- Azad, N., Behmanesh, J., Rezaverdinejad, V., Abbasi, F., & Navabian, M. (2018). Evaluation of fertigation management impacts of surface drip irrigation on reducing nitrate leaching using numerical modeling. Environmental Science and Pollution Research, 26(36), 36499-36514. https://doi.org/10.1007/s11356-019-06699-2
- Baram, S., Couvreur, V., Harter, T., Read, M., Brown, P. H., Kandelous, M., & Hopmans, J.W. (2016). Estimating nitrate leaching to groundwater from orchards: comparing crop nitrogen excess, deep vadose zone data-driven estimates, and HYDRUS modeling. Vadose Zone Journal, 15(11), 125-142. https://doi.org/10.2136/vzj2016. 07.0061
- Cai, G., Vanderborght, J., Couvreur, V., Mboh, C.M., & Vereecken, H. (2018). Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation. Vadose Zone Journal, 17(1), 110-128. https://doi.org/10.2136/vzj2016.12.0125
- Dash, C.J., Sarangi, A., Singh, D.K., Singh, A.K., & Adhikary, P.P. (2015). Prediction of root zone water and nitrogen balance in an irrigated rice field using a simulation model. Paddy and Water Environment, 13(3), 281-290.
- Deb, S.K., Shukla, M.K., Šimůnek, J., & Mexal, J.G. (2013). Evaluation of spatial and temporal root water uptake patterns of a flood-irrigated pecan tree using the HYDRUS (2D/3D) model. Journal of Irrigation and Drainage Engineering, 139(8), 599-611. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000611
- Ebrahimian, H., Liaghat, A., Parsinejad, M., Abbasi, F., & Navabian, M. (2012). Comparison of one-and two-dimensional models to simulate alternate and conventional furrow fertigation. Journal of Irrigation and Drainage Engineering, 138(10), 929-938. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000482
- Eardly, B.D., Hannaway, D.B., & Bottomley, P.J. (1985). Nitrogen nutrition and yield of seedling alfalfa as affected by ammonium nitrate fertilization 1. Agronomy Journal, 77(1), 57-62. https://doi.org/10.2134/agronj1985. 00021962007700010014x
- Ghazouani, H., Autovino, D., Rallo, G., Douh, B., & Provenzano, G. (2016). Using Hydrus-2D model to assess the optimal drip lateral depth for Eggplant crop in a sandy loam soil of central Tunisia. Italian Journal Agrometeorology, 1, 47-58. https://doi.org/10.1051/ijmqe/2015024
- Golmohammadi, F. (2014). Saffron and its farming, economic importance, export, medicinal characteristics and various uses in South Khorasan Province-East of Iran. International Journal of Farming and Allied Sciences,3(5), 566-596.
- Hannaway, D.B., & Shuler, P.E. (1993). Nitrogen fertilization in alfalfa production. Journal of Production Agriculture, 6(1), 80-85. https://doi.org/10.2134/jpa1993.0080
- Hanson, B.R., Šimůnek, J., & Hopmans, J.W. (2006). Evaluation of urea–ammonium–nitrate fertigation with drip irrigation using numerical modeling. Agricultural Water Management, 86(1-2), 102-113. https://doi.org/ 10.1016/j.agwat.2006.06.013
- He, Y., Hu, K.L., Wang, H., Huang, Y.F., Chen, D.L., Li, B.G., & Li, Y. (2013). Modeling of water and nitrogen utilization of layered soil profiles under a wheat–maize cropping system. Mathematical and Computer Modelling, 58(3-4), 596-605. https://doi.org/10.1016/j.mcm.2011.10.060
- Hopmans, J.W., Šimůnek, J., Romano, N., & Durner, W. (2002). 6. 2. Inverse Methods. Methods of soil analysis: Part 4 Physical methods, 5, 963-1008. https://doi.org/10.2136/sssabookser5.4c40
- Jha, R.K., Sahoo, B., & Panda, R.K. (2017). Modeling the water and nitrogen transports in a soil–paddy–atmosphere system using HYDRUS-1D and lysimeter experiment. Paddy and Water Environment, 15(4), 831-846. https://doi.org/10.1007/s10333-017-0596-9
- Kirkham, J.M., Smith, C.J., Doyle, R.B., & Brown, P.H. (2019). Inverse modelling for predicting both water and nitrate movement in a structured-clay soil (Red Ferrosol). Peer Journal, 6, e6002. https://doi.org/10.7717/ peerj.6002
- Liu, H.L., Yang, J.Y., Tan, C.S., Drury, C.F., Reynolds, W.D., Zhang, T.Q., & Hoogenboom, G. (2011). Simulating water content, crop yield and nitrate-N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model. Agricultural Water Management, 98(6), 1105-1111. https://doi.org/10.1016/j.agwat. 2011.01.017
- Mallants, D., Karastanev, D., Antonov, D., & Perko, J. (2007, January). Innovative in-situ determination of unsaturated hydraulic properties in deep Loess sediments in North-West Bulgaria. In The 11th International Conference on Environmental Remediation and Radioactive Waste Management (pp. 733-739). American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/ICEM2007-7202
- Marquardt, D.W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441. https://doi.org/10.1137/0111030
- Morianou, G., Karatzas, G.P., Arampatzis, G., Pisinaras, V., & Kourgialas, N.N. (2025). Assessing soil water dynamics in a drip-irrigated grapefruit orchard using the HYDRUS 2D/3D model: A comparison of unimodal and bimodal hydraulic functions. Agronomy, 15(2), 504. https://doi.org/10.3390/agronomy15020504
- Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522. https://doi.org/10.1029/WR012i003p00513
