- Aghdam, M.S., Luo, Z., Jannatizadeh, A., Sheikh-Assadi, M., Sharaf, Y., Farmani, B., & Razavi, F. (2019). Employing exogenous melatonin applying confers chilling tolerance in tomato fruit by upregulating ZAT2/6/12 giving rise to promotin endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity. Food Chemistry, 275, 549–556. https://doi.org/10.1016/j.foodchem.2018.09.157
- Aghdam, M.S., Luo, Z., Li, L., Jannatizadeh, A., Fard, J.R., & Pirzad, F. (2020). Melatonin treatment maintains nutraceutical properties of pomegranate fruit during cold storage. Food Chemistry, 303, 125385. https://doi.org/10.1016/j.foodchem.2019.125385
- Aghdam, M.S., Moradi, M., Razavi, F., & Rabiei, V. (2019). Exogenous phenylalanine application promotes chilling tolerance in tomato fruits during cold storage by ensuring supply of NADPH for activation of ROS scavenging systems. Scientia Horticulturae, 246, 818-825. https://doi.org/10.1016/j.scienta.2018.11.074
- Aguayo, E., Martínez-Sánchez, A., Fernández-Lobato, B., & Alacid, F. (2021). L-Citrulline: a non-essential amino acid with important roles in human health. Applied Sciences, 11(7), p.3293. https://doi.org/10.3390/app11073293
- AOAC. (1990). Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Washington, DC.
- Asgarian, Z.S., Karimi, R., Ghabooli, M., & Maleki, M. (2022). Effect of phenylalanine treatment on chilling tolerance and biochemical attributes of grape during postharvest cold storage. Journal of Berry Research, 12(4), 513-529. https://doi.org/10.3233/JBR-220037
- Babalar, M., Pirzad, F., Sarcheshmeh, M.A.A., Talaei, A., & Lessani, H. (2018). ArginiExogenous treatment attenuates chilling injury of pomegranate fruit during cold storage by enhancing antioxidant system activity. Postharvest Biology Technology, 137, 31–37. https://doi.org/10.1016/j.postharvbio.2017.11.012
- Bal, E. (2021). Effect of melatonin treatments on biochemical quality and postharvest life of nectarines. Journal of Food Measurement and Characterization, 15(1), 288-295. https://doi.org/10.1007/s11694-020-00636-5
- Beckles, D.M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum) fruit. Postharvest Biology and Technology, 63(1), 129-140. https://doi.org/10.1016/j.postharvbio.2011.05.016
- Bhutia, W., Pal, R., Sen, S., & Jha, S. (2011). Response of different maturity stages of sapota (Manilkara achras) cv. Kallipatti to in-package ethylene absorbent. Journal of Food Science and Technology, 48, 763-768. https://doi.org/10.1007/s13197-011-0360-x
- Chen, S.Q., Jiang, W., & Sun, Z.D. (2022). Mechanism of fungal inhibition activity of Nα-lauroyl-L-arginine ethyl ester (LAE) and potential in control of Penicillium expansum on postharvest citrus ‘Benimadonna’ (Citrus reticulate × Citrus sinensis). Journal of Agriculture and Food Research, 102, 4668–4676. https://doi.org/10.1002/jsfa.11827
- Chowdhury, N.N., Islam, M.N., Jafrin, R., Rauf, A., Khalil, A.A., Emran, T.B., Aljohani, A.S., Alhumaydhi, F.A., Lorenzo, J.M., Shariati, M.A., & Simal-Gandara, J. (2023). Natural plant products as effective alternatives to synthetic chemicals for postharvest fruit storage management. Critical Reviews in Food Science and Nutrition, 63(30), 10332-10350. https://doi.org/10.1080/10408398.2022.2079112
- da Silva Rios, D.A., Nakamoto, M.M., Braga, A.R.C., & da Silva, E.M.C. (2022). Food coating using vegetable sources: importance and industrial potential, gaps of knowledge, current application, and future trends. Applied Food Research, 2(1), 100073. https://doi.org/10.1016/j.afres.2022.100073
- de la Rosa, L.A., Moreno-Escamilla, J.O., Rodrigo-García, J., & Alvarez-Parrilla, E. (2019). Phenolic compounds. In Postharvest physiology and biochemistry of fruits and vegetables (pp. 253-271): Elsevier. https://doi.org/10.1016/B978-0-12-813278-4.00012-9
