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Abstract-- Traditional fraud detection models often overlook 

the sequential and temporal relationships between transactions, 

which can be crucial for identifying fraudulent activities. To 

address this, a new data-to-graph mapping approach is proposed, 

transforming user data into a transaction graph and constructing 

a bipartite graph with source and target nodes. The main goal is 

to leverage the temporal order of transactions to capture changes 

effectively and identify distinct fraud patterns. The method begins 

by creating a weighted graph based on transaction amounts and 

their temporal sequence. For feature extraction, the Probabilistic 

FraudWalk method—an advanced version of the traditional 

FraudWalk algorithm—is used. This method enhances the 

random walk process by incorporating probability-based 

neighbor selection, dynamically choosing the next node based on 

the probability distribution of common neighbors. To balance the 

dataset, the Synthetic Minority Over-sampling Technique 

(SMOTE) is combined with the Edited Nearest Neighbors (ENN) 

method, forming SMOTE-ENN. To reduce information conflict, 

data is clustered using K-means clustering. A weighted Long 

Short-Term Memory (LSTM) model is then trained on each 

cluster, with weights determined by the minimum distance 

between samples of different classes within the same cluster. The 

proposed LSTM model demonstrates superior performance on 

benchmark datasets, effectively detecting fraud in real-world 

card-to-card transactions. This approach enhances the security of 

financial information for banks and financial institutions, showing 

that incorporating temporal and sequential data significantly 

improves fraud detection accuracy and reliability. 

 

 
Index Terms-- Fraud detection, Bipartite graph, Node 

embedding, Weighted LSTM, Source neighbor sequence, Target 

neighbor sequence, Temporal node embedding 
 

1. INTRODUCTION 

In recent years, due to the growth of e-commerce and the use of 

online payments, the financial industry has witnessed a 

significant increase in the volume and complexity of financial 
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transactions, leading to a surge in fraudulent activities [1],[2].  

In the 2022 report from the Canadian Anti-Fraud Centre 

(CAFC), it was noted that over 91,190 fraud incidents were 

documented, with 57,055 individuals suffering losses that 

surpassed $531 million [3]. This highlights the fact that 

financial fraud can result in the loss of large amounts of money 

and undermine trust in financial institutions and systems. This 

recent rise in fraudulent activities underscores the crucial need 

for effective fraud detection. And since financial domains 

include such as cryptocurrency, online payment transactions, 

taxation, medical insurance, and credit cards. There are variants 

of fraud, among which this study is focused on card transaction. 

The increasing credit card usage has brought about a constant 

increase in fraudulent transactions [3].  

Fraudulent credit card transactions have severely impacted 

the financial industry. According to a recent study, credit card 

fraud resulted in losses of approximately 27.85 billion dollars 

in 2018, marking a 16.2% rise from the 23.97 billion dollars lost 

in 2017. Projections suggest that these losses could escalate to 

35 billion dollars by 2023 [4]. Hence, this recent rise in 

fraudulent activities underscores the crucial need for effective 

fraud detection. Therefore, identifying this form of fraud early 

can avert its substantial financial impact. 

Traditional approaches for fraud detection are included rule-

based systems and classical machine learning techniques [5].In 

general, rule - based systems rely on human-designed rules with 

expert knowledge to assess the likelihood that fraud has 

occurred, which cannot perform well in complex environments. 

Also, the fixed rules limit the algorithm’s ability to adapt to 

dynamic fraud patterns [6].To address the limitations of rule-

based systems, new transaction monitoring methods utilizing 

data science and machine learning techniques have been 

introduced [7],[8]. 

The review of existing research suggests that a majority of 

scholars in this area tend to employ a range of data mining 
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techniques [7],[9]. Classical machine learning techniques 

achieving statistical features from transaction attributes such as 

time, location, and amount is feasible. However, incorporating 

unstructured data is challenging to extract. Furthermore, 

struggle to handle high-dimensional data, non-linear 

relationships, complex patterns that are common in financial 

fraud detection, temporal dependence between transactions, 

capturing the interaction between transactions presents 

difficulties [1],[2]. The origins of these issues can be traced to 

the swift advancement of contemporary technologies, which 

has rendered traditional methods ineffective against new 

fraudulent techniques. Specifically, these conventional 

approaches rely on descriptive statistics [1],[2] as features to 

incorporate historical data [3]. These statistics typically 

describe credit card transactions using factors such as 

transaction time, amount, and merchant category, but often fail 

to account for precise sequential information. 

Put differently, interactions between users can occur on 

multiple levels simultaneously. User can interact with each 

other and deposit or withdraw their money through several 

intermediary nodes cards and also communications between 

users can change over time. This means that, the intermediary 

nodes between user and the way they interact can change over 

time.  

So, the time sequence in user's communications with each 

other can be a key factor, and different patterns can appear by 

changing the time sequence. For example, the descriptive 

statistics is the number of transactions or the total amount spent 

by the cardholder in the last 24 hours for a merchant category 

or country. In these descriptive features, communications 

between senders and receivers are extracted without 

considering the time sequence of these communications. For 

instance, person A deposits amount to person B’s account, and 

then person B deposits amount b to person C’s account. In this 

case, the connection between A and C is through B, and this 

should be considered in extracting transaction fraud, and not 

only the source, i.e., depositor and the target, i.e., receiver 

should be considered.  

Therefore, these embedded connections between users play 

an important role in making fraud undetectable. 

In this study, the occurrence of fraud in card transaction of 

Iranian banks, which are the most vital components of the 

country’s economy, has been studied. Consequently, a novel 

approach model is proposed, which consists of two phases. In 

first phase, the features of communications between users are 

extracted and are used in the fraud detection process. In this 

way, to extract the embedded features between the source and 

target of transactions, the mapping of user's information into a 

graph is utilized, and a graph of transactions is created between 

the source user as the source Node and the destination user as 

the target Node. This graph appears as a bipartite graph, and the 

edges are marked with timestamps and amounts. The two 

concepts of source neighbor sequence and target neighbor 

sequence are exploited for embedding communication between 

users.  

Then, by forming a weighted graph based on these two types 

of sequences, we perform the probabilistic fraud walk and the 

embedding features are extracted for each node. The second 

phase solves the conflict is created in extracting embedded 

information with each other, which makes them either ignored 

or ineffective in the learning process. For this purpose, a multi-

model approach is used. Hence, training data is first clustered 

so that each cluster maintains its information. Then, , due to 

ability to learn intricate features and model nonlinear 

relationships in the deep learning models, making them well - 

suited for identifying subtle, hidden patterns indicative of 

fraudulent activities, is utilized to train each cluster. Each 

cluster discovers its information separately.  

In experiments, we compared the proposed method on 

benchmark datasets such as European and Brazilian in terms of 

F1-score, Macro-F1, Micro-F1 and AUC, which shows the 

superiority of the proposed method over other existing methods. 

Moreover, according to the research case study dataset of card-

to-card banking transactions of Iranian customers, the results 

demonstrate the obvious superiority of the proposed method. 

