- Abolfazli, F., Forghani, A., & Norouzi, M. (2012). Effects of phosphorus and organic fertilizers on phosphorus fractions in submerged soil. Journal of Soil Science and Plant Nutrition, 12(2), 349–362. https://doi.org/10.4067/ S0718-95162012000200014
- Akhtar, M., McCallister, D.L., & Eskridge, K.M. (2002). Availability and fractionation of phosphorus in sewage sludge-amended soils. Communications in Soil Science and Plant Analysis, 33(13–14), 2057–2068. https://doi.org/10.1081/CSS-120005748
- Azeez, J.O., & Van Averbeke, W. (2012). Dynamics of soil pH and electrical conductivity with the application of three animal manures. Communications in Soil Science and Plant Analysis, 43(6), 865–874. https://doi.org/10.1080/00103624.2012.653022
- Battisti, M., Moretti, B., Sacco, D., Grignani, C., & Zavattaro, L. (2022). Soil Olsen P response to different phosphorus fertilization strategies in long‐term experiments in NW Italy. Soil Use and Management, 38(1), 549–563. https://doi.org/10.1111/sum.12701
- Chen, C., & Xiao, W. (2023). The global positive effect of phosphorus addition on soil microbial biomass. Soil Biology and Biochemistry, 176, 108882. https://doi.org/10.1016/j.soilbio.2022.108882
- Chen, G.-L., Xiao, L., Xia, Q.-L., Wang, Y., Yuan, J.-H., Chen, H., Wang, S.-Q., & Zhu, Y.-Y. (2021). Characterization of different phosphorus forms in flooded and upland paddy soils incubated with various manures. ACS Omega, 6(4), 3259–3266. https://doi.org/10.1021/acsomega.0c05748
- Chiu, K.K., Ye, Z.H., & Wong, M.H. (2006). Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: a greenhouse study. Bioresource Technology, 97(1), 158–170. https://doi.org/10.1016/j.biortech.2005.01.038
- Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
- Fan, X., Zhou, X., Chen, H., Tang, M., & Xie, X. (2021). Cross-talks between macro-and micronutrient uptake and signaling in plants. Frontiers in Plant Science, 12, 663477. https://doi.org/10.3389/fpls.2021.663477
- Gangwar, K.S., Singh, K.K., Sharma, S.K., & Tomar, O.K. (2006). Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo-Gangetic plains. Soil and Tillage Research, 88(1–2), 242–252. https://doi.org/10.1016/j.still.2005.06.015
- Gatiboni, L.C., Schmitt, D.E., Cassol, P.C., Comin, J.J., Heidemann, J.C., Brunetto, G., & Nicoloso, R. da S. (2019). Samples disturbance overestimates phosphorus adsorption capacity in soils under long-term application of pig slurry. Archives of Agronomy and Soil Science, 65(9), 1262–1272. https://doi.org/10.1080/03650340. 2018.1562274
- González Medeiros, J.J., Pérez Cid, B., & Fernández Gómez, E. (2005). Analytical phosphorus fractionation in sewage sludge and sediment samples. Analytical and Bioanalytical Chemistry, 381, 873–878. https://doi.org/10. 1007/s00216-004-2989-z
- Hammad, H.M., Khaliq, A., Abbas, F., Farhad, W., Fahad, S., Aslam, M., Shah, G.M., Nasim, W., Mubeen, M., & Bakhat, H.F. (2020). Comparative effects of organic and inorganic fertilizers on soil organic carbon and wheat productivity under arid region. Communications in Soil Science and Plant Analysis, 51(10), 1406–1422. https://doi.org/10.1080/00103624.2020.1763385
- Hao, X., Godlinski, F., & Chang, C. (2008). Distribution of phosphorus forms in soil following long‐term continuous and discontinuous cattle manure applications. Soil Science Society of America Journal, 72(1), 90–97. https://doi.org/10.2136/sssaj2006.0344
- Hedley, M.J., Stewart, J.W.B., & Chauhan, Bs. (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46(5), 970–976. https://doi.org/10.2136/sssaj1982.03615995004600050017x
- Helfenstein, J., Tamburini, F., von Sperber, C., Massey, M.S., Pistocchi, C., Chadwick, O.A., Vitousek, P.M., Kretzschmar, R., & Frossard, E. (2018). Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications, 9(1), 3226. https://doi.org/10.1038/s41467-018-05731-2
- Jalali, M., & Ranjbar, F. (2010). Aging effects on phosphorus transformation rate and fractionation in some calcareous soils. Geoderma, 155(1–2), 101–106. https://doi.org/10.1016/j.geoderma.2009.11.030
- Jiang, B., Jianlin, S., Minghong, S.U.N., Yajun, H.U., Jiang, W., Juan, W., Yong, L.I., & Jinshui, W.U. (2021). Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere, 31(1), 103–115. https://doi.org/10.1016/S1002-0160(20)60053-4
