedding for each node of the graph based on the

Probabilistic Fraud Walk. Next, split the dataset into training

and testing samples. The sixth step, Oversample training

samples based on SMOTE-ENN technique. Afterwards Cluster

training samples and the next step train a weighted LSTM

model for each cluster based on the distance to the opposite

sample in a different class. Finally predict the label of each

testing sample based on the corresponding LSTM trained for its

cluster. The proposed method is shown in Figure 3.

The steps of the proposed method are described below.

4.1. Constructing a source neighbor sequence

To construct this sequence, first, for each target node, the

corresponding source nodes are listed in chronological order.

Then, the sequences obtained for each target node are listed in

the source neighbor sequence set.

This sequence of source nodes shows the communications of

these nodes regarding their interactions with the target nodes.

For example, suppose we have the following sequences:
{𝑢1, 𝑢2, 𝑢10, 𝑢20}

{𝑢1, 𝑢2}

{𝑢1, 𝑢2, 𝑢3, 𝑢5}

These sequences show that usually the two nodes 𝑢1 and 𝑢2

appear next to each other, which means that they have been

connected with a series of common target nodes in a

consecutive time interval. Therefore, there can be an embedded

connection between them.

4.2. Constructing a target neighbor sequence

In these sequences, the communications between the target

nodes are specified. For example, as can be seen, two nodes 𝑣2

and 𝑣10 are placed next to each other most of the time, and this

indicates that many source nodes have interacted with 𝑣10

without interruption after interacting with 𝑣2.

{𝑣1, 𝑣2, 𝑣10, 𝑣11}
{𝑣9, 𝑣2, 𝑣10, 𝑣20}

Figure 3. Proposed method.

Therefore, there can be embedded communications between the

two nodes 𝑣2 and 𝑣10, and we can extract this information with

the help of target neighbor sequences.

4.3. Constructing a graph between nodes according to their

communication

After extracting the sequences between the source nodes

(source neighbor sequence) and between the target nodes

(target neighbor sequence), a graph of nodes is constructed

using these sequences.

According to the relation below, edges are created between the

nodes in the sequence.

𝐸 = {(𝑢𝑖 , 𝑢𝑖+1)|𝑢𝑖 ∈ 𝑆𝑛𝑜𝑑𝑒}

The weight of the edges is as follows:

𝑊𝑢𝑖,𝑢𝑖+1
= ∑(𝐴𝑢𝑖,𝑣 + 𝐴𝑢𝑖+1,𝑣)

𝑢∈𝑉

where 𝑣 is the set of common nodes between 𝑢𝑖 and 𝑢𝑖+1, and

𝐴𝑢𝑖,𝑣 represents the amount between the nodes 𝑢𝑖 and 𝑣.

In this way, for any two consecutive nodes in different

sequences, the desired weight is obtained from the sum of the

4.1 Source Neighbor Sequences

4.2 Target Neighbor Sequences

4.3 Graph Construction according to the Sequences

4.4 Node Embedding with Probabilistic Fraud Walk

4.5 Data Partitioning

4.6 oversampling

4,7 Clustering Training Data

4.8 LSTM Training for each Cluster

4,9 Testing process

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 7

amounts of the two nodes, and as a result, the corresponding

weighted graph between the nodes is constructed.

4.4. Generating node embeddings for graph nodes

According to the feature of time sequence between the nodes as

well as the feature of amount for the nodes in the graph, the

neighborhood information between the nodes is considered in

this step. This neighborhood information is determined

according to the paths between the two nodes. In other words,

the shorter the distance or path between the two nodes, the

stronger their connections with each other, and the farther this

distance is, the weaker their connections will be.

Algorithm 1: Probabilistic FraudWalk

Data: Bipartite network G = (U, V ; E), time constraint δt,

embedding size d, walk length l, window size w

Result: Matrix of node embeddings X ∈ R|G|×d

// Initialize the embedding matrix

X = Sample From Distribution(R|G|×d);

for j = 0 to MaxIterations do

 // Shuffle the nodes in the network

 Mj = Shuffle(U ∪ V);

 for each vi ∈ Mj do

 // Conduct Constrained Random Walk with probability

 Wvi = Constrained Random Walk With Probability(vi, δt,

 l, w);

 // Apply SkipGram

 SkipGram(X, Wvi);

 end

end

For constructing embedding features of nodes, we use a

Probabilistic FraudWalk that reflects the addition of the

probability-based neighbor selection in the Constrained

Random Walk, distinguishing it from the original FraudWalk

algorithm [25].

Probabilistic FraudWalk is an enhanced version of the

traditional FraudWalk algorithm designed to capture nuanced

interactions within a bipartite network, particularly in fraud

detection scenarios. It has been presented in Algorithm 1.

In this modified approach, a novel step has been introduced

during the random walk process, known as Constrained

Random Walk with Probability-based Neighbor Selection.

Unlike the original random walk, Probabilistic FraudWalk

dynamically selects the next node to traverse based on the

probability distribution of common neighbors. This strategic

selection is rooted in the notion that nodes sharing more

common neighbors in their respective target sequences are

more likely to be relevant for capturing higher-order

interactions. By integrating this probability-based mechanism,

Probabilistic FraudWalk aims to enhance the algorithm's

sensitivity to complex patterns of collaboration among source

nodes, thereby offering a more comprehensive representation

for subsequent analysis.