    The contributions of this paper are as follows: 

Temporal Sequence Embedding: Unlike traditional 

methods that rely on descriptive statistics of transactions, this 

approach explicitly models the temporal sequence of 

transactions. By transforming user data into a transaction graph, 

constructing a bipartite graph with source and target nodes, and 

utilizing source and target neighbor sequences, the method 

captures the dynamic interactions between users over time. This 

is a key improvement, as the time sequence in user 

communications can reveal distinct fraud patterns.  

Cluster-Weighted LSTM: To address the issue of 

information conflict, where different data points or areas with 

varying densities can interfere with the learning process, the 

training data is first clustered using K-means. This allows for 

the learning of local information of data with similar behavior.   

A weighted LSTM model is then trained on each cluster, 

with weights determined by the minimum distance between 

samples of different classes within the same cluster. This 

approach allows each cluster to learn its information separately, 

effectively capturing the subtle and hidden patterns indicative 

of fraudulent activities. The weighting mechanism enhances the 

LSTM’s ability to classify marginal samples, which are often 

the most challenging to identify, thus leading to improved 

accuracy in fraud detection. 

    Enhancement of the Random Walk: The proposed method 

enhances the random walk by incorporating probability-based 

neighbor selection and temporal order consideration. This is an 

improvement because the traditional FraudWalk method selects 

the next node randomly during walks and does not consider 

intermediary nodes. By prioritizing the selection of the next 

node based on the highest number of common neighbors within 

a temporal window, the Probabilistic FraudWalk generates 

more effective walks and embeddings, and is more sensitive to 

complex patterns of collaboration. By considering temporal 

constraints and the probability distribution of common 

neighbors, the method ensures a more comprehensive 

representation of the network. 

   The reminder of the paper is organized as follows. Section 2 

introduces the related literature. Section 3 explains the concepts 
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related to the extraction of embedded temporal 

communications. Section 4 introduces the proposed method, 

and Section 5 describes the real-world and benchmark datasets 

and presents the experimental results and discussion. Finally, 

conclusions are given in Section 6. 

2. RELATED WORK 

 The increasing prevalence of credit card fraud, driven by the 

rise in online transactions, has spurred extensive research into 

advanced fraud detection techniques. This section 

systematically categorizes prior studies into three main 

approaches: traditional machine learning, deep learning, and 

graph-based methods. Each category is discussed, followed by 

a comparative table summarizing the key features of the 

reviewed studies. 

 

2.1 Traditional Machine Learning Approaches 

Traditional machine learning methods, such as logistic 

regression and random forests, have been widely applied to 

fraud detection due to their interpretability and effectiveness 

with structured data. Wu et al. [10] utilized an advanced 

management information system combining logistic regression, 

random forests, and Long Short-Term Memory (LSTM) 

networks to detect Mastercard fraud during the COVID-19 

pandemic. Their approach leveraged statistical features but 

struggled with capturing temporal dependencies. Similarly, 

Esenogho et al. [4] proposed a neural network ensemble with 

feature engineering, achieving improved performance on credit 

card fraud datasets by incorporating domain-specific features. 

However, these methods often fail to model complex 

relationships and temporal dependencies. 

2,2 Deep Learning Approaches 

Deep learning methods have gained popularity in fraud 

detection due to their ability to learn complex and non-linear 

patterns in transactional data. Xie et al. [11] developed a time-

aware historical-attention-based LSTM (TH-LSTM) model that 

automatically detected fraudulent patterns by capturing 

behavioral changes induced by sequential user transactions. 

Roseline et al. [12] proposed an LSTM-RNN with an attention 

mechanism, enhancing fraud detection performance by 

leveraging intricately connected feature vectors. Guo et al. [13] 

introduced a Historical Attention-based and Interactive LSTM 

(HAInt-LSTM) model to identify sequential patterns and flag 

deviations as potential fraud. Agarwal et al. [14] employed a 

hybrid CNN-BiLSTM-Attention model, combining 

convolutional neural networks (CNN) and bidirectional LSTM 

with an attention mechanism, achieving commendable accuracy 

in detecting fraudulent activities. Similarly, Fakiha [15] 

proposed an LSTM-Attention model that improved 

performance by selecting relevant features and transaction 

sequences. Zioviris et al. [16] presented a multistage deep 

learning framework using autoencoders and deep convolutional 

neural networks for fraud detection through feature selection 

and latent representation. Raval et al. [17] integrated 

explainable artificial intelligence (XAI) with LSTM, 

developing an explainable LSTM (X-LSTM) model that 

enhanced transparency and accuracy in identifying fraud 

patterns. 

2.3 Graph-Based Approaches 

 Graph-based methods focus on the relationships and 

interactions between users in transactional networks, making 

them suitable for modeling complex fraud patterns. Wang et al. 

[18] proposed a semi-supervised attentive graph neural network 

(SemiGNN) with a hierarchical attention mechanism, utilizing 

both labeled and unlabeled data to identify factors contributing 

to fraud. Jiang et al. [19] extracted source and target neighbor 

sequences from a temporal bipartite network and integrated the 

Hawkes process into LSTM to enhance historical influence 

learning. Liu et al. [20] developed a Hierarchical Attention-

based Graph Neural Network (HA-GNN) with weighted 

adjacency matrices to detect fraudulent activities while 

mitigating camouflage risks. Wang et al. [21] proposed a 

Community-based Framework with Attention mechanism for 

analyzing large-scale Heterogeneous graphs (C-FATH), 

improving detection accuracy by filtering structurally 

inconsistent nodes. Lastly, the FraudWalk method in [22] 

extracted connections between source and target nodes in a 

bipartite graph but was limited by random node selection and 

lack of intermediary node consideration. Our proposed method 

overcomes these limitations by incorporating probability-based 

neighbor selection and temporal sequence consideration, 

enhancing fraud detection performance. 

Recent studies have further advanced temporal and 

imbalanced data handling in fraud detection. Imran and Yakoob 

[23] proposed a credit card fraud detection system that 

integrates Synthetic Minority Oversampling Technique 

(SMOTE) with an attention mechanism and dual LSTM layers 

to model long-term dependencies in transaction sequences, 

achieving high accuracy in predicting fraudulent transactions.. 

Kim et al. [24] proposed a dynamic graph convolutional 

network (DGCN) that incorporates temporal constraints and 

attention mechanisms to detect evolving fraud patterns in real-

time transaction streams, offering a robust solution for dynamic 

financial environments. 