- Ding, R., Dai, X., Zhang, Z., Bi, Y., & Prusky, D. (2024). Composite coating of oleaster gum containing cuminal keeps postharvest quality of cherry tomatoes by reducing respiration and potentiating antioxidant system. Foods, 13(10), 1542. https://doi.org/10.3390/foods13101542
- Famiani, F., Battistelli, A., Moscatello, S., Cruz-Castillo, J.G., & Walker, R.P. (2015). The organic acids that are accumulated in the flesh of fruits: occurrence, metabolism and factors affecting their contents-a review. Revista Chapingo. Serie horticultura, 21(2), 97-128. https://doi.org/10.5154/r.rchsh.2015.01.004
- Fawole, O.A., & Opara, U.L. (2013). Harvest discrimination of pomegranate fruit: Postharvest quality changes and relationships between instrumental and sensory attributes during shelf life. Journal of Food Science, 78(8), S1264-S1272. https://doi.org/10.1111/1750-3841.12176
- Garde-Cerdán, T., Santamaría, P., Rubio-Bretón, P., González-Arenzana, L., López-Alfaro, I., & López, R. (2015). Foliar application of proline, phenylalanine, and urea to Tempranillo vines: Effect on grape volatile composition and comparison with the use of commercial nitrogen fertilizers. LWT-Food Science and Technology, 60(2), 684-689. https://doi.org/10.1016/j.lwt.2014.10.028
- Ge, C., Luo, Y., Mo, F., Xiao, Y., Li, N., & Tang, H. (2019). Effects of glutathione on the ripening quality of strawberry fruits. AIP Conf. Proc., 2079(1). https://doi:10.1063/1.5092391
- Gonzalez-Aguilar, G.A., Zavaleta-Gatica, R., & Tiznado-Hernandez, M.E. (2007). Improving postharvest quality of mango ’Haden’ by UV-C treatment. Postharvest Biology and Technology, 45(1), 108-116. https://doi.org/10.1016/j.postharvbio.2007.01.012
- Groß, F., Durner, J., & Gaupels, F. (2013). Nitric oxide, antioxidants and prooxidants in plant defence responses. Frontiers in Plant Science, 4, 419. https://doi.org/10.3389/fpls.2013.00419
- Hasan, M.U., Rehman, R.N.U., Malik, A.U., Haider, M.W., Ahmed, Z., Khan, A.S., & Anwar, R. (2019). Pre-storage application of L-arginine alleviates chilling injury and maintains postharvest quality of cucumber (Cucumis sativus). Journal Horticulture Science Technology, 2(4), 102-108. https://doi.org/10.46653/jhst190204102
- Hasanuzzaman, M., Alam, M.M., Nahar, K., Ahamed, K.U., & Fujita, M. (2014). Exogenous salicylic acid alleviates salt stress-induced oxidative damage in Brassica napus by enhancing the antioxidant defense and glyoxalase systems. Australian Journal of Crop Science, 8(4), 631-639. https://doi.org/10.3390%2Fantiox11102010
- Hasanuzzaman, M., Bhuyan, M.B., Anee, T.I., Parvin, K., Nahar, K., Mahmud, J.A., & Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8(9), 384. https://doi.org/10.3390%2Fantiox8090384
- Holghoomi, R., Hosseini Sarghein, S., Khara, J., Hosseini, B., Rahdar, A., & Kyzas, G.Z. (2023). Foliar application of Phenylalanine functionalized multi-walled carbon nanotube improved the content of volatile compounds of basil grown in greenhouse. Environmental Science and Pollution Research, 30(31), 77385-77407. https://doi.org/10.1007/s11356-023-27748-x
- Hu, H., Luo, S., An, R., & Li, P. (2022). Endogenous melatonin delays sepal senescence and extends the storage life of broccoli florets by decreasing ethylene biosynthesis. Postharvest Biology and Technology, 188, 1.11894. https://doi.org/10.1016/j.postharvbio.2022.111894
- Ighodaro, O., & Akinloye, O. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4). 378-293. https://doi.org/10.1016/j.ajme.2017.09.001
