- Aghkhani, M. H., Ahmadipour, S., Soltanali, H., & Rohani, A. (2018). Greenhouse gas emissions, energy use, and cost analysis of citrus production: A case study of Mazandaran Province. Quarterly Journal of Energy Policy and Planning Research, 4(3), 181-229. (in Persian with English abstract).
- Ali, M., & Deo, R. C. (2020). Modeling wheat yield with data-intelligent algorithms: Artificial neural network versus genetic programming and minimax probability machine regression. In Handbook of Probabilistic Models. https://doi.org/10.1016/B978-0-12-816514-0.00002-3
- Ali, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). Cotton yield prediction with Markov Chain Monte Carlo-based simulation model integrated with genetic programming algorithm: A new hybrid copula-driven approach. Agricultural and Forest Meteorology, 263, 428-448. https://doi.org/10.1016/j.agrformet.2018.09.002
- Almassi, M., Kiani, S., & Loveimi, N. (2014). Principles of Agricultural Mechanization (5th ed.). Gofteman Andisheh Moaser.
- Ayoubikia, R., Janatrostami, S., Ashrafzadeh., A., Shafiei-Sabet, (2019). Optimization of regional water resources allocation in Sefidroud river basin by social equity approach. Iran-Water Resources Research, 14(5), 205-218. (in Persian with English abstract).
- Babaee, M., Maroufpoor, S., Jalali, M., Zarei, M., & Elbeltagi, A. (2021). Artificial intelligence approach to estimating rice yield. Irrigation and Drainage, 70(4), 732-742. https://doi.org/10.1002/ird.2566
- Bagheri, S. M., Gheysari, S., Ayoubi, N., & Lavaee. (2013). Silage maize yield prediction using artificial neural networks. Journal of Plant Production Research, 19(14), 77-96. (in Persian with English abstract).
- Barikloo, A., Alamdari, P., Moravej, K., & Servati, M. (2017). Prediction of irrigated wheat yield by using hybrid algorithm methods of artificial neural networks and genetic algorithm. Journal of Water and Soil, 31(3), 715-726. (in Persian with English abstract). https://doi.org/10.22067/jsw.v31i3.56158
- Chauhan, N. S., Mohapatra, P. K. J., & Pandey, K. P. (2006). Improving energy productivity in paddy production through benchmarking: An application of data envelopment analysis. Energy Conversion and Management, 47, 1063-1085. https://doi.org/10.1016/j.enconman.2005.07.004
- Cochran, W. G. (1977). Sampling Techniques. New York: John Wiley and Sons Publishing.
- Gu, J., & Yang, J. (2022). Nitrogen (N) transformation in paddy rice field: Its effect on N uptake and relation to improved N management. Crop and Environment, 1(1), 7-14. https://doi.org/10.1016/j.crope.2022.03.003
- Gummert, M., Cabardo, C., Quilloy, R., Aung, Y. L., Thant, A. M., Kyaw, M. A., Labios, R., Htwe, N. M., & Singleton, G. R. (2020). Assessment of post-harvest losses and carbon footprint in intensive lowland rice production in Myanmar. Scientific Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-020-76639-5
- Guo, Y. (2024). Integrating genetic algorithm with ARIMA and reinforced random forest models to improve agriculture economy and yield forecasting. Soft Computing, 28, 1685-1706. https://doi.org/10.1007/s00500-023-09516-8
- Hafezi, N., Bahrami, H., Sheikh Davoodi, M. J., & Alavi, S. E. (2020). Hybrid artificial neural network with metaheuristic algorithms for predicting sugarcane yield. Iranian Journal of Biosystems Engineering, 51 (3), 515-526. (in Persian with English abstract). https://doi.org/10.22059/ijbse.2020.290905.665234
- Haroni, S., Sheikhdavoodi, M. J., Kiani Deh Kiani, M. (2018). Application of artificial neural networks for predicting the yield and GHG emissions of sugarcane production. Journal of Agricultural Machinery, 8(2(, 389-401. (in Persian with English abstract). https://doi.org/10.22067/jam.v8i2.52870
- Hushyar, N., & Ashraf Talesh, S. S. (2016). Optimum prediction of the T-shape mixing chamber behavior based on multi-objective genetic programming. Modares Mechanical Engineering, 16(12), 612-616. (in Persian with English abstract).
- Janatrostami S, & Mahmoudpour H. (2020). Environmental assessment of groundwater pumping by using water and energy nexus. Journal of Water and Soil Science, 23 (4), 227-240. (in Persian with English abstract). https://doi.org/10.47176/jwss.23.4.40841
- Janatrostami, S., Kholghi, M., & Bozorg Haddad, O. (2010). Management of reservoir operation system using improved harmony search algorithm. Water and Soil Science, 20(3), 61-71. (in Persian with English abstract).
- Kavoosi Kalashami, M., Zanipoor, M., Yavari, G., & Adibi, S. (2017). Evaluation of the effect of national plan implemention of increasing rice production on technical efficiency of paddy farms (A case study: Pirbazar region of Rasht city). Cereal Research, 7(2), 235-246. (in Persian with English abstract). https://doi.org/10.22124/c.2017.2549
- Kima, A. S., Traore, S., Wang, Y. M., & Chung, W. G. (2014). Multi-genes programing and local scale regression for analyzing rice yield response to climate factors using observed and downscaled data in Sahel. Agricultural Water Management, 146, 149-162. https://doi.org/10.1016/j.agwat.2014.08.007
- Kitani, O., Jungbluth, T., Peart, R. M., & Ramdani, A. (1999). CIGR handbook of agricultural engineering. Energy and Biomass Engineering, 5, 330.
