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Abstract 

Influence of a single atmospheric component or meteorological variable on the host, pathogen, or their 
interaction in controlled environments has accounted for the majority of climate change’s impact on plant pests 
and diseases. Climate change can lead to alterations in the stages and rates of growth of pests and diseases, host 
resistance, and the physiology of host-pathogen or host-pest interactions, which can cause substantial harm and 
reduce tomato crop yields. Different approaches have been ineffective in the accuracy of pest and disease 
forewarning in past years. The remarkable progress in Deep Convolutional Neural Networks (DCNNs) is 
revolutionizing the early detection of pests and diseases in crops. By analysing vast amounts of present and 
historical climate data, alongside their expertise in object identification and image categorization, these AI 
models can predict outbreaks with impressive accuracy. However, understanding the specific microclimate 
suitable for each pest and disease is crucial for truly effective intervention. Combining these two elements 
creates a powerful, targeted approach to preserving crops. A forewarning system can help to reduce the use of 
pesticides, thereby reducing the cost of production and environmental pollution. Proper cloud servers and IoT-
based sensor networks should be used for a better forewarning of pests and diseases in future circumstances. 
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Introduction  

Climate change has been shown to have a 
substantial influence on the behaviour of pests 
and diseases in agricultural systems (Bebber et 
al., 2013). Alterations in temperature and 
precipitation patterns substantially affect the 
behaviour of pests and disease vectors, 
creating unexpected challenges for farmers 
and agricultural productivity (Heeb et al., 
2019). Climate change may also have an 
impact on pest and disease vector life cycles 
and behaviour. Warmer winters might lower 
insect death rates, enabling their populations to 
increase more quickly in subsequent seasons. 
Similarly, changed precipitation patterns may 
generate circumstances that promote the 
reproduction and spread of disease-carrying 
organisms (Trebicki & Finlay, 2019). Besides, 
invasive species pose one of the biggest 
dangers to society, the economy, and global 

biodiversity (Early et al., 2016; Sarukhán et 
al., 2005). The inadvertent long-distance 
spread of invasive pests and diseases into areas 
outside of their natural distribution ranges has 
been greatly stimulated by climate change 
(Battisti & Larsson, 2015; Musolin, 2007). 
The establishment rate of invasive species has 
roughly quadrupled in the last 30-40 years in 
the European continent alone (Roques et al., 
2016) and the number of invasive forest 
diseases has escalated dramatically over the 
last 200 years (Santini et al., 2013). 
Worldwide, it is acknowledged that the 
primary means of introducing invasive pests 
and diseases into the agricultural ecosystem is 
through the trade of planting materials 
(Brasier, 2008; Kenis et al., 2007; Liebhold et 
al., 2012; Santini et al., 2013; Santini et al., 
2018). However, the equation is further 
complicated by the factor of climate change, 
which can act as a catalyst, altering the 
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delicate interaction between hosts and pests 
within crop systems. 

Pest forecasting is an important part of pest 
management. Pest forecasting refers to 
accurately predicting pest outbreaks using 
relevant data, a process vital for protecting the 
agri-food supply chain and the environment 
(Li et al., 2022). With proper forecasting, 
farmers can prepare and manage impending 
pest outbreaks, minimize unnecessary 
pesticide use, and reduce environmental 
pressures (Isard et al., 2015; Machekano et al., 
2019). Within the realm of integrated pest 
management, a multifaceted approach is 
crucial for effective pest control. Machine 
learning has revolutionized the way pest and 
disease forecasting in agriculture has 
leveraged large datasets to develop predictive 
models (Ahmed, 2018). By analysing vast 
amounts of data, machine learning algorithms 
can identify patterns and make predictions 
with a high degree of accuracy (Pak & Kim, 
2017). While machine learning (ML) offers 
powerful tools for rapid and accurate pest 
identification, understanding both weather and 
climate suitability is equally important for 
developing comprehensive control strategies. 
Integrating ML-based identification with 
weather and climate suitability modeling 
creates a robust and targeted approach to pest 
management, fostering sustainable agricultural 
practices. 