- Jannatizadeh, A., Aghdam, M.S., Farmani, B., Maggi, F., & Morshedloo, M.R. (2018). β-Aminobutyric acid treatment confers decay tolerance in strawberry fruit by warranting sufficient cellular energy providing. Scientia Horticulturae, 240, 249-257. https://doi.org/10.1016/j.scienta.2018.06.048
- Jiang, Y., Sheng, Q., Wu, X.Y., Ye, B.C., & Zhang, B. (2021). L-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process. Critical Reviews in Biotechnology, 41(2), 172-185. https://doi.org/10.1080/07388551.2020.1844625
- Kader, A.A., & Yahia, E. (2011). Postharvest biology of tropical and subtropical fruits. In Postharvest biology and technology of tropical and subtropical fruits (pp. 79-111): Elsevier. https://doi.org/10.1533/ 9780857093622.79
- Kaur, J., Singh, A., Singh, B., & Sharma, S. (2020). Sapota. Antioxidants in fruits: Properties and health benefits, 181-199. https://doi.org/10.1007/978-981-15-7285-2_10
- Khan, M., Ali, S., Al Azzawi, T.N.I., & Yun, B.-W. (2023). Nitric oxide acts as a key signaling molecule in plant development under stressful conditions. International Journal of Molecular Sciences, 24(5), 4782. https://doi.org/10.3390/ijms24054782
- Khan, M.A., Azam, M., Ahmad, S., & Atiq, M. (2023). Improvement of physicochemicals, antioxidant system and softening enzymes by postharvest L-arginine application leads to maintain persimmon fruit quality under low temperature storage. Journal of Food Measurement and Characterization, 17(3), 2964-2977. https://doi.org/10.1007/s11694-023-01835-6
- Lafuente, M., Zacarias, L., Martínez-Téllez, M., Sanchez-Ballesta, M., & Dupille, E. (2001). Phenylalanine ammonia-lyase as related to ethylene in the development of chilling symptoms during cold storage of citrus fruits. Journal of agricultural and food chemistry, 49(12), 6020-6025. https://doi.org/10.1021/jf010790b
- Li, T., Liu, Y.X., Qin, Q.X., Zhao, L., Wang, Y.T., Wu, X.M., & Liao, X.J. (2021) . Development of electrospun flms enriched with ethyl lauroyl arginate as novel antimicrobial food packaging materials for fresh strawberry preservation. Food Control, 130, 108371. https://doi.org/10.1016/j.foodcont.2021.108371
- Liang, M., Wang, Z., Li, H., Cai, L., Pan, J., He, H., & Yang, L. (2018). l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food and Chemical Toxicology, 115, 315-328. https://doi.org/10.1016/j.fct.2018.03.029
- Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47-55. https://doi.org/10.1016/j.postharvbio.2018.01.016
- Liu, J., Li, F., Liang, L., Jiang, Y., & Chen, J. (2019). Fibroin delays chilling injury of postharvest banana fruit via enhanced antioxidant capability during cold storage. Metabolites, 9(7), 152. https://doi.org/10.3390%2Fmetabo9070152
- Liu, J., Zhao, Y., Xu, H., Zhao, X., Tan, Y., Li, P., & Liu, D. (2021). Fruit softening correlates with enzymatic activities and compositional changes in fruit cell wall during growing in Lycium barbarum International Journal of Food Science & Technology, 56(6), 3044-3054. https://doi.org/10.1111/ijfs.14948
- Liu, S., Huang, H., Huber, D. J., Pan, Y., Shi, X., & Zhang, Z. (2020). Delay of ripening and softening in ‘Guifei’mango fruit by postharvest application of melatonin. Postharvest Biology and Technology, 163, 111136. https://doi.org/10.1016/j.postharvbio.2020.111136
- Ma, Q., Davidson, P.M., & Zhong, Q. (2020). Properties and potential food applications of lauric arginate as a cationic antimicrobial. International Journal of Food Microbiology, 315, 108417. https://doi.org/10.1016/j.ijfoodmicro.2019.108417
- Ma, Q., Lin, X., Wei, Q., Yang, X., Zhang, Y.N., & Chen, J. (2021). Melatonin treatment delays postharvest senescence and maintains the organoleptic quality of ‘Newhall’navel orange (Citrus sinensis (L.) Osbeck) by inhibiting respiration and enhancing antioxidant capacity. Scientia Horticulturae, 286, 236. https://doi.org/10.1016/j.scienta.2021.110236