Table I compares the key features of the reviewed studies, 

including the model used, dataset, key techniques, and 

evaluation metrics. This table and systematic categorization 

provide a comprehensive overview of existing methods, 

highlighting the strengths and limitations of each approach. Our 

proposed method, by integrating temporal sequence 

embedding, cluster-weighted LSTM, and probability-based 

neighbor selection, overcomes the limitations of prior methods 

and improves fraud detection performance. 
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                  Figure 1. Temporal bipartite network 

 
TABLE I 

Comparison of key features of the reviewed studies 

Reference Model Dataset Key Techniques Evaluation Metrics 

[4] Neural Network 

Ensemble 

Credit Card Data 

 

Feature Engineering, 

Neural Network 

Ensemble 

Accuracy, F1-Score 

 

[10] Logistic Regression, 

Random Forest, 

LSTM 

Mastercard Data 

 

Information System, 

Deep Learning 

Accuracy, AUC 

 

[11] TH-LSTM 

 

Transactional Data 

 

Time-aware Historical 

Attention, LSTM 

F1-Score, AUC 

 

[12] LSTM-RNN 

 

Credit Card Data 

 

Recurrent Network, 

Attention Mechanism 

Accuracy, F1-Score 

 

[13] HAInt-LSTM 

 

Sequential Behavioral 

Data 

 

Historical Attention, 

LSTM 

 

F1-Score, Accuracy 

 

[14] CNN-BiLSTM-

Attention 

 

Credit Card Data 

 

Convolutional 

Network, Bidirectional 

LSTM, Attention 

Accuracy, F1-Score 

 

[15] LSTM-Attention 

 

Credit Card Data 

 

Feature Selection, 

Attention, LSTM 

 

F1-Score, AUC 

 

[16] Autoencoder, Deep 

CNN 

 

Transactional Data 

 

Multistage 

Framework, Feature 

Selection 

F1-Score, AUC 

 

[17] X-LSTM Credit Card Data Explainable AI, 

LSTM 

Accuracy, F1-Score 

[18] SemiGNN 

 

Transactional Data 

 

Semi-supervised 

Graph Network, 

Hierarchical Attention 

F1-Score, AUC 

 

[19] Hawkes-LSTM 

 

Temporal Bipartite 

Network 

 

Hawkes Process, 

Historical Attention, 

LSTM 

F1-Score, AUC 

 

[20] HA-GNN 

 

Transactional Data 

 

Hierarchical 

Attention-based Graph 

Network, Weighted 

Adjacency 

F1-Score, AUC 

 

[21] C-FATH 

 

Heterogeneous Graphs 

 

Community-based 

Framework, Attention 

Mechanism 

F1-Score, AUC 

 

[22] FraudWalk 

 

Bipartite Network Source and Target 

Sequence Extraction 

 

F1-Score, AUC 
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3. PRELIMINARIES 

   In the real world, the communications between the financial 

accounts of the sender and receiver at different times form a 

temporal bipartite network, where sender accounts act as source 

users, receiver accounts act as target users, and a directional 

edge with a timestamp indicates that a specified amount has 

been sent from the sender's account to the receiver’s account. 

Definition of temporal bipartite graph 

A temporal bipartite graph is a graph that has edges between 

source and target nodes along with temporal connections 

between nodes. A temporal bipartite graph is defined as 𝐺 =<
𝑈, 𝑉, 𝐸 >, where 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} represents the source 

nodes, 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚} represents the target nodes, and 𝐸 is 

a set of edges formed through the communications between 𝑈 

and 𝑉 at different times 𝑡 [19]. , consider the temporal bipartite 

graph shown in Fig. 1. 

   With the help of this graph, the dynamic changes in the graph 

can be clearly displayed. The target nodes can be expressed as 

a sequence of nodes arranged in ascending order, called the 

target neighbor sequence, as follows: 

Definition of target neighbor sequence 

According to a source node 𝑢 in a temporal bipartite graph and 

its target nodes 𝑇𝑁(𝑢), the target neighbor sequence for the 

user 𝑢 is displayed as 𝑇𝑁𝑆(𝑢) = [(𝑡1, 𝑣1), (𝑡2, 𝑣2), … , (𝑡𝑛, 𝑣𝑛)] 
in time order. Each tuple shows the communication between the 

source node 𝑢 and the target neighbor node 𝑣𝑖 ∈ 𝑇𝑁(𝑢) at time 

𝑡𝑖. 

   In other words, connections between source nodes can be 

achieved by any target node, so that for each target node, a time 

sequence of source nodes that have interacted with the target 

node at different times is obtained. This sequence of source 

nodes represents the embedded communications between these 

nodes [19]. 

Definition of source neighbor sequence 

According to a target node 𝑣 in a temporal bipartite graph and 

its related source nodes 𝑆𝑁(𝑣), the source neighbor sequence 

for the user 𝑣 is displayed as 𝑆𝑁𝑆 =
[(𝑡1, 𝑢1), (𝑡2, 𝑢2), … , (𝑡𝑚, 𝑢𝑚)] in time order, in which each 

tuple shows the connection between the target node 𝑣 and the 

source neighbor node 𝑢𝑖 ∈ 𝑆𝑁(𝑣) at time 𝑡𝑖. 

4. PROPOSED METHOD 

In the proposed method, we need to obtain different features of 

users and their behavior in interaction with each other to 

distinguish fraudulent user from normal user. Many features are 

embedded and can be extracted by analyzing users' behavior 

over time via deep learning methods. 

For example, consider the network shown in Fig. 2. In this 

network, 𝑎𝑖, representing the financial transaction amount, and 

𝑡𝑖, representing the transaction time, have great impacts on the 

communication of nodes.  

 
  Figure 2. Card-to-card transfer network. 

 

 The general algorithm of the proposed method is as follows. 

   The first step, Construct source neighbor sequences and the 

second step Construct target neighbor sequences.  
 

Then, we created a weighted directed graph. In the fourth step, 

extract node embedding for each node of the graph based on the 

Probabilistic Fraud Walk. Next, split the dataset into training 

and testing samples. The sixth step, Oversample training 

samples based on SMOTE-ENN technique.  Afterwards Cluster 

training samples and the next step train a weighted LSTM 

model for each cluster based on the distance to the opposite 

sample in a different class. Finally predict the label of each 

testing sample based on the corresponding LSTM trained for its 

cluster. The proposed method is shown in Figure 3. 

 



 

 

 
 

 

 

 

 

 

 

The steps of the proposed method are described below. 

4.1. Constructing a source neighbor sequence 

To construct this sequence, first, for each target node, the 

corresponding source nodes are listed in chronological order. 

Then, the sequences obtained for each target node are listed in 

the source neighbor sequence set. 

This sequence of source nodes shows the communications of 

these nodes regarding their interactions with the target nodes. 

For example, suppose we have the following sequences: 
{𝑢1, 𝑢2, 𝑢10, 𝑢20} 

{𝑢1, 𝑢2} 

{𝑢1, 𝑢2, 𝑢3, 𝑢5} 

These sequences show that usually the two nodes 𝑢1 and 𝑢2 

appear next to each other, which means that they have been 

connected with a series of common target nodes in a 

consecutive time interval. Therefore, there can be an embedded 

connection between them. 

4.2. Constructing a target neighbor sequence 

In these sequences, the communications between the target 

nodes are specified. For example, as can be seen, two nodes 𝑣2 

and 𝑣10 are placed next to each other most of the time, and this  

indicates that many source nodes have interacted with 𝑣10 

without interruption after interacting with 𝑣2. 

{𝑣1, 𝑣2, 𝑣10, 𝑣11} 
{𝑣9, 𝑣2, 𝑣10, 𝑣20} 

Figure 3. Proposed method. 

 

 

Therefore, there can be embedded communications between the 

two nodes 𝑣2 and 𝑣10, and we can extract this information with 

the help of target neighbor sequences. 

4.3. Constructing a graph between nodes according to their 

communication 

After extracting the sequences between the source nodes 

(source neighbor sequence) and between the target nodes 

(target neighbor sequence), a graph of nodes is constructed 

using these sequences. 