Tomato is the most significant vegetable 
crop in the world economy and its output has 
grown significantly over time (Hu et al., 
2023). Lycopersicon esculentum thrives in a 
warm, sun-drenched environment with well-
drained soil. The optimal temperature range 
for tomato growth lies between 20 °C and 31 
°C, with nighttime temperatures of 13 °C to 18 
°C contributing to enhanced flavour and colour 
development. Moderate rainfall is sufficient 
for tomato cultivation, while excessive 

humidity can foster the proliferation of fungal 
diseases (Yang et al., 2019). Generally, 
tomatoes will be affected by high temperature 
and water stress (Hernandez-Espinoza & 
Barrios-Masias, 2020). Thus, an optimum 
microclimate is essential for effective fruit 
production and crop output. In addition to 
these, tomato plants are vulnerable to over 200 
pests and diseases caused by pathogenic fungi, 
bacteria, viruses, and nematodes. Every pest 
and disease require a unique microclimate 
condition for their growth and development. 
Warm, humid circumstances often favour 
fungal diseases such as late blight in tomatoes, 
while cool nights and high humidity encourage 
the growth of Septoria leaf spots (Singh et al., 
2018). Integrated pest management (IPM) 
requires a robust pest and disease surveillance 
system to deploy timely plant protection 
measures when needed to lower cultivation 
costs and prevent ecosystem contamination.  

Recent integrated pest management studies 
indicate that weather variations significantly 
influence pest and disease outbreaks (Dhawan, 
2016; Fuentes et al., 2017; Saeed et al., 2018). 
An essential component of pest control is 
recognizing the tomato crop’s pest complex 
and its correlation with meteorological 
variables (Rawat, Karnatak, & Srivastava, 
2020). When the ideal meteorological 
condition for a pest invasion is understood, it 
can facilitate pest detection (Alam et al., 
2016). For efficient management of pests and 
diseases in modern agriculture, microclimate-
based forewarning systems are essential. 
Tomato crop productivity and quality may be 
greatly increased with early detection and 
intervention, all while using fewer pesticides. 
Thus, understanding the relationship between 
host and pest, along with predicted weather 
patterns, allows for the prevention of pest and 
disease outbreaks (Balikai et al., 2021).  
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Fig. 1. Conceptualized framework for pest prediction and identification 

 

Thus, the current article explores the past 
literature investigating machine learning 
applications in pest management and suitable 
microclimates for different pests and diseases 
affecting tomatoes. 

 
Methodology 

The search utilized databases including 
Google Scholar and Scopus. The search string 
used to collect information was outlined 
below:  

(“Pest forewarning AND Tomato”, 
“Regression models” AND “Pest 

forewarning”, “Logistic models” AND “Pest 
forewarning”, “ARIMA model” AND “Pest 
forewarning”, “Machine learning” AND “Pest 
forewarning” AND “Tomato”, “Pests” AND 
“Tomato AND “Deep learning”, “Diseases” 
AND “Tomato” AND “Deep learning”) 

To be included in the current review, 
articles needed to provide quantitative results 
about at least one aspect of pest forewarning 
models, neural network or influence of pest 
and diseases of Tomato based on micro 
climate.  

 

 
Fig. 2. Identification of studies via databases 



?     Journal of Agricultural Machinery Vol. ?, No. ?, ?, ? 

 

Pest forewarning/detection 

Advances in image processing and 
intelligent monitoring technologies have 
emerged as promising tools for early pest 
detection, enabling timely intervention and 
reducing the need for excessive pesticide 
application (Nagar & Sharma, 2020). These 
techniques leverage computer vision and 
machine learning algorithms to automatically 
identify pests, reducing the reliance on human 
experts and streamlining the pest management 
process (Ngugi et al., 2021). By providing 
farmers with accurate and real-time 
information about pest infestations, these 
technologies can help them make informed 
decisions, leading to more sustainable and eco-
friendly agricultural practices. Moreover, the 
integration of these systems with the Internet 
of Things (IoT) and decision support systems 
can further enhance the effectiveness of pest 
management, enabling coordinated efforts 
across larger geographic regions (Lima et al., 
2020). 
Logistic and regression models 