- Madebo, M.P., Hu, S., Zheng, Y., & Jin, P. (2021). Mechanisms of chilling tolerance in melatonin treated postharvest fruits and vegetables: A review. Journal of Future Foods, 1(2), 156-167. https://doi.org/10.1016/j.jfutfo.2022.01.005
- Maslahati Fard, S., & Hassanpoor, H. (2023). The effect of arginine on some biochemical attributes strawberry fruit (Fragaria× ananassa Albion) under deficit fertigation. Journal of Horticultural Science, 37(1), 135-149. https://doi.org/10.1007/s10341-022-00679-6
- Medina-Santamarina, J., Guillén, F., Valero, D., Castillo, S., & Serrano, M. (2023). Melatonin treatments reduce chilling injury and delay ripening, leading to maintenance of quality in Cherimoya fruit. International Journal of Molecular Sciences, 14;24(4), 3787. https://doi.org/10.3390/ijms24043787
- Michailidis, M., Karagiannis, E., Tanou, G., Sarrou, E., Stavridou, E., Ganopoulos, I., & Molassiotis, A. (2019). An integrated metabolomic and gene expression analysis identifies heat and calcium metabolic networks underlying postharvest sweet cherry fruit senescence. Planta, 250, 2009-2022. https://doi.org/10.1007/s00425-019-03272-6
- Miranda, S., Vilches, P., Suazo, M., Pavez, L., García, K., M´endez, M.A., & Pozo, T. (2020). Melatonin triggers metabolic and gene expression changes leading to improved quality traits of two sweet cherry cultivars during cold storage. Food Chemistry, 319, Article 126360. https://doi.org/10.1016/j.foodchem.2020.126360
- Nahar, K., Hasanuzzaman, M., Alam, M.M., & Fujita, M. (2015). Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxifcation during salt stress in mung bean. Biologia Plantarum, 59(4), 745–756. https://doi.org/10.1007/s10535-015-0542-x
- Najafi, R., Barzegar, T., Razavi, F., & Ghahremani, Z. (2021). Effect of postharvest treatments of phenylalanine and hydrogen sulfide on maintaining quality and enhancing shelf life of eggplant (Solanum melongena). Journal of Horticultural Science, 34(4), 705-717.
- Oyom, W., Yu, L., Dai, X., Li, Y.-C., Zhang, Z., Bi, Y., & Tahergorabi, R. (2022). Starch-based composite coatings modulate cell wall modification and softening in Zaosu pears. Progress in Organic Coatings, 171, 107014. https://doi.org/10.1016/j.porgcoat.2022.107014
- Patel, M.K., Fanyuk, M., Feyngenberg, O., Maurer, D., Sela, N., Ovadia, R., & Alkan, N. (2023). Phenylalanine induces mango fruit resistance against chilling injuries during storage at suboptimal temperature. Food Chemistry, 405, 134909. https://doi.org/10.1016/j.foodchem.2022.134909
- Padmaja, N., & John, D. (2014). Preservation of sapota (Manilkara zapota) by edible aloe vera gel coating to maintain its quality. International Journal of Science and Research, 3, 177-179. https://doi.org/10.15373/ 22778179/august2014/51
- Pang, L., Wu, Y., Pan, Y., Ban, Z., Li, L., & Li, X. (2020). Insights into exogenous melatonin associated with phenylalanine metabolism in postharvest strawberry. Postharvest Biology and Technology, 168, 111244. https://doi.org/10.1016/j.postharvbio.2020.111244
- Patel, M.K., Maurer, D., Feygenberg, O., Ovadia, A., Elad, Y., Oren-Shamir, M., & Alkan, N. (2020). Phenylalanine: A promising inducer of fruit resistance to postharvest pathogens. Foods, 9, https://doi.org/10.3390/foods9050646
- Pedrazini, M.C., Martinez, E.F., dos Santos, V.A.B., & Groppo, F.C. (2024). L-arginine: its role in human physiology, in some diseases and mainly in viral multiplication as a narrative literature review. Future Journal of Pharmaceutical Sciences, 10(1), 1-18. https://doi.org/10.1186/s43094-024-00673-7
- Phalake, S., Tetali, S., & Raut, V. (2022). A blending of sapota and lime juice using different methods of extraction.