Constrained Random Walk with Probability-based Neighbor

Selection is the core innovation embedded within Probabilistic

FraudWalk. This algorithm dictates the node selection process

during the random walk by considering the temporal constraints

on interaction events and introducing a probability distribution

based on common neighbors. For each potential neighbor, the

algorithm evaluates the temporal constraints to ensure that

interactions occurred within a specified time window. The

probability distribution is computed by measuring the

commonality of target sequence neighbors between the current

node and its potential neighbors. After normalization, nodes are

selected in descending order of probability, emphasizing those

with the most shared neighbors. This tailored approach

empowers the random walk to explore paths influenced by the

network’s underlying structure and the temporal nature of

interactions, promoting a more effective representation of

intricate relationships in the bipartite network.

In algorithm 2, Constrained Random Walk with Probability-

based Neighbor Selection, is presented with details.

Algorithm 2: Constrained Random Walk with Probability-

based Neighbor Selection

Data: Starting source node vi, Temporal constraint parameter

δt, Maximum walk length l

Result: Walk sequence walk sequence

Initialize empty sequence walk sequence;

Set current node current node to starting node vi; Initialize walk

length walk length to 0;

while walk length < l do

// Get the target sequence neighbors of the
source node

Tvi ← Target Sequence Neighbors(vi);

// Compute probability distribution based on
common nodes

in target sequence neighbors

for each neighbor vk in 𝑇𝑣𝑖 do

// Get the target sequence neighbors
of the current neighbor vk

Tvk ← Target Sequence Neighbors(vk);

Allneighbors={𝑇𝑣𝑘}

for each neighbor vm in 𝑇𝑣𝑘 do

Tvm ← Target Sequence Neighbors(vm);

Allneighbors= Allneighbors ∪T_vm

// Compute the number of common nodes

C(vk) ← Count Common Nodes(Tvi,

Allneighbors);

end

// Normalize the probability distribution

 P (𝑣𝑘) =
𝐶(𝑣𝑘)

Σ𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑣𝑘𝐶(𝑣𝑘) ;

// Sort nodes based on the normalized probability in

descending order

Sort nodes in descending order of P (vk);

for each neighbor 𝑣𝑘 according to the probability

distribution do

Check temporal constraint: Ensure tui, 𝑣𝑘 within

[tu,v − δt, tu,v + δt];

if Temporal constraint satisfied then

 Add vk to walk sequence;

 Update current node to vk;

 Break from the loop;

end

 end

if No valid neighbor found then

 End the walk;

end

Increment walk length by 1;

End

4.5 Data partitioning

In this step, 80% of benchmark datasets are considered training

sets, and 20% are test sets. For the real-world dataset, 30%,

60%, and 90% of the dataset are considered training sets, and

the rest are test sets. In this research, the 5-fold cross-validation

output is used on the real-world dataset.

4.6. Oversampling of training data

In this step, we are using the SMOTE-ENN (Synthetic

Minority Over-sampling Technique Edited Nearest

Neighbors) method on the training data. The SMOTE-ENN

technique is a data preprocessing algorithm designed to

address class imbalance in datasets, particularly prevalent in

scenarios where one class is significantly underrepresented

compared to the other.

The algorithm operates in two key steps: oversampling and

undersampling. In the oversampling phase, SMOTE

randomly selects samples from the minority class and

generates synthetic samples by connecting them to their

nearest neighbors. This process effectively augments the

minority class, enhancing its representation in the dataset.

The generated synthetic samples are assigned the minority

class label. Following the oversampling, the algorithm

moves to the undersampling phase. It evaluates each

synthetic and original minority class sample, assessing their

nearest neighbors. If a minority class sample has more

neighbors from the majority class, it is discarded. This

ensures a balanced representation by eliminating redundant

or potentially misclassified minority class instances. The

final output is a more balanced dataset, mitigating the

challenges posed by class imbalance and improving the

performance of machine learning models trained on such

data.

Algorithm 3: SMOTE-ENN Technique

Data: Input data

Result: Balanced dataset

Oversampling:

for i in minority class do

Choose a random sample xi from the minority class; Search

for the K nearest neighbors of xi;

Generate a synthetic sample p by randomly selecting one

of the K nearest neighbors q, and connect p and q to create

a line segment in the feature space;

Give the minority class label to the newly created synthetic

sample; Generate successive synthetic samples as a convex

combination of the two selected samples;

end

Undersampling:

for xi S where S denotes the total number of samples xi from

the minority class do

Search for the K nearest neighbors of xi;

if xi has more neighbors from the other class then

Discard xi;

end

 end

4.7. Clustering of training data
After balancing the data from two classes for the training

dataset, this dataset is divided into clusters in this step. This is

because applying the deep learning algorithm to the data in

general makes the points that are far from each other or areas

with different densities work together in the LSTM learning

process. This makes most of the information disappear or

become less important. Therefore, it is necessary to consider

local information.