- Lu, M., Bi, Y., Xue, B., Hu, Q., Zhang, M., Wei, Y., Yang, P., & Wu, W. (2022). Genetic programming for high level feature learning in crop classification. Remote Sensing, 14, 3982. https://doi.org/10.3390/rs14163982
- Mahmud, T., Datta, N., Chakma, R., Das, U. K., Aziz, M. T., Islam, M., Salimullah, A. H. M., Hossain, M. S., & Andersson. K. (2024). An approach for crop prediction in agriculture: integrating genetic algorithms and machine learning. IEEE Access, 12, 173583-173598. https://doi.org/10.1109/ACCESS.2024.3478739
- Malashin, I., Tynchenko, V., Gantimurov, A., Nelyub, V., Borodulin, A., & Tynchenko, Y. (2024). Predicting sustainable crop yields: Deep learning and explainable AI tools. Sustainability, 16, 9437. https://doi.org/10.3390/su16219437
- Mirshekari, F. )2011(. Optimization of energy use efficiency (energy ratio) and revenue in smallholder agriculture of Naragh City. Faculty of Agriculture University of Tehran, Tehran.
- Nassiri, S. M., & Singh, S. (2009). Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. Applied Energy, 86(7), 1320-1325. https://doi.org/10.1016/j.apenergy.2008.10.007
- Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1), 39-51. https://doi.org/10.1016/S0960-1481(03)00135-6
- Panahi, S., Samadianfard, S., & Nazemi, A. H. (2021). Modeling the yield of rain-fed wheat, barley and alfalfa products using support vector regression and genetic programming. Journal of Water and Soil Science, 32(2), 97-111. (in Persian with English abstract). https://doi.org/10.22034/ws.2021.35741.2287
- Peng, X., Guan, X., Zeng, Y., & Zhang, J. (2024). Artificial intelligence-driven multi-energy optimization: promoting green transition of rural energy planning and sustainable energy economy. Sustainability, 16, 4111. https://doi.org/10.3390/su16104111
- Sadeghi, S. M. (2023). Investigating the effect of water stress and different levels of organic and chemical fertilizers on rice yield and its components. Iranian Journal of Irrigation and Drainage, 17(5), 843-855. (in Persian with English abstract).
- Shahdi Kumleh, A., Seyedi S. R., Haghighi Hasanalideh A. R., & Karamniya. S. )2021(. Effect of source and application rate of organic fertilizers on grain yield and quality of local and improved rice (Oryza sativa) cultivars. Iranian Journal of Crop Sciences, 23(3), 278-289. (in Persian with English abstract).
- Sharifi, S., Hafezi, N., & Aghkhani, M. H. (2025). Investigation and optimization of energy consumption and yield modeling of two rice cultivars using the genetic-artificial bee colony algorithm. Journal of Agricultural Machinery, 15(2), 145-164. https://doi.org/10.22067/jam.2022.77064.1108
- Taghizadeh Merjerdi, R., Seyed Jalali, S. A., & Sarmadian, F. (2016). Spatial prediction of wheat crop yield using digital soil mapping in Gotvand, Khuzestan Province. Iranian Journal of Agricultural Sciences, 47(1), 175-184. (in Persian with English abstract). https://doi.org/10.22059/ijswr.2016.57989
- Taheri-Rad, A., Khojastehpour, M., Rohani, A., & Khoramdel, S. (2017). Assessing the energy consumption efficiency of different long grain rice varieties in Golestan province. Cereal Research, 7(1), 51-66. (in Persian with English abstract). https://doi.org/10.22124/c.2017.2428
- Taheri-Rad, A., Khojastehpour, M., Rohani, A., Khoramdel, S., & Nikkhah, A. (2017). Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks. Energy, 135, 192-198. https://doi.org/10.1016/j.energy.2017.06.089
- Tchonkouang, R. D., Onyeaka, H., & Nkoutchou, H. (2024). Assessing the vulnerability of food supply chains to climate change-induced disruptions. Science of The Total Environment, 920, 171047. https://doi.org/10.1016/j.scitotenv.2024.171047
- Tung, C. P., Lee, T. Y., Yang, Y. C., & Chen, Y. J. (2009). Application of genetic programming to project climate change impacts on the population of Formosan Landlocked Salmon. Environmental Modelling & Software 24, 1062-1072. https://doi.org/10.1016/j.envsoft.2009.02.012
- Van-Hung, N., Sander, B. O., Quilty, J., Balingbing, C., Castalone, A. G., Romasanta, R., Alberto, M. C. R., Sandro, J. M., Jamieson, C., & Gummert, M. (2019). An assessment of irrigated rice production energy efficiency and environmental footprint with in-field and off-field rice straw management practices. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-53072-x
- Zeinalie, M., Golabi, M. R., Azari, A., & Farzi, S. (2022). The study of the performance of the Modflow conceptual model and the genetic programming simulator meta model in the modeling of the hydrograph of the aquifer (Case Study: Lour-Andimeshk Plain). Journal of Aqiufer and Qanat, 1(4), 1-15. (in Persian with English abstract). https://doi.org/10.22077/jaaq.2018.1236.1000
|