- Portu, J., López, R., Santamaría, P., & Garde-Cerdán, T. (2017). Elicitation with methyl jasmonate supported by precursor feeding with phenylalanine: Effect on Garnacha grape phenolic content. Food Chemistry, 237, 416-422. https://doi.org/10.1016/j.foodchem.2017.05.126
- Rastegar, S., Khankahdani, H.H., & Rahimzadeh, M. (2020). Effects of melatonin treatment on the biochemical changes and antioxidant enzyme activity of mango fruit during storage. Scientia Horticulturae, 259, 108835. https://doi.org/10.1016/j.scienta.2019.108835
- Reiter, R.J., Mayo, J.C., Tan, D.X., Sainz, R.M., Alatorre‐Jimenez, M., & Qin, L. (2016). Melatonin as an antioxidant: under promises but over delivers. Journal of Pineal Research, 61(3), 253-278. https://doi.org/10.1111/jpi.12360
- Sandate-Flores, L., Romero-Esquivel, E., Ontiveros, P.R., Celaya, M.F.M., Rodriguez-Rodriguez, J., Rostro-Alanis, M., & Iqbal, H.M. (2020). Physicochemical composition, antioxidant profile and anticancer potentialities of Chico (Pachycereus weberi) and Jiotilla (Escontria chiotilla) fruits extract. https://doi.org/10.20944/preprints202001.0347.v1
- Sandate-Flores, L., Romero-Esquivel, E., Rodríguez-Rodríguez, J., Rostro-Alanis, M., Melchor-Martínez, E.M., Castillo-Zacarías, C., & Iqbal, H.M. (2020). Functional attributes and anticancer potentialities of chico (Pachycereus weberi) and jiotilla (Escontria chiotilla) fruits extract. Plants, 9(11), 1623. https://doi.org/10.3390/plants9111623
- Sharma, S., Pareek, S., Sagar, N.A., Valero, D., & Serrano, M. (2017). Modulatory effects of exogenously applied polyamines on postharvest physiology, antioxidant system and shelf life of fruits: a review. International Journal of Molecular Sciences, 18(8), 1789. https://doi.org/10.3390/ijms18081789
- Shu, P., Min, D., Ai, W., Li, J., Zhou, J., Li, Z., & Jiang, Y. (2020). L-Arginine treatment attenuates postharvest decay and maintains quality of strawberry fruit by promoting nitric oxide synthase pathway. Postharvest Biology and Technology, 168, https://doi.org/10.1016/j.postharvbio.2020.111253
- Singh, A.K. (2023). Horticultural practices and post-harvest technology. Academic Guru Publishing House.