Local information means information about the behavior of

data together, which is different from the behavior of all data

together. This local or partial information can play a significant

role in the LSTM training process. Therefore, to achieve this

goal, we cluster the training dataset and train a separate LSTM

for each cluster. In the LSTM training process, different

weights are assigned to samples in each cluster. These weights

are based on the inverse of the distance to the nearest sample of

the opposite class in the same cluster. The reason for this

weighting is the bias of the LSTM training process of each

cluster to the marginal samples within the cluster. By increasing

the importance of marginal samples, the LSTM algorithm can

better classify the samples in each cluster.

4.8. LSTM training for each cluster

The training algorithm for each cluster is as follows:

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 9

Algorithm 4: LSTM training for each cluster

1. Separate positive samples 𝐶𝑃 and negative samples 𝐶𝑁 in

one cluster.

2. Compute the distances from each negative sample to its

nearest positive neighbor.

3. Compute the distances from each positive sample to its

nearest negative neighbor.

4. Compute the weights for each negative sample 𝑤𝑖 based

on the distance to its nearest positive neighbor 𝑗:

{ 𝑤𝑖 =
1

Dj

 | ∀ 𝑖 𝜖 𝐶𝑁 , ∃ 𝑗 𝜖 𝐶𝑃, 𝑗 𝑖𝑠 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑖}

5. Compute the weights for each positive sample 𝑤𝑗 based on

the distance to its nearest negative neighbor 𝑖:

{ 𝑤𝑗 =
1

Di

 | ∀ 𝑗 𝜖 𝐶𝑃, ∃ 𝑖 𝜖 𝐶𝑁, 𝑖 𝑖𝑠 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑗}

6. Combine the sample weights for positive and negative

samples.

7. Train the LSTM model with weighted samples.

4.9. Testing process

In this step, the cluster label is obtained for each input test

sample. Then, the trained LSTM model associated with the test

sample cluster is used to classify the test sample, and as a result,

the test sample label is determined. In algorithm 5 is presented.

Algorithm 5: Testing process

Determine the cluster number of a sample test.

Predicted_class = LSTM[cluster_number].predict(test)

In the next step, the results of the experiments are shown.

5. EXPERIMENTS

In this section, we conduct fraud detection experiments on real-

world and benchmark datasets. In this paper, codes are

simulated via Python software. The system used for

experimental evaluation is a GeforceRTX 2080 Ti with a CPU

8 cores and 24 GB of RAM and 150 GB of HDD.

5.1. Real-world dataset

The real-world dataset comprises 1,048,575 card-to-card

transactions collected from an Iranian bank over a 15-day

period in late July 2022. This dataset captures a diverse set of

credit card activities, including both normal and potentially

fraudulent transactions, making it a valuable resource for

developing and evaluating fraud detection models. Each

transaction is characterized by attributes such as the source

account (Primary_ID), destination account (Second_ID),

transaction type (TRNS_Type), date, time, amount, terminal

type, and terminal ID. Additionally, a separate label dataset

associates Second_IDs with binary labels (1 for fraudulent, 0

for normal), enabling supervised learning for fraud detection.

The dataset's complexity and significant class imbalance pose

realistic challenges for modeling fraudulent behaviors in

financial systems.

I. Transaction Dataset Overview

The transaction dataset includes 1,048,575 records, with

338,987 unique Primary_IDs (source accounts) and 16,965

unique Second_IDs (destination accounts). The transactions are

associated with 1,893 normal and 1,107 fraudulent accounts

(based on Second_ID labels), highlighting a significant class

imbalance (approximately 0.11% fraudulent transactions). This

imbalance is a common challenge in fraud detection,

necessitating advanced preprocessing techniques to ensure

effective model training. Table 2 illustrates the diversity of

transaction attributes, including varying dates, amounts, and

terminal types, which are critical for capturing temporal and

behavioral patterns in fraud detection.

TABLE 2. EXAMPLE OF REAL-WORLD TRANSACTION DATASET

Primary

_ID

TR

NS_

Typ

e

Da

te

Ti

me

A

m

ou

nt

Term

inal_

Type

Termina

l_ID

Second

_ID

992e7ca

6cc0d73

8d85b2

10 7/2

8/2

02

2

0:0

0

1.4

2E

+0

8

87

20

00

7 13ae627

0758cd

ba26ec1

845746

8be95f8

a19775

6

737b32

93b0d5a

de9ad90

10 5/6

/20

22

0:0

0

1.3

6E

+0

8

17

00

00

0

1 f52c0e5

0a8eb31

e3965c

9d53d2f

9c5fe1f

c7f260

737b32

93b0d5a

de9ad90

10 7/8

/20

22

0:0

0

1.7

5E

+0

8

34

00

00

0

1 f52c0e5

0a8eb31

e3965c

9d53d2f

9c5fe1f

c7f260

Column Descriptions:

 Primary_ID: Unique identifier for the source account

(sender card).

 TRNS_Type: Type of transaction (e.g., card to card,

Payment, or purchase).

 Date: Date of the transaction in YYYY-MM-DD

format.

 Time: Time of the transaction in HH:MM:SS format.

 Amount: Transaction amount in Rials (presented in

standard numerical format for clarity).

 Terminal_Type: Type of terminal used for the

transaction (e.g., POS, Online, ATM).