- Jindo, K., Audette, Y., Olivares, F.L., Canellas, L.P., Smith, D.S., & Paul Voroney, R. (2023). Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: A review. Chemical and Biological Technologies in Agriculture, 10(1), 29. https://doi.org/10.1186/s40538-023-00401-y
- Lemming, C., Simmelsgaard Nielsen, M. T., Jensen, L. S., Scheutz, C., & Magid, J. (2020). Phosphorus availability of sewage sludges and ashes in soils of contrasting pH. Journal of Plant Nutrition and Soil Science, 183(6), 682–694. https://doi.org/10.1002/jpln.201900323
- Li, M., Zhao, Z., Zhang, Z., Zhang, W., Zhou, J., Xu, F., & Liu, X. (2017). Effect of boron deficiency on anatomical structure and chemical composition of petioles and photosynthesis of leaves in cotton (Gossypium hirsutum). Scientific Reports, 7(1), 4420. https://doi.org/10.1038/s41598-017-04655-z
- Lin, Y., Ye, G., Kuzyakov, Y., Liu, D., Fan, J., & Ding, W. (2019). Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry, 134, 187–196. https://doi.org/10.1016/j.soilbio.2019.03.030
- Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S., Shahid, M., Abid, M., & Ullah, S. (2017). Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. Journal of Soil Science and Plant Nutrition, 17(1), 22–32. https://doi.org/10.4067/S0718-95162017005000002
- Malik, M.A., Marschner, P., & Khan, K.S. (2012). Addition of organic and inorganic P sources to soil–Effects on P pools and microorganisms. Soil Biology and Biochemistry, 49, 106–113. https://doi.org/10.1016/j.soilbio. 2012.02.013
- Mao, X., Xu, X., Lu, K., Gielen, G., Luo, J., He, L., Donnison, A., Xu, Z., Xu, J., & Yang, W. (2015). Effect of 17 years of organic and inorganic fertilizer applications on soil phosphorus dynamics in a rice–wheat rotation cropping system in eastern China. Journal of Soils and Sediments, 15, 1889–1899. https://doi.org/10.1007/ s11368-015-1137-z
- Mao, Y., Hu, W., Li, Y., Li, Y., Lei, B., & Zheng, Y. (2023). Long-term cattle manure addition enhances soil-available phosphorus fractions in subtropical open-field rotated vegetable systems. Frontiers in Plant Science, 14, 1138207. https://doi.org/10.3389/fpls.2023.1138207
- Martins, M.A., Santos, C., Almeida, M.M., & Costa, M.E.V. (2008). Hydroxyapatite micro-and nanoparticles: nucleation and growth mechanisms in the presence of citrate species. Journal of Colloid and Interface Science, 318(2), 210–216. https://doi.org/10.1016/j.jcis.2007.10.008
- Meng, D., Xu, P., Dong, Q., Wang, S., & Wang, Z. (2017). Comparison of foliar and root application of potassium dihydrogen phosphate in regulating cadmium translocation and accumulation in tall fescue (Festuca arundinacea). Water, Air, & Soil Pollution, 228, 1–8. https://doi.org/10.1007/s11270-017-3304-x
- Metson, G.S., MacDonald, G.K., Haberman, D., Nesme, T., & Bennett, E.M. (2016). Feeding the corn belt: opportunities for phosphorus recycling in US agriculture. Science of the Total Environment, 542, 1117–1126. https://doi.org/10.1016/j.scitotenv.2015.08.047
- Montalvo, D., Degryse, F., Da Silva, R.C., Baird, R., & McLaughlin, M.J. (2016). Agronomic effectiveness of zinc sources as micronutrient fertilizer. Advances in Agronomy, 139, 215–267. https://doi.org/10.1016/bs.agron.2016. 05.004
- Murphy, J., & Riley, J.P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5
- Naeem, I., Masood, N., Turan, V., & Iqbal, M. (2021). Prospective usage of magnesium potassium phosphate cement combined with Bougainvillea alba derived biochar to reduce Pb bioavailability in soil and its uptake by Spinacia oleracea Ecotoxicology and Environmental Safety, 208, 111723. https://doi.org/10.1016/j.ecoenv. 2020.111723
- Nakayama, Y., Wade, J., & Margenot, A.J. (2021). Does soil phosphomonoesterase activity reflect phosphorus pools estimated by Hedley phosphorus fractionation? Geoderma, 401, 115279. https://doi.org/10.1016/j.geoderma. 2021.115279
- Negassa, W., & Leinweber, P. (2009). How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review. Journal of Plant Nutrition and Soil Science, 172(3), 305–325. https://doi.org/10.1002/jpln.200800223
- Nziguheba, G., Palm, C.A., Buresh, R.J., & Smithson, P.C. (1998). Soil phosphorus fractions and adsorption as affected by organic and inorganic sources. Plant and Soil, 198, 159–168. https://doi.org/10.1023/A: 1004389704235
- Olsen, S.R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (Issue 939). US Department of Agriculture.