Previously, ordinal logistic models were 
used to forecast the pest/disease’s occurrence. 
In cases where the data was quantitative, it 
was converted into dichotomous using 
threshold values. The model had the following 
form: 

𝑃 (𝑌 =  1) = =
1

1
+ exp  (−𝐿) and 

𝐿 =  ∑ 𝛽𝑖 𝑋𝑖 
(1) 

where Xi denotes the weather 
variables/weather indices. P< 0.5 indicates a 
low likelihood of an epidemic occurring, 
whereas P> 0.5 suggests a higher likelihood. 
The function L was constructed using several 
combinations of weather variables, including 
maximum and minimum temperatures, relative 
humidity (morning and evening), and mean 
relative humidity, as well as interactions. The 
combination that most accurately predicted the 
observed data was identified (Srivastava et al., 
2015). Later, stepwise regression models were 
used to forecast various aspects of rice, 
mustard, pigeon pea, sugarcane, groundnut, 
and cotton pests and diseases at various 
locations, including maximum pest 

population/disease severity, time of first 
appearance, time of maximum pest 
population/disease severity, and weekly pest 
population/disease severity. In this sort of 
model, two indices have been generated for 
each weather variable, one as a total of 
weather variable values in different weeks and 
the other as a weighted total, with weights 
representing correlation coefficients between 
the variable to forecast and the weather 
variable in those weeks. The first index 
represents the total amount of weather variable 
over the period under examination, while the 
second addresses the distribution of weather 
variables, with a focus on their importance in 
different weeks in relation to the variable to be 
anticipated. Similarly, indices were calculated 
for joint effects using weather variable 
products (two at a time). The model’s form is: 

𝑌 = 𝑎0 +  ∑ ∑ 𝑎𝑖𝑗

1

𝑗=0

𝑝

𝑖≠1

𝑍𝑖𝑗

+  ∑ ∑ 𝑏𝑖𝑖 ’ 𝑗𝑍𝑖𝑖 ’ 𝑗 + 𝑒

1

𝑗=0

𝑝

𝑖≠1

 

(2) 

where 

𝑍𝑖𝑗 =  ∑ 𝑟𝑖𝑤
𝑗

𝑋𝑖𝑤
𝑛2
𝑤=𝑛1

 and 𝑍𝑖𝑖 ’ 𝑗 =

 ∑ 𝑟𝑖𝑤
𝑗

𝑋𝑖𝑤
𝑛2
𝑤=𝑛1

𝑋𝑖 ’ 𝑤 

Y: variable to forecast 

𝑋: value of 𝑖𝑡ℎ weather variable in 𝑤𝑡ℎ 
week 

𝑟𝑖𝑤: correlation coefficient between Y and 

𝑖𝑡ℎ weather variable in 𝑤𝑡ℎ week 
𝑟𝑖𝑖 ’ 𝑤: correlation coefficient between Y and 

product of 𝑋𝑖 and 𝑋𝑖 ’ in 𝑤𝑡ℎ week 
P: number of weather variables considered 
𝑛1: initial week for which weather data 

were included in the model 
𝑛2: final week for which weather data were 

included in the model 
In some cases, previous disease 

incidence/pest population (or their indices) 
and/or the previous year’s last population have 
also been included in the model. Stepwise 
regression technique was used for selecting 
important variables to be included in the 
model. This approach allows for credible 
warnings at least one week in advance 
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(Chattopadhyay et al., 2005a; Chattopadhyay 
et al., 2005b; Desai et al., 2004; Vishwa Dhar 
et al., 2007). 

When data is provided for a few years (5-7 
years) at varied time intervals (weekly), it is 
insufficient for building standard models. In 
this case, the deviation method can be used. It 
has been considered that the pest 
population/disease severity at any given 
moment is determined by the pest’s natural life 
cycle and the meteorological conditions. In 
order to discover the natural pattern, data from 
various intervals are averaged across time, and 
an appropriate model can be established. A 
model may be fitted with deviations from 
natural patterns as the dependent variable and 
weather as the independent variable. Mehta et 
al. (2001) demonstrated this methodology for 
weekly fruit fly populations in mango at 
Rehman Khera Farm, Central Institute for 
Subtropical Horticulture, Lucknow, India.  