- Nakasone, H., Abbas, M.A., & Kuroda, H. (2004). Nitrogen transport and transformation in packed soil columns from paddy fields. Paddy and Water Environment, 2(3), 115-124. https://doi.org/10.1007/s10333-004-0050-7
- Nash, J.E. (1970). River flow forecasting through conceptual models part 1-A discussion of principle. Journal of Hydrology, 10, 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
- Rallo, G., Baiamonte, G., Juárez, J.M., & Provenzano, G. (2014). Improvement of FAO-56 model to estimate transpiration fluxes of drought tolerant crops under soil water deficit: application for olive groves. Journal of Irrigation and Drainage Engineering, 140(9), A4014001. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000693
- Ramos, T.B., Šimůnek, J., Gonçalves, M.C., Martins, J.C., Prazeres, A., & Pereira, L.S. (2012). Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agricultural Water Management, 111, 87-104. https://doi.org/10.1016/j.agwat.2012.05.007
- Rana, B., Parihar, C.M., Nayak, H.S., Patra, K., Singh, V.K., Singh, D.K., & Jat, M.L. (2022). Water budgeting in conservation agriculture-based sub-surface drip irrigation using HYDRUS-2D in rice under annual rotation with wheat in Western Indo-Gangetic Plains. Field Crops Research, 282, 108519. https://doi.org/10.1016/j.fcr. 2022.108519
- Ravikumar, V., Vijayakumar, G., Šimůnek, J., Chellamuthu, S., Santhi, R., & Appavu, K. (2011). Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model. Agricultural Water Management, 98(9), 1431-1440. https://doi.org/10.1016/j.agwat.2011.04.012
- Salehi, A.A., Navabian, M., Varaki, M.E., & Pirmoradian, N. (2017). Evaluation of HYDRUS-2D model to simulate the loss of nitrate in subsurface controlled drainage in a physical model scale of paddy fields. Paddy and Water Environment, 15(2), 433-442. https://doi.org/10.1007/s10333-016-0561-z
- Shafeeq, P.M., Aggarwal, P., Krishnan, P., Rai, V., Pramanik, P., & Das, T.K. (2020). Modeling the temporal distribution of water, ammonium-N, and nitrate-N in the root zone of wheat using HYDRUS-2D under conservation agriculture. Environmental Science and Pollution Research, 27(2), 2197-2216. https://doi.org/10.1007/s11356-019-06642-5
- Shahrokhnia, M.H., & Sepaskhah, A.R. (2018). Water and nitrate dynamics in safflower field lysimeters under different irrigation strategies, planting methods, and nitrogen fertilization and application of HYDRUS-1D model. Environmental Science and Pollution Research, 25(9), 8563-8580. https://doi.org/10.1007/s11356-017-1184-7
- Silva Ursulino, B., Maria Gico Lima Montenegro, S., Paiva Coutinho, A., Hugo Rabelo Coelho, V., Cezar dos Santos Araújo, D., Cláudia Villar Gusmão, A., & Angulo-Jaramillo, R. (2019). Modelling soil water dynamics from soil hydraulic parameters estimated by an alternative method in a tropical experimental basin. Water, 11(5), 1007. https://doi.org/10.3390/w11051007
- Šimůnek, J., Jacques, D., Langergraber, G., Bradford, S.A., Šejna, M., & Van Genuchten, M.T. (2013). Numerical modeling of contaminant transport using HYDRUS and its specialized modules. Journal Indian Inst. Science, 93(2), 265-284. https://doi.org/10.5194/egusphere-egu23-10247
- Turkeltaub, T., Kurtzman, D., & Dahan, O. (2016). Real-time monitoring of nitrate transport in the deep vadose zone under a crop field–implications for groundwater protection. Hydrology and Earth System Sciences, 20(8), 3099-3108. https://doi.org/10.5194/hess-20-3099-2016
- Turkeltaub, T., Kurtzman, D., Russak, E.E., & Dahan, O. (2015). Impact of switching crop type on water and solute fluxes in deep vadose zone. Water Resources Research, 51(12), 9828-9842. https://doi.org/10.1002/2015WR017612
- Viers, J.H., Liptzin, D., Rosenstock, T.S., Jensen, V.B., Hollander, A.D., McNally, A., & Fryjoff-Hung, A., HE Canada, S., Laybourne, C., McKenney, J., Darby, Quinn, JF., & Harter, T. (2012). Nitrogen sources and Loading to Groundwater. Addressing Nitrate in California’s Drinking Water with a Focus on Tulare Lake Basin and Salinas Valley Groundwater, Technical Report, 2, 37-56. https://doi.org/10.2134/jeq2013.10.0411
- Vrugt, J.A., & Bouten, W. (2002). Validity of first-order approximations to describe parameter uncertainty in soil hydrologic models. Soil Science Society of America Journal, 66(6), 1740-1751. https://doi.org/10.2136/ sssaj2002.1740
- Wang, H., Ju, X., Wei, Y., Li, B., Zhao, L., & Hu, K. (2010). Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain. Agricultural Water Management, 97(10), 1646-1654. https://doi.org/10.1016/j.agwat.2010.05.022
- Wang, X., Huang, G., Yang, J., Huang, Q., Liu, H., & Yu, L. (2015). An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain. Agricultural Water Management, 159, 197-208. https://doi.org/10.1016/j.agwat.2015.06.011
- Wöhling, T., Vrugt, J.A., & Barkle, G.F. (2008). Comparison of three multiobjective optimization algorithms for inverse modeling of vadose zone hydraulic properties. Soil Science Society of America Journal, 72(2), 305-319. https://doi.org/10.2136/sssaj2007.0176
|