 Terminal_ID: Unique identifier for the terminal

where the transaction occurred.

 Second_ID: Unique identifier for the destination

account (receiver card).

II. Label Dataset Overview

The label dataset provides binary labels for the 16,965 unique

Second_IDs, with 1,107 accounts marked as fraudulent (Label

= 1) and 15,858 as normal (Label = 0). This dataset enables the

classification of destination accounts based on their transaction

history, supporting the identification of fraudulent patterns.

Table 3 showes Example of Real-World Label Dataset.

TABLE 3. EXAMPLE OF REAL-WORLD LABEL DATASET

Second_ID Label

2bd4b22499440c9fbade 1

1b777cbc4dbbd24a82ce 1

cc1e4d4a68aefa0e0042 0

7717d2414b446e7b64c7 0

721b98a42582971495d2 0

Column Descriptions:

 Second_ID: Unique identifier for the destination

account (receiver card).

 Label: Binary indicator of account status (1 for

fraudulent, 0 for normal).

Table 4 provides meaningful insights into the labeling process,

highlighting the distinction between fraudulent and normal

accounts based on their transaction behaviors.

TABLE 4. REAL-WORLD DATASET DESCRIPTION

Feature Value Description

Dataset

Name
Iranian Dataset

Card-to-card transactions

from an Iranian bank in late

July 2022

Total

Number of

Transactions

1,048,575
Total recorded transactions

over 15 days

Unique

Primary_IDs
338,987

Number of unique source

accounts (sender cards)

Unique

Second_IDs
16,965

Number of unique destination

accounts (receiver cards)

Number of

Normal

Transactions

1,046,682

Transactions linked to normal

accounts (based on

Second_ID labels)

Number of

Fraudulent

Transactions

1,893

Transactions linked to

fraudulent accounts (based on

Second_ID labels)

Number of

Features
8

Attributes: Primary_ID,

Second_ID, TRNS_Type,

Date, Time, Amount,

Terminal_Type, Terminal_ID

Class

Imbalance

Ratio

0.11%

(Fraudulent)

Proportion of fraudulent

transactions relative to total

transactions

Temporal

Coverage
15 days

Data collection period in late

July 2022

Terminal

Types

POS, Online,

ATM

Types of terminals used for

transactions

Additional Notes:

 Feature Details: The dataset includes 8 attributes that

capture the source and destination of transactions,

transaction type, temporal information, amount, and

terminal details. These features enable the modeling of

complex temporal and behavioral patterns.

 Class Imbalance: With only 1,893 fraudulent

transactions out of 1,048,575, the dataset exhibits a

severe class imbalance (0.11% fraudulent),

necessitating techniques like SMOTE-ENN to balance

the data for effective model training.

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 11

 Temporal Context: The 15-day period provides a rich

temporal context for analyzing sequential transaction

patterns, which is critical for detecting fraud in

dynamic financial systems.

III. Data Preprocessing

To ensure data quality and compatibility with machine learning

models, the dataset underwent the following preprocessing

steps:

 Data Cleaning: Missing or invalid entries were

addressed by imputing median values for numerical

fields (e.g., Amount) and mode values for categorical

fields (e.g., TRNS_Type, Terminal_Type). Duplicate

transactions were removed.

 Feature Encoding: Categorical features

(TRNS_Type, Terminal_Type) were converted to

numerical format using one-hot encoding. Date and

Time were combined into a unified timestamp feature

to facilitate temporal analysis.

 Normalization: Transaction amounts, ranging from

136,000,000 to 175,000,000 Rials in the sample, were

normalized to a [0,1] range to improve model

convergence.

 Feature Extraction: The ProbabilisticFraudWalk

algorithm was applied to extract temporal sequence

features, and source/target neighbor sequences were

constructed to capture user interaction patterns.

IV. valuation Protocol

 The dataset was divided into training and testing sets with

varying ratios (30%, 60%, and 90% for training, with the

remainder used for testing). Additionally, 5-fold cross-

validation was employed to validate the robustness and

generalization capability of the proposed model. This rigorous

approach helps minimize bias, and provides more reliable

results.

5.2. Benchmark datasets

We utilized two real-world datasets presented by Pozzolo et al.

[25] and the IEEE CIS fraud dataset, provided by Vesta, to

evaluate the proposed method.

The primary dataset consists of transaction records generated

by European cardholders in September 2013 for two days. The

complexity of this dataset comes from its significant class

imbalance structure. Each individual transaction is represented

by a set of 30 features, of which 28 are provided after applying

the PCA transformation (𝑣1, 𝑣2, … , 𝑣28). The “time” and

“amount” features remain unchanged, representing the time gap

between the current and initial transactions as well as the value

of the current transaction made by the cardholder, respectively.

In addition, a “class” label is added, indicating the nature of the

transaction as fraudulent with a label “1” or normal with a label

“0”.

The second dataset originates from a prominent Brazilian bank

and covers the period from April 14th to September 12th, 2004.

Each transaction in this dataset is characterized by 17 numerical

features and is also labeled with a “class” label, either “S” to

indicate a fraudulent transaction or “N” to indicate a normal

transaction [26].

Additional information about the two datasets is given in Table

5.