On the other hand, if historical data is 
unavailable and only 10-12 data points exist 
between the time of first appearance of 
disease/pest and maximum disease 
severity/pest population, a forecast of 
maximum disease severity/pest population can 
be obtained from current season data using a 
within-year growth model. The technique 
entails fitting a suitable model to the pattern of 
disease development/pest population using 
partial crop season data and forecasting the 
maximum value based on that model. This 
technique was used to forecast the percent 
disease severity (PDS) of Alternaria Blight in 
the Varuna mustard variety at Kumarganj in 
1999-2000 for various sowing dates. The 
model was, 

𝑌𝑡 =  𝐴 exp 𝐵
𝑡⁄  𝑒                         (3) 

where, t: weeks after sowing, Yt: percent 
disease severity at week t, and A and B: model 
parameters. Using this model, reliable 
forecasts could be obtained two weeks in 
advance (Mehta et al., 2005).  
ARIMA model (Autoregressive Integrated Moving 

Average) 

ARIMA models utilize historical data to 
identify patterns and trends, making them an 
effective tool for forecasting in agricultural 

settings. By analysing factors such as weather 
patterns, crop health, and pest populations, 
ARIMA models have the benefit of being able 
to capture and account for complex temporal 
patterns and seasonal fluctuations. This makes 
them ideal for forecasting pest and disease 
dynamics, which are naturally impacted by a 
variety of environmental and biological 
variables (Collier, 2017). The ARIMA (p, d, q) 
model has three parameters. The 
autoregressive parameter, denoted by 
parameter p, examines the connection between 
a variable and its previous occurrences. 
Through analysing historical data, the 
autoregressive parameters can be derived to 
predict future instances of pest and disease 
occurrences. The second parameter is 
differentiation (d), and the number of lag 
forecast mistakes is represented by the running 
mean value or parameter q. Choosing the right 
lags is a vital stage in constructing a reliable 
ARIMA model for forecasting pest and disease 
outbreaks (Setiyowati et al., 2015). Lags 
indicate the number of past data points 
considered for predicting future occurrences. 
The ARIMA model was created using an 
autocorrelation plot (ACP) on stationary time-
series data (Lee & Liu, 2014). The moving 
average parameter was obtained using the 
value of the partial correlation coefficient. The 
moving average segment within the ARIMA 
model depicts the association between a 
current observation and the residual error 
obtained from applying a moving average 
model to past observations (Mahapatra & 
Dash, 2020). The created ARIMA model was 
evaluated by comparing observed data from 
the farm field with data that the model is 
anticipated. According to the findings above, 
ARIMA (1, 0, 2) is the best model to forecast 
the incidence of pests and diseases based on 
microclimatic data. 
Machine learning 

Machine learning has shown to be a great 
revolution in agriculture, transforming many 
processes to enhance efficiency, production, 
and sustainability (Chlingaryan et al., 2018). 
From agricultural yield prediction to disease 
detection, machine-learning approaches have 
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shown enormous promise in revolutionizing 
agriculture (Priya & Ramesh, 2020). Aerial 
colour and color-infrared photography have 
long been used to monitor crop development; 
however, these technologies are being 
extensively researched for analysing spatial 
variability within the field. High-resolution 
imagery’s finer features enable a closer study 
of crops, allowing for earlier and more 
accurate diagnosis of stress symptoms, pest 
infestations, and diseases. This can be critical 
for making timely interventions and reducing 
yield losses (Hunt et al., 2004). Overall, the 
use of machine learning in agriculture has 
resulted in substantial advances and has 
immense potential for the future (Bestelmeyer 
et al., 2020).  

Precision farming is one of machine 
learning’s most successful applications in 
agriculture, which may give farmers useful 
insights into improving their irrigation, 
fertilization, and pest management techniques 
by analysing data from sensors, satellite 
photos, and weather predictions (Priya & 
Ramesh, 2020).  