According to the relation below, edges are created between the 

nodes in the sequence. 

 
𝐸 = {(𝑢𝑖 , 𝑢𝑖+1)|𝑢𝑖 ∈ 𝑆𝑛𝑜𝑑𝑒} 

The weight of the edges is as follows: 

𝑊𝑢𝑖,𝑢𝑖+1
= ∑(𝐴𝑢𝑖,𝑣 + 𝐴𝑢𝑖+1,𝑣)

𝑢∈𝑉

 

where 𝑣 is the set of common nodes between 𝑢𝑖 and 𝑢𝑖+1, and 

𝐴𝑢𝑖,𝑣 represents the amount between the nodes 𝑢𝑖 and 𝑣. 

In this way, for any two consecutive nodes in different 

sequences, the desired weight is obtained from the sum of the 

  

 

4.1 Source Neighbor Sequences 

4.2 Target Neighbor Sequences 

4.3 Graph Construction according to the Sequences 

4.4 Node Embedding with Probabilistic Fraud Walk 

4.5 Data Partitioning 

4.6 oversampling 

4,7 Clustering Training Data 

4.8 LSTM Training for each Cluster 

4,9 Testing process  



Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 7 

 

 

 

amounts of the two nodes, and as a result, the corresponding 

weighted graph between the nodes is constructed. 

4.4. Generating node embeddings for graph nodes 

According to the feature of time sequence between the nodes as 

well as the feature of amount for the nodes in the graph, the 

neighborhood information between the nodes is considered in 

this step. This neighborhood information is determined 

according to the paths between the two nodes. In other words, 

the shorter the distance or path between the two nodes, the 

stronger their connections with each other, and the farther this 

distance is, the weaker their connections will be. 
  
Algorithm 1: Probabilistic FraudWalk 

Data: Bipartite network G = (U, V ; E), time constraint δt, 

embedding size d, walk length l, window size w 

Result: Matrix of node embeddings X ∈ R|G|×d 

// Initialize the embedding matrix 

X = Sample From Distribution(R|G|×d); 

for j = 0 to MaxIterations do 

         // Shuffle the nodes in the network 

          Mj = Shuffle(U ∪ V ); 

       for each vi ∈ Mj do 

            // Conduct Constrained Random Walk with probability 

           Wvi = Constrained Random Walk With Probability(vi, δt, 

                l, w); 

           // Apply SkipGram 

          SkipGram(X, Wvi ); 

           

       end 

 

 

end 

 

For constructing embedding features of nodes, we use a 

Probabilistic FraudWalk that reflects the addition of the 

probability-based neighbor selection in the Constrained 

Random Walk, distinguishing it from the original FraudWalk 

algorithm [25]. 

Probabilistic FraudWalk is an enhanced version of the 

traditional FraudWalk algorithm designed to capture nuanced 

interactions within a bipartite network, particularly in fraud 

detection scenarios. It has been presented in Algorithm 1. 

In this modified approach, a novel step has been introduced 

during the random walk process, known as Constrained 

Random Walk with Probability-based Neighbor Selection. 

Unlike the original random walk, Probabilistic FraudWalk 

dynamically selects the next node to traverse based on the 

probability distribution of common neighbors. This strategic 

selection is rooted in the notion that nodes sharing more 

common neighbors in their respective target sequences are 

more likely to be relevant for capturing higher-order 

interactions. By integrating this probability-based mechanism, 

Probabilistic FraudWalk aims to enhance the algorithm's 

sensitivity to complex patterns of collaboration among source 

nodes, thereby offering a more comprehensive representation 

for subsequent analysis. 

Constrained Random Walk with Probability-based Neighbor 

Selection is the core innovation embedded within Probabilistic 

FraudWalk. This algorithm dictates the node selection process 

during the random walk by considering the temporal constraints 

on interaction events and introducing a probability distribution 

based on common neighbors. For each potential neighbor, the 

algorithm evaluates the temporal constraints to ensure that 

interactions occurred within a specified time window. The 

probability distribution is computed by measuring the 

commonality of target sequence neighbors between the current 

node and its potential neighbors. After normalization, nodes are 

selected in descending order of probability, emphasizing those 

with the most shared neighbors. This tailored approach 

empowers the random walk to explore paths influenced by the 

network’s underlying structure and the temporal nature of 

interactions, promoting a more effective representation of 

intricate relationships in the bipartite network. 

In algorithm 2, Constrained Random Walk with Probability-

based Neighbor Selection, is presented with details. 
  
Algorithm 2: Constrained Random Walk with Probability-

based Neighbor Selection 

Data: Starting source node vi, Temporal constraint parameter 

δt, Maximum walk length l 

Result: Walk sequence walk sequence 

Initialize empty sequence walk sequence; 

Set current node current node to starting node vi; Initialize walk 

length walk length to 0; 

while walk length < l do 

// Get the target sequence neighbors of the 
source node 

Tvi ← Target Sequence Neighbors(vi); 

// Compute probability distribution based on 
common nodes 

in target sequence neighbors 

for each neighbor vk  in 𝑇𝑣𝑖  do 

// Get the target sequence neighbors 
of the current neighbor vk 

Tvk ← Target Sequence Neighbors(vk); 

Allneighbors={𝑇𝑣𝑘} 

for each neighbor vm  in 𝑇𝑣𝑘  do 

 

Tvm ← Target Sequence Neighbors(vm); 

Allneighbors= Allneighbors ∪T_vm 

 

// Compute the number of common nodes 

C(vk) ← Count Common Nodes(Tvi, 

Allneighbors); 

end 

// Normalize the probability distribution 

 

                P (𝑣𝑘)  =
𝐶(𝑣𝑘)

Σ𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠  𝑣𝑘𝐶(𝑣𝑘 ) ; 
 

// Sort nodes based on the normalized probability in 

descending order 

Sort nodes in descending order of P (vk); 



 

 

for each neighbor 𝑣𝑘 according to the probability       

distribution do   

Check temporal constraint: Ensure tui, 𝑣𝑘 within 

[tu,v − δt, tu,v + δt]; 

 

if Temporal constraint satisfied then 

    Add vk to walk sequence;  

    Update current node to vk;  

    Break from the   loop; 

 
 

end 

 

                  end 

if No valid neighbor found then 

      End the walk; 

end 

Increment walk length by 1; 

End 

 

 

 

4.5 Data partitioning 

In this step, 80% of benchmark datasets are considered training 

sets, and 20% are test sets. For the real-world dataset, 30%, 

60%, and 90% of the dataset are considered training sets, and 

the rest are test sets. In this research, the 5-fold cross-validation 

output is used on the real-world dataset. 

4.6. Oversampling of training data 

In this step, we are using the SMOTE-ENN (Synthetic 

Minority Over-sampling Technique Edited Nearest 

Neighbors) method on the training data. The SMOTE-ENN 

technique is a data preprocessing algorithm designed to 

address class imbalance in datasets, particularly prevalent in 

scenarios where one class is significantly underrepresented 

compared to the other.  

The algorithm operates in two key steps: oversampling and 

undersampling. In the oversampling phase, SMOTE 

randomly selects samples from the minority class and 

generates synthetic samples by connecting them to their 

nearest neighbors. This process effectively augments the 

minority class, enhancing its representation in the dataset. 