TABLE 5. DESCRIPTIONS OF THE BENCHMARK DATASETS

Dataset #Normal #Fraudulent #Features #Samples

European

dataset

284315 492 30 284807

Brazilian

dataset

360792 14031 17 374823

Our experiments are conducted on the data partitioned into a

training set and a test set. The results presented in this section

are exclusively derived from the test set. Additionally, to ensure

the robustness of the proposed model, we employed 5-fold

cross-validation across all our experiments, thus validating its

consistency.

The European dataset has a very low fraud rate (0.172% of all

transactions), and the Brazilian dataset is more balanced (3.74%

fraud). These differences highlight the need to evaluate a model

across different levels of class imbalanced. In the proposed

method, oversampling methods are used to balance the positive

(normal) and negative (fraud) samples.

5.3 Evaluation metrics

5.3.1 F1-score

The F1-score is a measure that combines both precision and

recall metrics into a composite value. This score is obtained

from the harmonic mean of precision and recall and provides a

balanced view of the performance of the model. The F1-score

is particularly useful for dealing with unbalanced datasets

where one class outperforms the other. This criterion is

calculated using the following formula:

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The F1-score ranges from 0 to 1, and its higher values indicate

better model performance

5.3.2 Macro-F1

The Macro F1 Score is computed through an approach wherein

the F1 score is independently calculated for each class and

subsequently averaged. This methodology operates under the

assumption that all classes bear equal significance, although

this assumption may not universally hold true. The formula for

the Macro F1 Score is expressed as:

𝑀𝑎𝑐𝑟𝑜 𝐹1 =
1

𝑁
∑ 𝐹1𝑖

𝑁

𝑖=1

Here, 𝑁 represents the number of classes, and 𝐹1𝑖 denotes the

F1 score for each individual class.

5.3.3 Micro-F1

In the micro approach, the summation of contributions from all

classes is employed to calculate the average F1 score. This

methodology proves beneficial in instances where there exists

a class imbalance within the dataset, as it ensures that smaller

classes are accorded equal importance to larger ones. The

formula for the micro F1 score can be derived as:

Micro F1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜

5.3.4 AUC

The AUC (Area Under the Curve) is calculated based on the

Receiver Operating Characteristic (ROC) curve. The ROC

curve is created by plotting the true positive rate (sensitivity)

against the false positive rate (1 - specificity) at various

threshold settings. The AUC is then computed as the area under

this ROC curve. For a more formal explanation, let's denote:

TPR as the true positive rate (sensitivity) and FPR as the false

positive rate (1 - specificity).

The AUC is calculated by integrating the ROC curve. In

practice, this integration is often approximated using methods

like the trapezoidal rule. The formula for AUC can be expressed

as:

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅𝑑𝐹𝑃𝑅
1

0

In discrete terms, if the pairs of (𝐹𝑃𝑅i, 𝑇𝑃𝑅𝑖) have been

calculated for different threshold settings, we can use the

trapezoidal rule:

𝐴𝑈𝐶 ≈ ∑
(𝑇𝑃𝑅𝑖 + 𝑇𝑃𝑅𝑖−1). (𝐹𝑃𝑅𝑖−1 − 𝐹𝑃𝑅𝑖)

2

𝑛

𝑖=1

Here, 𝑛 is the number of thresholds considered.

5.4 Experiments on benchmark datasets

As mentioned by Jurgovsky et al., the LSTM model is

emerging as the leading technique for fraud detection

[27]. The performance of this model surpasses

conventional machine learning approaches and exhibits

significant improvements. Consequently, we chose the

LSTM model as the baseline for all our experiments.

The Table 6 and Table 7 presents the performance

metrics of five different models, GRU, LSTM, Phased

LSTM, and the two proposed model as Cluster-LSTM and

Cluster-weighted LSTM, across varying training sizes for

European and Brazilian dataset respectively.

In terms of F1-score, the proposed model consistently

outperforms the other models across all training sizes,

showcasing its effectiveness in capturing both precision

and recall. The Macro-F1 and Micro-F1 scores also

exhibit similar trends, with the Cluster-weighted LSTM

model demonstrating a notable advantage. The area under

the curve (AUC) values, which measure the models’

ability to distinguish between positive and negative

instances, further support the superiority of the Cluster-

weighted LSTM model, consistently achieving the

highest scores. These results suggest that our two

proposed models excel in fraud detection tasks, offering a

robust and well-balanced performance across different

training sizes.