One of the major accomplishments of 
machine learning models is the detection of 
agricultural diseases and insect infestations, 
allowing for early intervention and more 
effective resource allocation (Maduranga & 
Abeysekera, 2020). In any crop, pest and 
disease prediction is a crucial component for 
the process of managing pests and diseases. 
Thus, it is necessary to understand the life 
cycle of the pests and schedule management 
practices to align with the stages of the pest 
and pathogen life cycle (Collier, 2017). 
Machine learning algorithms are becoming 
more useful in agricultural pest and disease 
prediction. These algorithms are capable of 
analysing enormous amounts of data and 
detecting trends that may indicate pest or 
disease breakouts (Javaid et al., 2023). They 
can aid in the prediction of possible pest and 
disease infestations by collecting data on 
weather patterns, crop health, insect 
populations, and other relevant aspects (Singh 
et al., 2018). When compared to traditional 
methods, these systems can greatly increase 

crop output and quality with reduced pesticide 
usage.  

A study by Bhatia et al. (2020) investigates 
the application of machine learning for 
identifying tomato pests from images using 
three classifiers: SVM, k-NN, and DT. Texture 
features such as GLCM, LBP, HOG, and 
SURF were utilized, with SVM combined with 
LBP achieving the best accuracy of 81.02%. 
The study emphasizes the importance of early 
pest detection in enhancing tomato crop 
quality and yield. It showcases the potential of 
integrating image processing with machine 
learning to advance agricultural practices. 

Pest forewarning and detection utilize a 
diverse toolbox of methods, and some of the 
previous studies related to the use of machine 
learning for pest and disease detection are 
compiled in Table 1.  
Deep learning in object detection 

ANNs have emerged as effective tools for 
solving complicated issues, such as pest 
prediction in agriculture (Wang et al., 2022). 
Because of its ability to model and analyze 
deep interactions within big datasets, ANNs 
are commonly used for crop pest risk 
prediction. Research has shown that ANNs 
have good prediction accuracy in anticipating 
insect populations and assessing their hazards 
in a variety of crops, including rice. 
Furthermore, ANNs have been employed in 
intelligent agent-based prediction systems for 
pest detection and alert mechanisms, 
leveraging technologies such as acoustic 
methods and video processing techniques to 
allow early pest finding and classification. In 
pest management, object detection can be used 
to identify and monitor numerous pests, 
providing useful information for decreasing 
their populations and limiting crop loss. Deep 
learning, a subset of machine learning, has 
shown significant potential in object detection 
applications due to its capacity to understand 
complicated patterns and characteristics from 
vast datasets (Corrales et al., 2015). Digital 
image processing has seen improvements 
through deep learning, which is significantly 
better than conventional techniques. Early pest 
and disease detection and prediction is made 
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possible by this technology, allowing for 
prompt intervention and control actions (de 
Souza et al., 2017). Deep learning can be also 

used in the detection of pests and diseases 
based on weather data (Pandit et al., 2022). 

 
Table 1- Use of machine learning techniques to predict agricultural pests and diseases 

Crop Disease/insect Algorithm Data set Observation Reference 

Mango Thrips Random forest 
Temperature and 

humidity 

Low error 

estimates 

(Jawade et 

al., 2020) 

Rice Blast 

Artificial neural 

network 

(ANN) 

Temperature and 

humidity 

Average accuracy 

of 72% 

(Jia et al., 

2020) 

Mango Powdery mildew 

Rough sets, linear 

regression, rough 

sets 

based decision, 

decision tree 

Temperature and 

humidity 

Average accuracy 

of 75% 

(Rajni et al., 

2009) 

Rice Blast 

Long-term 

memory 

network (LSTM) 

Temperature and 

humidity 

Maximum 

accuracy of 79.4% 

(Kim et al., 

2020) 

Coffee Rust Fuzzy 
Temperature and 

humidity 

Fuzzy models 

outperformed 

classical models in 

terms of error 

rates. 