The generated synthetic samples are assigned the minority 

class label. Following the oversampling, the algorithm 

moves to the undersampling phase. It evaluates each 

synthetic and original minority class sample, assessing their 

nearest neighbors. If a minority class sample has more 

neighbors from the majority class, it is discarded. This 

ensures a balanced representation by eliminating redundant 

or potentially misclassified minority class instances. The 

final output is a more balanced dataset, mitigating the 

challenges posed by class imbalance and improving the 

performance of machine learning models trained on such 

data. 

     
 

Algorithm 3: SMOTE-ENN Technique 
 

Data:   Input data  

Result: Balanced dataset  

Oversampling: 

for i in minority class do 

Choose a random sample xi from the minority class; Search 

for the K nearest neighbors of xi; 

Generate a synthetic sample p by randomly selecting one 

of the K nearest neighbors q, and connect p and q to create 

a line segment in the feature space; 

Give the minority class label to the newly created synthetic 

sample; Generate successive synthetic samples as a convex 

combination of the two selected samples; 

end 

Undersampling: 

for  xi S  where S denotes the total number of samples xi from 

the minority class do 

Search for the K nearest neighbors of xi; 

if xi has more neighbors from the other class then 

Discard xi; 

end 

   end 

 

4.7. Clustering of training data 
After balancing the data from two classes for the training 

dataset, this dataset is divided into clusters in this step. This is 

because applying the deep learning algorithm to the data in 

general makes the points that are far from each other or areas 

with different densities work together in the LSTM learning 

process. This makes most of the information disappear or 

become less important. Therefore, it is necessary to consider 

local information. 

Local information means information about the behavior of 

data together, which is different from the behavior of all data 

together. This local or partial information can play a significant 

role in the LSTM training process. Therefore, to achieve this 

goal, we cluster the training dataset and train a separate LSTM 

for each cluster. In the LSTM training process, different 

weights are assigned to samples in each cluster. These weights 

are based on the inverse of the distance to the nearest sample of 

the opposite class in the same cluster. The reason for this 

weighting is the bias of the LSTM training process of each 

cluster to the marginal samples within the cluster. By increasing 

the importance of marginal samples, the LSTM algorithm can 

better classify the samples in each cluster. 

4.8. LSTM training for each cluster 

The training algorithm for each cluster is as follows: 
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Algorithm 4: LSTM training for each cluster 

1. Separate positive samples 𝐶𝑃 and negative samples 𝐶𝑁 in 

one cluster. 

2. Compute the distances from each negative sample to its 

nearest positive neighbor. 

3. Compute the distances from each positive sample to its 

nearest negative neighbor. 

4. Compute the weights for each negative sample 𝑤𝑖  based 

on the distance to its nearest positive neighbor 𝑗: 

{ 𝑤𝑖 =
1

Dj

 | ∀ 𝑖 𝜖 𝐶𝑁 , ∃ 𝑗 𝜖 𝐶𝑃, 𝑗 𝑖𝑠 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑖} 

5. Compute the weights for each positive sample 𝑤𝑗  based on 

the distance to its nearest negative neighbor 𝑖: 

{ 𝑤𝑗 =
1

Di

 | ∀ 𝑗 𝜖 𝐶𝑃, ∃ 𝑖 𝜖 𝐶𝑁, 𝑖 𝑖𝑠 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑗} 

6. Combine the sample weights for positive and negative 

samples. 

7. Train the LSTM model with weighted samples. 

 

4.9. Testing process 

In this step, the cluster label is obtained for each input test 

sample. Then, the trained LSTM model associated with the test 

sample cluster is used to classify the test sample, and as a result, 

the test sample label is determined. In algorithm 5 is presented. 

Algorithm 5: Testing process 

Determine the cluster number of a sample test. 

Predicted_class = LSTM[cluster_number].predict(test) 

In the next step, the results of the experiments are shown. 

5. EXPERIMENTS 

In this section, we conduct fraud detection experiments on real-

world and benchmark datasets. In this paper, codes are 

simulated via Python software. The system used for 

experimental evaluation is a GeforceRTX 2080 Ti with a CPU 

8 cores and 24 GB of RAM and 150 GB of HDD. 

5.1. Real-world dataset 

The real-world dataset comprises 1,048,575 card-to-card 

transactions collected from an Iranian bank over a 15-day 

period in late July 2022. This dataset captures a diverse set of 

credit card activities, including both normal and potentially 

fraudulent transactions, making it a valuable resource for 

developing and evaluating fraud detection models. Each 

transaction is characterized by attributes such as the source 

account (Primary_ID), destination account (Second_ID), 

transaction type (TRNS_Type), date, time, amount, terminal 

type, and terminal ID. Additionally, a separate label dataset 

associates Second_IDs with binary labels (1 for fraudulent, 0 

for normal), enabling supervised learning for fraud detection. 

The dataset's complexity and significant class imbalance pose 

realistic challenges for modeling fraudulent behaviors in 

financial systems. 

I. Transaction  Dataset Overview 

The transaction dataset includes 1,048,575 records, with 

338,987 unique Primary_IDs (source accounts) and 16,965 

unique Second_IDs (destination accounts). The transactions are 

associated with 1,893 normal and 1,107 fraudulent accounts 

(based on Second_ID labels), highlighting a significant class 

imbalance (approximately 0.11% fraudulent transactions). This 

imbalance is a common challenge in fraud detection, 

necessitating advanced preprocessing techniques to ensure 

effective model training. Table 2 illustrates the diversity of 

transaction attributes, including varying dates, amounts, and 

terminal types, which are critical for capturing temporal and 

behavioral patterns in fraud detection. 

TABLE  2. EXAMPLE OF REAL-WORLD TRANSACTION DATASET 

Primary

_ID 

TR

NS_

Typ

e 

Da

te 

Ti

me 

A

m

ou

nt 

Term

inal_

Type 

Termina

l_ID 

Second

_ID 

992e7ca

6cc0d73

8d85b2 

10 7/2

8/2

02

2 

0:0

0 

1.4

2E

+0

8 

87

20

00 

7 13ae627

0758cd

ba26ec1 

845746

8be95f8

a19775

6 

737b32

93b0d5a

de9ad90 

10 5/6

/20

22 

0:0

0 

1.3

6E

+0

8 

17

00

00

0 

1 f52c0e5

0a8eb31

e3965c 

9d53d2f

9c5fe1f

c7f260 

737b32

93b0d5a

de9ad90 

10 7/8

/20

22 

0:0

0 

1.7

5E

+0

8 

34

00

00

0 

1 f52c0e5

0a8eb31

e3965c 

9d53d2f

9c5fe1f

c7f260 

 



 

 

Column Descriptions: 

 Primary_ID: Unique identifier for the source account 

(sender card). 

 TRNS_Type: Type of transaction (e.g., card to card, 

Payment, or purchase). 

 Date: Date of the transaction in YYYY-MM-DD 

format. 

 Time: Time of the transaction in HH:MM:SS format. 

 Amount: Transaction amount in Rials (presented in 

standard numerical format for clarity). 

 Terminal_Type: Type of terminal used for the 

transaction (e.g., POS, Online, ATM). 