- Song, L., Wang, J., Shafi, M., Liu, Y., Wang, J., Wu, J., & Wu, A. (2016). Hypobaric treatment effects on chilling injury, mitochondrial dysfunction, and the ascorbate–glutathione (AsA-GSH) cycle in postharvest peach fruit. Journal of Agricultural and Food Chemistry, 64(22), 4665-4674. https://doi.org/10.1021/acs.jafc.6b00623
- Sun, Q., Zhang, N., Wang, J., Zhang, H., Li, D., Shi, J., & Ren, S. (2015). Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 66(3), 657-668. https://doi.org/10.1093/jxb/eru332
- Sun, Z.D., Hao, J.S., Yang, H.Q., & Chen, H.Y. (2018). Effect of chitosan coatings enriched with lauroyl arginate ethyl and montmorillonite on microbial growth and quality maintenance of minimally processed table grapes (Vitis vinifera Kyoho) during cold storage. Food and Bioprocess Technology, 11, 1853–1862. https://link.springer.com/article/10.1007/s11947-018-2146-x
- Tian, S., & Xu, H. (2023). Mechanical-based and optical-based methods for nondestructive evaluation of fruit firmness. Food Reviews International, 39(7), 4009-4039. https://doi.org/10.1080/87559129.2021.2015376
- Vetrekar, N., Gad, R., Fernandes, I., Parab, J., Desai, A., Pawar, J., & Umapathy, S. (2015). Non-invasive hyperspectral imaging approach for fruit quality control application and classification: case study of apple, chikoo, guava fruits. Journal of Food Science and Technology, 52, 6978-6989. https://doi.org/10.1007/s13197-015-1838-8
- Wang, B., & Bi, Y. (2021). The role of signal production and transduction in induced resistance of harvested fruits and vegetables. Food Quality and Safety, 5, fyab011. https://doi.org/10.1093/fqsafe/fyab011
- Wang, J., Wang, Y., Li, Y., Yang, L., Sun, B., Zhang, Y., & Yan, X. (2023). l‐Arginine treatment maintains postharvest quality in blueberry fruit by enhancing antioxidant capacity during storage. Journal of Food Science, 88(9), 3666-3680. https://doi.org/10.1111/1750-3841.16710
- Wang, L., Chen, S., Shao, J., Zhang, C., Mei, L., Wang, K., & Zheng, Y. (2022). Hydrogen sulfide alleviates chilling injury in peach fruit by maintaining cell structure integrity via regulating endogenous H2S, antioxidant and cell wall metabolisms. Food Chemistry, 391, 133283. https://doi.org/10.1016/j.foodchem.2022.133283
- Wang, M., Li, C., Liu, J., Zhang, S., Guo, Y., Jin, Y., & Ge, Y. (2023). Phenylalanine maintains the postharvest quality of ‘Jinfeng’pear fruit by modulating the tricarboxylic acid cycle and chlorophyll catabolism. Postharvest Biology and Technology, 204, 112479. https://doi.org/10.1016/j.postharvbio.2023.112479
- Yahia, E., & Gutierrez-Orozco, F. (2011). Sapodilla (Manilkara achras (Mill) Fosb., syn Achras sapota). In Postharvest biology and technology of tropical and subtropical fruits (pp. 351-363e): Elsevier. https://doi.org/10.1533/9780857092618.351
- Yao, M., Ge, W., Zhou, Q., Zhou, X., Luo, M., Zhao, Y., Wei, B., & Ji, S. (2021). Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chemistry, 352, 129458. https://doi.org/10.1016/j.foodchem.2021.129458
- Zarezadeh, M., Barzegari, M., Aghapour, B., Adeli, S., Khademi, F., Musazadeh, V., & Chehregosha, F. (2022). Melatonin effectiveness in amelioration of oxidative stress and strengthening of antioxidant defense system: Findings from a systematic review and dose–response meta-analysis of controlled clinical trials. Clinical Nutrition ESPEN, 48, 109-120. https://doi.org/10.1016/j.clnesp.2022.01.038
- Xu, P., Huber, D. J., Gong, D., Yun, Z., Pan, Y., Jiang, Y., & Zhang, Z. (2023). Amelioration of chilling injury in ‘Guifei’mango fruit by melatonin is associated with regulation of lipid metabolic enzymes and remodeling of lipidome. Postharvest Biology and Technology, 198, 112233. https://doi.org/10.1016/j.postharvbio.2022.112233
- Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., & Guo, Y.-D. (2015). Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 66(3), 647-656. https://doi.org/10.1093/jxb/eru336
- Zhou, Y., Liu, J., Zhuo, Q., Zhang, K., Yan, J., Tang, B., & Liu, K. (2023). Exogenous glutathione maintains the postharvest quality of mango fruit by modulating the ascorbate-glutathione cycle. Peer Journal, 11, https://doi.org/10.7717/peerj.15902
- Zhou, Y., Huang, X., Li, R., Lin, H., Huang, Y., Zhang, T., Mo., Y & Liu, K. (2022). Transcriptome and biochemical analyses of glutathione-dependent regulation of tomato fruit ripening. Journal of Plant Intractions, 17(1), 537-547. https://doi.org/10.1080/17429145.2022.2069296
|