(Cintra et 

al., 2011) 

Pomegranate 

General 

pomegranate 

diseases 

 

Hidden Markov 

chain 

Temperature, 

humidity and 

wind speed 

Accuracy of 80.7% 
(Pawara et 

al., 2018) 

Cherry 
A general disease of 

cherry 

Discriminant 

Analysis 

Temperature, 

humidity, rainfall 

and wind speed 

Maximum 

prediction 

accuracy of 

93.6% 

(Ilic et al., 

2018) 

Tomato Powdery mildew 

Hybrid of support 

vector machine 

(SVM), LR 

Temperature, 

Humidity, leaf 

wetness, wind speed, 

global radiations 

Conducive classes, 

not conducive 

classes 

(Bhatia et 

al., 2020) 

Rice Blast ANN, SVM 

Evaporation, 

maximum 

temperature, minimum 

temperature, Rainfall, 

solar radiation, wind 

speed and humidity 

Disease 

occurrence, disease 

severity 

(Malicdem 

& 

Fernandez, 

2015) 

Potato Late blight ELM, SVM 

maximum 

temperature, minimum 

temperature, 

maximum humidity, 

minimum humidity, 

Rainfall, Number of 

rainy days 

Class 1: <3%, 

class 2: 4-10%, 

class 3: 11-30%, 

class 4: 31-60%, 

class 5: >60% 

(Singh et 

al., 2019) 

Orange 

Black spot, 

greening, melonasa, 

greasy spot, scab, 

Alternaria brown 

spot, canker 

ACC 

Image of Orange, 

temperature, rainfall, 

humidity 

Disease name 
(Kaur & 

Kaur, 2018) 
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Olive, Grape 

Downy mildew, 

powdery mildew, 

peacock spot, 

anthracnose 

ACC 

 

Temperature, 

humidity, accumulated 

heat, degree days 

Disease occurrence 
(Alves et 

al., 2018) 

Cucumber 
Downy mildew, leaf 

spot, anthracnose 

Wavelet 

transformation, 

SVM 

13 variables divided 

into soil data, weather 

data, disease data 

Disease occurrence 

(%) 

(Junjing et 

al., 2019) 

 
Convolutional neural network 

Convolutional neural networks are leading 
the way in computer vision problems (Szegedy 
et al., 2015). Unlike traditional approaches to 
training classifiers with hand-designed feature 
extraction, CNNs learn feature hierarchy from 
pixels to classifier, and train layers 
simultaneously. Because of the intricacy of the 
model, CNNs can take weeks to fully train; 
thus, transfer learning is used to shorten model 
training by taking a fully trained model for a 
set of classes and retraining the current 
weights for additional classes.  

One of the primary advantages of CNNs is 
their capacity to analyze and interpret visual 
data, which makes them ideal for tasks like 
plant disease assessment, crop monitoring, and 
yield prediction (Prashar & Sangal, 2022). 
CNNs may be taught to detect patterns and 
abnormalities in photographs of crops, soil, 
and agricultural landscapes (Zhao et al., 2020). 
This enables the early diagnosis of pest or 
disease infestations, as well as prompt action 
to avoid widespread damage (Ai et al., 2020). 
Another distinguishing aspect of CNNs is 
their capacity to process vast amounts of 
visual data efficiently (Boulent et al., 2019).  

Several studies on Machine Learning (ML) 
techniques used in the agricultural sector focus 
on the tasks of classification, detection, and 
prediction of diseases and pests, with a focus 
on tomato crops (Domingues et al., 2022). In 
recent years, there has been an increased 
interest in employing convolutional neural 
networks to anticipate and detect possible pest 
and disease outbreaks in tomato crops (Brahmi 
et al., 2024). To train the Convolutional 
Neural Network, a dataset was collected from 
various tomato farms in different regions 

(Verma & Zhang, 2018). Daily microclimate 
measurements such as temperature, humidity, 
and sunlight exposure, along with information 
on the presence of pests and diseases in the 
tomato plants were required (Gurle et al., 
2019). The data collection process involved 
collaborating with multiple farms to ensure a 
diverse and representative dataset for training 
the model. Additionally, advanced sensors 
were strategically placed across the farms to 
capture real-time microclimate data. This 
ensured that the dataset not only had a wide 
geographical representation but also captured 
the dynamic nature of microclimate within 
each region (Sladojevic et al., 2016). CNNs 
have shown considerable potential in image 
recognition and classification tasks, making 
them an ideal choice for detecting pest and 
disease indicators in tomato plants (Wiesner-
Hanks et al., 2018). The collected data will 
then be pre-processed to remove any outliers 
or inconsistencies before being used for 
training the Convolutional Neural Network (de 
Souza et al., 2017). Data pre-processing also 
includes data augmentation techniques such as 
random contrast, flip, zoom, and rotation to 
enhance the diversity of the training dataset 
and prevent overfitting (Shorten & 
Khoshgoftaar, 2019). A study by Kattenborn et 
al. (2021) highlights that batch normalization 
standardivolzes activation function outputs to 
have a zero mean and unit variance, preventing 
imbalance caused by extreme activation 
values. This technique simplifies the gradient 
descent optimization process, enables the use 
of larger learning rates, and accelerates 
network convergence. 
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Fig. 3. Architecture of the CNN used for detecting pinworm damage; the input consisted of leaves infected with 