 Terminal_ID: Unique identifier for the terminal 

where the transaction occurred. 

 Second_ID: Unique identifier for the destination 

account (receiver card). 

II. Label Dataset Overview 

The label dataset provides binary labels for the 16,965 unique 

Second_IDs, with 1,107 accounts marked as fraudulent (Label 

= 1) and 15,858 as normal (Label = 0). This dataset enables the 

classification of destination accounts based on their transaction 

history, supporting the identification of fraudulent patterns. 

Table 3 showes Example of Real-World Label Dataset. 

TABLE 3. EXAMPLE OF REAL-WORLD LABEL DATASET 

Second_ID Label 

2bd4b22499440c9fbade 1 

1b777cbc4dbbd24a82ce 1 

cc1e4d4a68aefa0e0042 0 

7717d2414b446e7b64c7 0 

721b98a42582971495d2 0 

Column Descriptions: 

 Second_ID: Unique identifier for the destination 

account (receiver card). 

 Label: Binary indicator of account status (1 for 

fraudulent, 0 for normal). 

Table 4 provides meaningful insights into the labeling process, 

highlighting the distinction between fraudulent and normal 

accounts based on their transaction behaviors. 

TABLE 4. REAL-WORLD DATASET DESCRIPTION 

Feature Value Description 

Dataset 

Name 
Iranian Dataset 

Card-to-card transactions 

from an Iranian bank in late 

July 2022 

Total 

Number of 

Transactions 

1,048,575 
Total recorded transactions 

over 15 days 

Unique 

Primary_IDs 
338,987 

Number of unique source 

accounts (sender cards) 

Unique 

Second_IDs 
16,965 

Number of unique destination 

accounts (receiver cards) 

Number of 

Normal 

Transactions 

1,046,682 

Transactions linked to normal 

accounts (based on 

Second_ID labels) 

Number of 

Fraudulent 

Transactions 

1,893 

Transactions linked to 

fraudulent accounts (based on 

Second_ID labels) 

Number of 

Features 
8 

Attributes: Primary_ID, 

Second_ID, TRNS_Type, 

Date, Time, Amount, 

Terminal_Type, Terminal_ID 

Class 

Imbalance 

Ratio 

0.11% 

(Fraudulent) 

Proportion of fraudulent 

transactions relative to total 

transactions 

Temporal 

Coverage 
15 days 

Data collection period in late 

July 2022 

Terminal 

Types 

POS, Online, 

ATM 

Types of terminals used for 

transactions 

 

Additional Notes: 

 Feature Details: The dataset includes 8 attributes that 

capture the source and destination of transactions, 

transaction type, temporal information, amount, and 

terminal details. These features enable the modeling of 

complex temporal and behavioral patterns. 

 Class Imbalance: With only 1,893 fraudulent 

transactions out of 1,048,575, the dataset exhibits a 

severe class imbalance (0.11% fraudulent), 

necessitating techniques like SMOTE-ENN to balance 

the data for effective model training. 
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 Temporal Context: The 15-day period provides a rich 

temporal context for analyzing sequential transaction 

patterns, which is critical for detecting fraud in 

dynamic financial systems. 

III. Data Preprocessing 

To ensure data quality and compatibility with machine learning 

models, the dataset underwent the following preprocessing 

steps: 

 Data Cleaning: Missing or invalid entries were 

addressed by imputing median values for numerical 

fields (e.g., Amount) and mode values for categorical 

fields (e.g., TRNS_Type, Terminal_Type). Duplicate 

transactions were removed. 

 Feature Encoding: Categorical features 

(TRNS_Type, Terminal_Type) were converted to 

numerical format using one-hot encoding. Date and 

Time were combined into a unified timestamp feature 

to facilitate temporal analysis. 

 Normalization: Transaction amounts, ranging from 

136,000,000 to 175,000,000 Rials in the sample, were 

normalized to a [0,1] range to improve model 

convergence. 

 Feature Extraction: The ProbabilisticFraudWalk 

algorithm was applied to extract temporal sequence 

features, and source/target neighbor sequences were 

constructed to capture user interaction patterns. 

 

IV. valuation Protocol 

 The dataset was divided into training and testing sets with 

varying ratios (30%, 60%, and 90% for training, with the 

remainder used for testing). Additionally, 5-fold cross-

validation was employed to validate the robustness and 

generalization capability of the proposed model. This rigorous 

approach helps minimize bias, and provides more reliable 

results. 

 

5.2. Benchmark datasets 

We utilized two real-world datasets presented by Pozzolo et al. 

[25] and the IEEE CIS fraud dataset, provided by Vesta, to 

evaluate the proposed method. 

The primary dataset consists of transaction records generated 

by European cardholders in September 2013 for two days. The 

complexity of this dataset comes from its significant class 

imbalance structure. Each individual transaction is represented 

by a set of 30 features, of which 28 are provided after applying 

the PCA transformation (𝑣1, 𝑣2, … , 𝑣28). The “time” and 

“amount” features remain unchanged, representing the time gap 

between the current and initial transactions as well as the value 

of the current transaction made by the cardholder, respectively. 

In addition, a “class” label is added, indicating the nature of the 

transaction as fraudulent with a label “1” or normal with a label 

“0”. 

The second dataset originates from a prominent Brazilian bank 

and covers the period from April 14th to September 12th, 2004. 

Each transaction in this dataset is characterized by 17 numerical 

features and is also labeled with a “class” label, either “S” to 

indicate a fraudulent transaction or “N” to indicate a normal 

transaction [26]. 

Additional information about the two datasets is given in Table 

5. 

 

TABLE 5. DESCRIPTIONS OF THE BENCHMARK DATASETS 

Dataset #Normal #Fraudulent #Features #Samples 

European 

dataset 

284315 492 30 284807 

Brazilian 

dataset 

360792 14031 17 374823 

Our experiments are conducted on the data partitioned into a 

training set and a test set. The results presented in this section 

are exclusively derived from the test set. Additionally, to ensure 

the robustness of the proposed model, we employed 5-fold 

cross-validation across all our experiments, thus validating its 

consistency. 

The European dataset has a very low fraud rate (0.172% of all 

transactions), and the Brazilian dataset is more balanced (3.74% 

fraud). These differences highlight the need to evaluate a model 

across different levels of class imbalanced. In the proposed 

method, oversampling methods are used to balance the positive 

(normal) and negative (fraud) samples.  

 

5.3 Evaluation metrics 

5.3.1 F1-score 

The F1-score is a measure that combines both precision and 

recall metrics into a composite value. This score is obtained 

from the harmonic mean of precision and recall and provides a 

balanced view of the performance of the model. The F1-score 

is particularly useful for dealing with unbalanced datasets 

where one class outperforms the other. This criterion is 

calculated using the following formula: 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 



 

 

The F1-score ranges from 0 to 1, and its higher values indicate 

better model performance 

5.3.2 Macro-F1 

The Macro F1 Score is computed through an approach wherein 

the F1 score is independently calculated for each class and 

subsequently averaged. This methodology operates under the 

assumption that all classes bear equal significance, although 

this assumption may not universally hold true. The formula for 

the Macro F1 Score is expressed as: 

𝑀𝑎𝑐𝑟𝑜 𝐹1 =
1

𝑁
∑ 𝐹1𝑖

𝑁

𝑖=1

 

Here, 𝑁 represents the number of classes, and 𝐹1𝑖 denotes the 

F1 score for each individual class. 