- Pavinato, P.S., Merlin, A., & Rosolem, C.A. (2009). Phosphorus fractions in Brazilian Cerrado soils as affected by tillage. Soil and Tillage Research, 105(1), 149–155. https://doi.org/10.1016/j.still.2009.07.001
- Penn, C.J., & Camberato, J.J. (2019). A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6), 120. https://doi.org/10.3390/agriculture9060120
- Pote, D.H., Lory, J.A., & Zhang, H. (2003). Does initial soil P level affect water-extractable soil P response to applied P? Advances in Environmental Research, 7(2), 503–509. https://doi.org/10.1016/S1093-0191(02)00020-5
- Qiu, S.-L., Wang, L.-M., Huang, D.-F., & Lin, X.-J. (2014). Effects of fertilization regimes on tea yields, soil fertility, and soil microbial diversity. Chilean Journal of Agricultural Research, 74(3), 333–339.
- Reddy, D.D., Rao, S.A., & Singh, M. (2005). Changes in P fractions and sorption in an Alfisol following crop residues application. Journal of Plant Nutrition and Soil Science, 168(2), 241–247. https://doi.org/10.1002/ jpln.200421444
- Rhoades, J.D. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 417–435. https://doi.org/10.2136/sssabookser5.3.c14
- Samadi, A., & Gilkes, R.J. (1999). Phosphorus transformations and their relationships with calcareous soil properties of southern Western Australia. Soil Science Society of America Journal, 63(4), 809–815. https://doi.org/10.2136/ sssaj1999.634809x
- Sato, S., Solomon, D., Hyland, C., Ketterings, Q.M., & Lehmann, J. (2005). Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environmental Science & Technology, 39(19), 7485–7491. https://doi.org/10.1021/es0503130
- Singh, J.S., Pandey, V.C., & Singh, D.P. (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment, 140(3–4), 339–353. https://doi.org/10.1016/j.agee.2011.01.017
- Sun, R., Zhang, X.-X., Guo, X., Wang, D., & Chu, H. (2015). Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 88, 9–18. https://doi.org/10.1016/j.soilbio.2015.05.007
- Thomas, G.W. (1996). Soil pH and soil acidity. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 475–490. https://doi.org/10.2136/sssabookser5.3.c16
- Tian, F., Gong, J., Zhang, J., Zhang, M., Wang, G., Li, A., & Wang, W. (2013). Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. Journal of Experimental Botany, 64(6), 1509–1520. https://doi.org/10.1093/jxb/ert004
- Uygur, V., & Karabatak, I. (2009). The effect of organic amendments on mineral phosphate fractions in calcareous soils. Journal of Plant Nutrition and Soil Science, 172(3), 336–345. https://doi.org/10.1002/jpln. 200700326
- Wahid, F., Fahad, S., Danish, S., Adnan, M., Yue, Z., Saud, S., Siddiqui, M. H., Brtnicky, M., Hammerschmiedt, T., & Datta, R. (2020). Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture, 10(8), 334. https://doi.org/10.3390/agriculture 10080334
- Wakley, A., & Black, C.A. (1934). Determination of organic matter in the soil by chromic acid digesion. Soil Science, 63, 251–264.
- Waldrip, H.M., He, Z., & Erich, M.S. (2011). Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biology and Fertility of Soils, 47, 407–418. https://doi.org/10.1007/s00374-011-0546-4
- Wang, J., Song, Y., Ma, T., Raza, W., Li, J., Howland, J.G., Huang, Q., & Shen, Q. (2017). Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology, 112, 42–50. https://doi.org/ 1016/j.apsoil.2017.01.005
- Xiong, W., Jousset, A., Guo, S., Karlsson, I., Zhao, Q., Wu, H., Kowalchuk, G. A., Shen, Q., Li, R., & Geisen, S. (2018). Soil protist communities form a dynamic hub in the soil microbiome. The ISME Journal, 12(2), 634–638. https://doi.org/10.1038/ismej.2017.171
- Yu, W., Li, G., Hartmann, T.E., Xu, M., Yang, X., Li, H., Zhang, J., & Shen, J. (2021). Development of a novel model of soil legacy P assessment for calcareous and acidic soils. Frontiers in Environmental Science, 8, 621833. https://doi.org/ 3389/fenvs.2020.621833
- Zhang, W., Li, H., & Li, Y. (2019). Spatio-temporal dynamics of nitrogen and phosphorus input budgets in a global hotspot of anthropogenic inputs. Science of the Total Environment, 656, 1108–1120. https://doi.org/10. 1016/j.scitotenv.2018.11.450
- Zhao, D., & Tao, J. (2015). Recent advances on the development and regulation of flower color in ornamental plants. Frontiers in Plant Science, 6, 125534. https://doi.org/ 3389/fpls.2015.00261
|