TABLE 6. RESULTS OF DIFFERENT MODELS ON VARIOUS TRAINING

SIZES FOR EUROPEAN DATASET

Training

Size

Metrics GRU LSTM Phased

LSTM

Cluster-

LSTM

Cluster-

weighted

LSTM

0.9 F1-score 0.8302 0.73068 0.71068 0.8359 0.8420

 Macro-F1 0.3346 0.3346 0.3246 0.3338 0.3401

 Micro-F1 0.503 0.50302 0.50102 0.5117 0.5181

 AUC 0.9223 0.883 0.983 0.9302 0.9325

0.7 F1-score 0.8367 0.834 0.8302 0.8384 0.8399

 Macro-F1 0.3345 0.3345 0.2345 0.3475 0.3538

 Micro-F1 0.5026 0.5026 0.2026 0.5103 0.5181

 AUC 0.9107 0.9061 0.8761 0.9194 0.9260

0.5 F1-score 0.8393 0.7242 0.7842 0.888 0.8947

 Macro-F1 0.334 0.334 0.294 0.3421 0.3474

 Micro-F1 0.5016 0.50169 0.49169 0.5119 0.5174

 AUC 0.9164 0.8793 0.9793 0.9794 0.9865

0.3 F1-score 0.7282 0.6355 0.5855 0.7636 0.7711

 Macro-F1 0.3339 0.3339 0.3139 0.3423 0.3497

 Micro-F1 0.5013 0.5013 0.4913 0.5125 0.5205

 AUC 0.7668 0.7044 0.9044 0.9236 0.9293

TABLE 7. RESULTS OF DIFFERENT MODELS ON VARIOUS TRAINING

SIZES FOR BRAZILIAN DATASET

Trainin

g Size

Metrics GRU LSTM Phased

LSTM

Cluster-

LSTM

Cluster

-

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 13

 weight

ed

LSTM

0.9 F1-score 0.8821 0.8361 0.8261 0.8889 0.8896

 Macro-F1 0.3782 0.3831 0.3431 0.3773 0.3861

 Micro-F1 0.5234 0.5282 0.5222 0.5347 0.5421

 AUC 0.9512 0.9338 1.0078 0.9672 0.9615

0.7 F1-score
0.8842 0.8845 0.8398 0.9004 0.9037

 Macro-F1 0.3876 0.3955 0.2842 0.4042 0.4148

 Micro-F1 0.5256 0.5236 0.2556 0.5388 0.5471

 AUC 0.9365 0.9327 0.9121 0.9468 0.9593

0.5 F1-score 0.8982 0.7751 0.8341 0.9482 0.9561

 Macro-F1 0.3824 0.3741 0.3421 0.3934 0.4087

 Micro-F1 0.5283 0.5281 0.5181 0.5402 0.5467

 AUC 0.9568 0.9192 1.0193 1.0194 1.0365

0.3 F1-score 0.7781 0.6851 0.6351 0.8632 0.8711

 Macro-F1 0.3827 0.3813 0.3611 0.3945 0.4021

 Micro-F1 0.5288 0.5253 0.5153 0.5365 0.5445

 AUC 0.8768 0.8244 0.9446 0.9638 0.9793

Upon closer inspection of the results, it is evident that

our two models maintain a competitive edge in F1-score

metrics, indicating its proficiency in achieving a balance

between precision and recall. The Macro-F1 scores

highlight the model’s ability to generalize well across

different classes, while the Micro-F1 scores emphasize its

performance at the instance level. Additionally, the AUC

values reveal our proposed models superior

discriminatory power, showcasing its effectiveness in

distinguishing fraudulent and non-fraudulent instances.

This consistent and superior performance across diverse

training sizes underscores the reliability and adaptability

of our models, making them a compelling choice for fraud

detection applications

5.5 Experiments on a real-world dataset

The evaluation results of the proposed method compared to

other algorithms for three cases of 30%, 60%, and 90% training

data and the case of the 5-fold cross-validation algorithm are

shown in Table 8.

TABLE 8. RESULTS OF DIFFERENT MODELS ON VARIOUS TRAINING

SIZES FOR REAL-WORLD DATASET

Train

ing

Size

Metrics GRU LST

M

Phased

LSTM

Cluster-

LSTM

Cluster-

weighted

LSTM

0.9 F1-score 0.7349 0.7379 0.7179 0.7382 0.7425

 Macro-

F1

0.3451 0.3451 0.3351 0.3457 0.3485

 Micro-

F1

0.5269 0.5269 0.5249 0.5263 0.5352

 AUC 0.8419 0.8430 0.9430 0.9520 0.9625

0.7 F1-score 0.6912 0.7302 0.7583 0.7592 0.7620

 Macro- 0.3475 0.3475 0.2475 0.3475 0.3515

F1

 Micro-

F1

0.5326 0.5326 0.2326 0.5326 0.5430

 AUC 0.8460 0.8464 0.8164 0.8561 0.8572

0.5 F1-score 0.6943 0.6172 0.7072 0.7115 0.7266

 Macro-

F1

0.3505 0.3505 0.3505 0.3685 0.3706

 Micro-

F1

0.5396 0.5396 0.5402 0.5494 0.5508

 AUC 0.8587 0.8489 0.9489 0.9581 0.9632

0.3 F1-score 0.2150 0.1201 0.0701 0.2368 0.2368

 Macro-

F1

0.3566 0.3566 0.3666 0.3752 0.3892

 Micro-

F1

0.5543 0.5543 0.5443 0.5636 0.5756

 AUC 0.8341 0.8419 0.9256 0.9360 0.9402

According to Table 8, the evaluation results showcase the

performance of various models, GRU, LSTM, Phased LSTM,

and our two proposed model, across different training sizes

(0.9, 0.7, 0.5, and 0.3) on the real-world dataset. F1-score,

Macro-F1, Micro-F1, and AUC metrics were employed to

assess the models' effectiveness in fraud detection.