 

5.3.3 Micro-F1 

In the micro approach, the summation of contributions from all 

classes is employed to calculate the average F1 score. This 

methodology proves beneficial in instances where there exists 

a class imbalance within the dataset, as it ensures that smaller 

classes are accorded equal importance to larger ones. The 

formula for the micro F1 score can be derived as: 

Micro F1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜

 

5.3.4 AUC 

The AUC (Area Under the Curve) is calculated based on the 

Receiver Operating Characteristic (ROC) curve. The ROC 

curve is created by plotting the true positive rate (sensitivity) 

against the false positive rate (1 - specificity) at various 

threshold settings. The AUC is then computed as the area under 

this ROC curve. For a more formal explanation, let's denote: 

TPR as the true positive rate (sensitivity) and FPR as the false 

positive rate (1 - specificity). 

The AUC is calculated by integrating the ROC curve. In 

practice, this integration is often approximated using methods 

like the trapezoidal rule. The formula for AUC can be expressed 

as: 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅𝑑𝐹𝑃𝑅
1

0

 

In discrete terms, if the pairs of (𝐹𝑃𝑅i, 𝑇𝑃𝑅𝑖) have been 

calculated for different threshold settings, we can use the 

trapezoidal rule: 

𝐴𝑈𝐶 ≈ ∑
(𝑇𝑃𝑅𝑖 + 𝑇𝑃𝑅𝑖−1). (𝐹𝑃𝑅𝑖−1 − 𝐹𝑃𝑅𝑖)

2

𝑛

𝑖=1
 

Here, 𝑛 is the number of thresholds considered. 

5.4 Experiments on benchmark datasets 

As mentioned by Jurgovsky et al., the LSTM model is 

emerging as the leading technique for fraud detection 

[27]. The performance of this model surpasses 

conventional machine learning approaches and exhibits 

significant improvements. Consequently, we chose the 

LSTM model as the baseline for all our experiments. 

The Table 6 and Table 7 presents the performance 

metrics of five different models, GRU, LSTM, Phased 

LSTM, and the two proposed model as Cluster-LSTM and 

Cluster-weighted LSTM, across varying training sizes for 

European and Brazilian dataset respectively. 

 

In terms of F1-score, the proposed model consistently 

outperforms the other models across all training sizes, 

showcasing its effectiveness in capturing both precision 

and recall. The Macro-F1 and Micro-F1 scores also 

exhibit similar trends, with the Cluster-weighted LSTM 

model demonstrating a notable advantage. The area under 

the curve (AUC) values, which measure the models’ 

ability to distinguish between positive and negative 

instances, further support the superiority of the Cluster-

weighted LSTM model, consistently achieving the 

highest scores. These results suggest that our two 

proposed models excel in fraud detection tasks, offering a 

robust and well-balanced performance across different 

training sizes. 

TABLE 6. RESULTS OF DIFFERENT MODELS ON VARIOUS TRAINING 

SIZES FOR EUROPEAN DATASET 

Training 

Size 

Metrics GRU LSTM Phased 

LSTM 

Cluster-

LSTM 

 

Cluster-

weighted 

LSTM 

0.9 F1-score 0.8302 0.73068 0.71068 0.8359 0.8420 

 Macro-F1 0.3346 0.3346 0.3246 0.3338 0.3401 

 Micro-F1 0.503 0.50302 0.50102 0.5117 0.5181 

 AUC 0.9223 0.883 0.983 0.9302 0.9325 

0.7 F1-score 0.8367 0.834 0.8302 0.8384 0.8399 

 Macro-F1 0.3345 0.3345 0.2345 0.3475 0.3538 

 Micro-F1 0.5026 0.5026 0.2026 0.5103 0.5181 

 AUC 0.9107 0.9061 0.8761 0.9194 0.9260 

0.5 F1-score 0.8393 0.7242 0.7842 0.888 0.8947 

 Macro-F1 0.334 0.334 0.294 0.3421 0.3474 

 Micro-F1 0.5016 0.50169 0.49169 0.5119 0.5174 

 AUC 0.9164 0.8793 0.9793 0.9794 0.9865 

0.3 F1-score 0.7282 0.6355 0.5855 0.7636 0.7711 

 Macro-F1 0.3339 0.3339 0.3139 0.3423 0.3497 

 Micro-F1 0.5013 0.5013 0.4913 0.5125 0.5205 

 AUC 0.7668 0.7044 0.9044 0.9236 0.9293 

 

TABLE 7. RESULTS OF DIFFERENT MODELS ON VARIOUS TRAINING 

SIZES FOR BRAZILIAN DATASET 

 

Trainin

g Size 

Metrics GRU LSTM Phased 

LSTM 

Cluster-

LSTM 

Cluster

-
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 weight

ed 

LSTM 

0.9 F1-score 0.8821 0.8361 0.8261 0.8889 0.8896 

 Macro-F1 0.3782 0.3831 0.3431 0.3773 0.3861 

 Micro-F1 0.5234 0.5282 0.5222 0.5347 0.5421 

 AUC 0.9512 0.9338 1.0078 0.9672 0.9615 

0.7 F1-score 
0.8842 0.8845 0.8398 0.9004 0.9037 

 Macro-F1 0.3876 0.3955 0.2842 0.4042 0.4148 

 Micro-F1 0.5256 0.5236 0.2556 0.5388 0.5471 

 AUC 0.9365 0.9327 0.9121 0.9468 0.9593 

0.5 F1-score 0.8982 0.7751 0.8341 0.9482 0.9561 

 Macro-F1 0.3824 0.3741 0.3421 0.3934 0.4087 

 Micro-F1 0.5283 0.5281 0.5181 0.5402 0.5467 

 AUC 0.9568 0.9192 1.0193 1.0194 1.0365 

0.3 F1-score 0.7781 0.6851 0.6351 0.8632 0.8711 

 Macro-F1 0.3827 0.3813 0.3611 0.3945 0.4021 

 Micro-F1 0.5288 0.5253 0.5153 0.5365 0.5445 

 AUC 0.8768 0.8244 0.9446 0.9638 0.9793 
 

Upon closer inspection of the results, it is evident that 

our two models maintain a competitive edge in F1-score 

metrics, indicating its proficiency in achieving a balance 

between precision and recall. The Macro-F1 scores 

highlight the model’s ability to generalize well across 

different classes, while the Micro-F1 scores emphasize its 

performance at the instance level. Additionally, the AUC 

values reveal our proposed models superior 

discriminatory power, showcasing its effectiveness in 

distinguishing fraudulent and non-fraudulent instances. 

This consistent and superior performance across diverse 

training sizes underscores the reliability and adaptability 

of our models, making them a compelling choice for fraud 

detection applications 

5.5 Experiments on a real-world dataset 

The evaluation results of the proposed method compared to 

other algorithms for three cases of 30%, 60%, and 90% training 

data and the case of the 5-fold cross-validation algorithm are 

shown in Table 8. 