At a training size of 0.9, the proposed model outperformed

other models with the highest F1-score of 0.7425, indicating a

strong balance between precision and recall. The AUC of

0.9625 further underscores its robust discriminative ability.

Although the Micro-F1 values were comparable, the proposed

model demonstrated superior performance in capturing the

nuances of fraud instances.

As the training size reduced to 0.7, the proposed model

maintained competitive F1-score and AUC values, showcasing

its resilience to variations in the dataset size. Conversely, both

GRU and LSTM exhibited a decrease in performance,

highlighting the proposed model's efficacy in handling smaller

training sets.

At a more constrained training size of 0.5, the proposed model

continued to exhibit competitive performance, maintaining a

higher F1-score and AUC than its counterparts. This suggests

that the proposed model is particularly effective in scenarios

with limited training data, making it suitable for real-world

applications where data availability may be restricted.

When the training size further decreased to 0.3, all models

experienced a decline in performance, with the proposed model

demonstrating the highest F1-score of 0.2368. Although the

reduced dataset size poses challenges, the proposed model still

exhibited notable fraud detection capabilities.

In conclusion, the evaluation results emphasize the

effectiveness of the proposed model across varying training

sizes, outperforming other models in almost all terms. This

highlights its potential as a robust solution for fraud detection

in credit card transactions, particularly in scenarios with limited

training data.

Fig. 4 Different 𝑘 values versus distortion values

5.6 Optimal number of clusters

Choosing the best value for 𝑘 (the number of clusters) is

important for K-means because the number of clusters can have

a large impact on the performance of the algorithm. To choose

the best value of 𝑘 for the K-means clustering method, the

distortion method is used, which is one of the common methods

for choosing the best number of clusters (𝑘) in the K-means

algorithm. This method is known as a simple and conceptual

criterion for choosing 𝑘 and is based on the amount of data

variance within the clusters. As seen in Figure 4, the best value

for 𝑘 is 5.

5.7. Effect of cluster count on metrics

The European dataset is more imbalanced compared to the

Brazilian dataset, with the proportion of fraud samples in the

European dataset being 0.172% of all transactions, while in the

Brazilian dataset, fraud constitutes 3.74% of all transactions.

Furthermore, we demonstrate the impact of the number of

clusters on evaluation metrics for each of the datasets.

In the European dataset, as cluster count increases, the number

of fraud samples exists in each cluster compared to normal ones

become significantly lower and the precision decreases for

higher cluster count than 3. This reduction occurs because the

number of fraud samples decreases drastically in the clusters,

causing the model to bias towards normal ones and fail to

correctly identify fraud samples, resulting in a decrease in

precision. Consequently, the recall increases as shown in Figure

5.

Figure 5. Values of precision, recall, and F1-score for

different values of 𝑘 for European dataset

Figure 6 shows the precision, recall, and F1-score values of the

proposed method for different values of 𝑘 on Brazilian dataset.

In the Brazilian dataset, due to its higher balance compared to

the European dataset, the precision values increase up to the

number of clusters k=5 and then their growth rate decreases. As

can be seen in Figure 6, as the number of clusters increases, the

precision also increases. This increase in precision occurs at a

faster rate up to k=5, and from this point onward, the growth

rate decreases because the sensitivity of the LSTMs to the

samples is increased and overtraining occurs, thus reducing the

recall due to the generalization decrease. On the other hand,

with the reduction of the number of clusters, the information

conflict of the samples increases, the precision decreases, and

the recall also increases due to the increase in generalization.

Figure 6. Values of precision, recall, and F1-score for

different values of 𝑘 for Brazilian dataset

6. Conclusions

In this study, we introduce a novel approach for credit card

fraud detection, leveraging a fusion of clustering techniques and

a weighted Long Short-Term Memory (LSTM) model. Our

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 15

experimental results underscore the significant superiority of

this proposed method over comparative approaches GRU,

LSTM, PhasedLSTM, specifically showcasing enhanced F1-

score, Macro-F1, Micro-F1 and AUC metrics. The efficacy of

our method stems from its ability to extract clustered

information from the dataset, mitigating information conflicts

during the learning process.Rigorous experimentation on a real-

world dataset of card-to-card transactions highlights the

superior performance of our proposed method, particularly

excelling when trained on substantial datasets ranging from

60% to 90% of the total data. The method's notable strengths

are particularly evident in F1-score, Macro-F1, Micro-F1 and

AUC criteria.

The observed trends across varying training sizes underscore

the adaptability and robustness of the proposed model,

positioning it as a versatile solution for fraud detection in

dynamic scenarios. The adaptability of the proposed method in

accommodating varying cluster sizes further enhances its

practicality. With its potential to significantly bolster fraud

detection in credit card transactions, this method holds promise

for organizations and banks, promising heightened security and

customer trust. For future work, the utilization of complex

ensemble approaches, such as boosting or bagging, can be

explored for combining multiple LSTM models to improve

performance and accuracy.

REFERENCES

1. H. Fanai and H. Abbasimehr, "A novel combined approach

based on deep Autoencoder and deep classifiers for credit

card fraud detection," Expert Systems with Applications,

vol. 217, p. 119562, 2023.