TABLE 8. RESULTS OF DIFFERENT MODELS ON VARIOUS TRAINING 

SIZES FOR REAL-WORLD DATASET 

Train

ing 

Size 

Metrics GRU LST

M 

Phased 

LSTM 

Cluster-

LSTM 

 

Cluster-

weighted 

LSTM 

0.9 F1-score 0.7349 0.7379 0.7179 0.7382 0.7425 

 Macro-

F1 

0.3451 0.3451 0.3351 0.3457 0.3485 

 Micro-

F1 

0.5269 0.5269 0.5249 0.5263 0.5352 

 AUC 0.8419 0.8430 0.9430 0.9520 0.9625 

0.7 F1-score 0.6912 0.7302 0.7583 0.7592 0.7620 

 Macro- 0.3475 0.3475 0.2475 0.3475 0.3515 

F1 

 Micro-

F1 

0.5326 0.5326 0.2326 0.5326 0.5430 

 AUC 0.8460 0.8464 0.8164 0.8561 0.8572 

0.5 F1-score 0.6943 0.6172 0.7072 0.7115 0.7266 

 Macro-

F1 

0.3505 0.3505 0.3505 0.3685 0.3706 

 Micro-

F1 

0.5396 0.5396 0.5402 0.5494 0.5508 

 AUC 0.8587 0.8489 0.9489 0.9581 0.9632 

0.3 F1-score 0.2150 0.1201 0.0701 0.2368 0.2368 

 Macro-

F1 

0.3566 0.3566 0.3666 0.3752 0.3892 

 Micro-

F1 

0.5543 0.5543 0.5443 0.5636 0.5756 

 AUC 0.8341 0.8419 0.9256 0.9360 0.9402 
 

According to Table 8, the evaluation results showcase the 

performance of various models, GRU, LSTM, Phased LSTM, 

and our two proposed model, across different training sizes 

(0.9, 0.7, 0.5, and 0.3) on the real-world dataset. F1-score, 

Macro-F1, Micro-F1, and AUC metrics were employed to 

assess the models' effectiveness in fraud detection. 

At a training size of 0.9, the proposed model outperformed 

other models with the highest F1-score of 0.7425, indicating a 

strong balance between precision and recall. The AUC of 

0.9625 further underscores its robust discriminative ability. 

Although the Micro-F1 values were comparable, the proposed 

model demonstrated superior performance in capturing the 

nuances of fraud instances. 

As the training size reduced to 0.7, the proposed model 

maintained competitive F1-score and AUC values, showcasing 

its resilience to variations in the dataset size. Conversely, both 

GRU and LSTM exhibited a decrease in performance, 

highlighting the proposed model's efficacy in handling smaller 

training sets. 

At a more constrained training size of 0.5, the proposed model 

continued to exhibit competitive performance, maintaining a 

higher F1-score and AUC than its counterparts. This suggests 

that the proposed model is particularly effective in scenarios 

with limited training data, making it suitable for real-world 

applications where data availability may be restricted. 

When the training size further decreased to 0.3, all models 

experienced a decline in performance, with the proposed model 

demonstrating the highest F1-score of 0.2368. Although the 

reduced dataset size poses challenges, the proposed model still 

exhibited notable fraud detection capabilities. 

In conclusion, the evaluation results emphasize the 

effectiveness of the proposed model across varying training 

sizes, outperforming other models in almost all terms. This 

highlights its potential as a robust solution for fraud detection 



 

 

in credit card transactions, particularly in scenarios with limited 

training data. 
 

 

Fig. 4 Different 𝑘 values versus distortion values 

 

5.6 Optimal number of clusters 

Choosing the best value for 𝑘 (the number of clusters) is 

important for K-means because the number of clusters can have 

a large impact on the performance of the algorithm. To choose 

the best value of 𝑘 for the K-means clustering method, the 

distortion method is used, which is one of the common methods 

for choosing the best number of clusters (𝑘) in the K-means 

algorithm. This method is known as a simple and conceptual 

criterion for choosing 𝑘 and is based on the amount of data 

variance within the clusters. As seen in Figure 4, the best value 

for 𝑘 is 5. 

5.7. Effect of cluster count on metrics 

The European dataset is more imbalanced compared to the 

Brazilian dataset, with the proportion of fraud samples in the 

European dataset being 0.172% of all transactions, while in the 

Brazilian dataset, fraud constitutes 3.74% of all transactions. 

Furthermore, we demonstrate the impact of the number of 

clusters on evaluation metrics for each of the datasets. 

In the European dataset, as cluster count increases, the number 

of fraud samples exists in each cluster compared to normal ones 

become significantly lower and the precision decreases for 

higher cluster count than 3. This reduction occurs because the 

number of fraud samples decreases drastically in the clusters, 

causing the model to bias towards normal ones and fail to 

correctly identify fraud samples, resulting in a decrease in 

precision. Consequently, the recall increases as shown in Figure 

5. 

 

Figure 5. Values of precision, recall, and F1-score for 

different values of 𝑘 for European dataset 

Figure 6 shows the precision, recall, and F1-score values of the 

proposed method for different values of 𝑘  on Brazilian dataset. 

In the Brazilian dataset, due to its higher balance compared to 

the European dataset, the precision values increase up to the 

number of clusters k=5 and then their growth rate decreases. As 

can be seen in Figure 6, as the number of clusters increases, the 

precision also increases. This increase in precision occurs at a 

faster rate up to k=5, and from this point onward, the growth 

rate decreases because the sensitivity of the LSTMs to the 

samples is increased and overtraining occurs, thus reducing the 

recall due to the generalization decrease. On the other hand, 

with the reduction of the number of clusters, the information 

conflict of the samples increases, the precision decreases, and 

the recall also increases due to the increase in generalization. 

 

Figure 6. Values of precision, recall, and F1-score for 

different values of 𝑘  for Brazilian dataset 

6. Conclusions 

In this study, we introduce a novel approach for credit card 

fraud detection, leveraging a fusion of clustering techniques and 

a weighted Long Short-Term Memory (LSTM) model. Our 
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experimental results underscore the significant superiority of 

this proposed method over comparative approaches GRU, 

LSTM, PhasedLSTM, specifically showcasing enhanced F1-

score, Macro-F1, Micro-F1 and AUC metrics. The efficacy of 

our method stems from its ability to extract clustered 

information from the dataset, mitigating information conflicts 

during the learning process.Rigorous experimentation on a real-

world dataset of card-to-card transactions highlights the 

superior performance of our proposed method, particularly 

excelling when trained on substantial datasets ranging from 

60% to 90% of the total data. The method's notable strengths 

are particularly evident in F1-score, Macro-F1, Micro-F1 and 

AUC criteria. 

The observed trends across varying training sizes underscore 

the adaptability and robustness of the proposed model, 

positioning it as a versatile solution for fraud detection in 

dynamic scenarios. The adaptability of the proposed method in 

accommodating varying cluster sizes further enhances its 

practicality. With its potential to significantly bolster fraud 

detection in credit card transactions, this method holds promise 

for organizations and banks, promising heightened security and 

customer trust. For future work, the utilization of complex 

ensemble approaches, such as boosting or bagging, can be 

explored for combining multiple LSTM models to improve 

performance and accuracy. 
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