2. A. Abdallah, M. A. Maarof, and A. Zainal, "Fraud

detection system: A survey," Journal of Network and

Computer Applications, vol. 68, pp. 90-113, 2016.

3. S. Motie and B. Raahemi, "Financial fraud detection using

graph neural networks: A systematic review," Expert

Systems With Applications, p. 122156, 2023.

4. E. Esenogho, I. D. Mienye, T. G. Swart, K. Aruleba, and

G. Obaido, "A neural network ensemble with feature

engineering for improved credit card fraud detection,"

IEEE Access, vol. 10, pp. 16400-16407, 2022.

5. W. Hilal, S. A. Gadsden, and J. Yawney, "Financial fraud:

a review of anomaly detection techniques and recent

advances," Expert Systems With Applications, vol. 193, p.

116429, 2022.

6. Y. Tian and G. Liu, "Transaction Fraud Detection via

Spatial-Temporal-Aware Graph Transformer," arXiv

preprint arXiv:2307.05121, 2023.

7. D. V. Kute, B. Pradhan, N. Shukla, and A. Alamri, "Deep

learning and explainable artificial intelligence techniques

applied for detecting money laundering–a critical review,"

IEEE Access, vol. 9, pp. 82300-82317, 2021.

8. A. N. Eddin et al., "Anti-money laundering alert

optimization using machine learning with graphs," arXiv

preprint arXiv:2112.07508, 2021.

9. Y. Bao, G. Hilary, and B. Ke, "Artificial intelligence and

fraud detection," Innovative Technology at the Interface of

Finance and Operations: Volume I, pp. 223-247, 2022.

10. B. Wu et al., "Advancement of management information

system for discovering fraud in master card based

intelligent supervised machine learning and deep learning

during SARS-CoV2," Information Processing &

Management, vol. 60, pp. 103-231, 2023.

11. Y. Xie et al., "Learning transactional behavioral

representations for credit card fraud detection," IEEE

Transactions on Neural Networks and Learning Systems,

2022.

12. J. F. Roseline et al., "Autonomous credit card fraud

detection using machine learning approach," Computers

and Electrical Engineering, vol. 102, p. 108132, 2022.

13. J. Guo, G. Liu, Y. Zuo, and J. Wu, "Learning sequential

behavior representations for fraud detection," in 2018

IEEE International Conference on Data Mining (ICDM),

pp. 127-136, 2018.

14. A. Agarwal et al., "Hybrid CNN-BILSTM-attention based

identification and prevention system for banking

transactions," NVEO-Natural Volatiles & Essential Oils

Journal, vol. 7, pp. 2552-2560, 2021.

15. B. Fakiha, "Forensic Credit Card Fraud Detection Using

Deep Neural Network," Journal of Southwest Jiaotong,

vol. 58, 2023.

16. G. Zioviris, K. Kolomvatsos, and G. Stamoulis, "Credit

card fraud detection using a deep learning multistage

model," The Journal of Supercomputing, vol. 78, pp.

14571-14596, 2022.

17. J. Raval et al., "RaKShA: A Trusted Explainable LSTM

Model to Classify Fraud Patterns on Credit Card

Transactions," Mathematics, vol. 11, p. 1901, 2023.

18. D. Wang, J. Lin, and P. Cui et al., "A semi-supervised

graph attentive network for financial fraud detection," in

2019 IEEE International Conference on Data Mining

(ICDM), pp. 598-607, 2019.

19. Y. Jiang et al., "Telecom fraud detection via hawkes-

enhanced sequence model," IEEE Transactions on

Knowledge and Data Engineering, vol. 35, pp. 5311-5314,

2022.

20. Y. Liu, Z. Sun, and W. Zhang, "Improving fraud detection

via hierarchical attention-based Graph Neural Network,"

Journal of Information Security and Applications, vol. 72,

p. 103399, 2023.

21. L. Wang, P. Li, K. Xiong, J. Zhao, and R. Lin, "Modeling

heterogeneous graph network on fraud detection: a

community-based framework with attention mechanism,"

in Proceedings of the 30th ACM International Conference

on Information & Knowledge Management, pp. 1959-

1968, 2021.

22. G. Liu, J. Guo, Y. Zuo et al., "Fraud detection via

behavioral sequence embedding," Knowledge and

Information Systems, vol. 62, pp. 2685–2708, 2020.

23. O. Imran and A. Yakoob, "Leveraging LSTM and

Attention for High-Accuracy Credit Card Fraud

Detection," Fusion: Practice and Applications, vol. 17, no.

1, pp. 209-220, 2025.

24. Trinh, T. K., & Wang, Z. (2024). Dynamic graph neural

networks for multi-level financial fraud detection: A

temporal-structural approach. Annals of Applied

Sciences, 5(1).

25. A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G.

Bontempi, "Calibrating probability with undersampling for

unbalanced classification," in 2015 IEEE Symposium

Series on Computational Intelligence, pp. 159-166, 2015.

26. M. F. Gadi, X. Wang, and A. P. do Lago, "Credit card fraud

detection with artificial immune system," in International

Conference on Artificial Immune Systems, pp. 119-131,

27. J. Jurgovsky et al., "Sequence classification for credit-card

fraud detection," Expert Systems with Applications, vol.

100, pp. 234-245, 2018.