pinworm, non-linearity includes the activation layer and convolutional layer filters the input images and reduces the size 

of the dataset 

 

The training process involved splitting the 
dataset into training, validation, and testing 
sets to evaluate the performance of the model. 
Various hyperparameters were tuned, and 
different architectures were explored to 
optimize the CNN for accurate pest and 
disease forewarning (López-Morales et al., 
2008). The CNN was trained to automatically 

extract features from the raw microclimate 
data and correlate them with the presence of 
pests and diseases in the tomato plants 
(Brahimi et al., 2017). Training a CNN on a 
varied collection of tomato plant photos, 
including healthy and diseased plants, may 
lead to a powerful forewarning system 
(Kamilaris & Prenafeta-Boldú, 2018). To 
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accomplish this goal, the researchers first 
compiled a broad collection of tomato plant 
photos, including those displaying healthy 
plants as well as those damaged by numerous 
pests and diseases (Nihar et al., 2021). This 
dataset will be critical in training the 
convolutional neural network to recognize and 
categorize various signs and manifestations of 
pests and diseases in tomato (Paymode et al., 
2021). Once the dataset is produced, it will 
begin training the CNN, using approaches like 
data augmentation to improve the model’s 
capacity to generalize and predict on 
previously unknown data (Jia et al., 2020). 
The model will be validated and fine-tuned to 
guarantee that it is successful in detecting 
possible pest and disease outbreaks. Through 
the training and evaluation process, the 
developed CNN models showed satisfactory 
performance in detecting nine different tomato 
diseases and pests. (David, 2023). The CNN 
models achieved a high accuracy rate of 
99.18% in classifying the presence of pests 
and diseases based on the microclimate data. 
This high accuracy rate outperformed previous 
shallow models and demonstrated the 
effectiveness of using Convolutional Neural 

Networks for pest and disease forewarning in 
tomato plants (Emebo et al., 2019). The results 
of this study highlight the potential of using 
deep learning and Internet of Things 
technologies, specifically convolutional neural 
networks, for accurate and efficient pest and 
disease forewarning in tomato plants 
(Gonzalez-Huitron et al., 2021). This approach 
provides farmers with a practical tool to 
remotely monitor the health of their tomato 
plants, reducing effort and enabling timely 
interventions (Agarwal et al., 2020). Once the 
model was trained, it underwent rigorous 
testing and validation to assess its ability to 
accurately predict pest and disease occurrences 
based on the microclimate data (Prajwala et 
al., 2018). The results of the training and 
validation process were crucial in determining 
the effectiveness and reliability of the CNN for 
forewarning pest and disease outbreaks in 
tomato plants (de Souza et al., 2017). Farmers 
will get this pest and disease warning 
information and advice on proper crop 
management techniques via electronic media, 
such as the Internet, short messaging service 
(SMS) and other digital platforms (Hughes & 
Salathé, 2015).  
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Fig. 4. Pest and disease forewarning using convolutional neural network  
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Recurrent-CNN 

Girshick et al. (2014) proposed R-CNN as a 
method for efficient object localization in 
object identification. R-CNN uses the selective 
search algorithm. The initial step in deploying 
R-CNN for agricultural crops is to gather and 
preprocess the dataset. This involves acquiring 
photos of numerous crops, including wheat, 
rice, maize, and soybeans, from diverse 
agricultural areas (Qi et al., 2023). The 
collection should also contain photographs of 
prevalent pests and diseases that attack these 
crops (Barbedo, 2020). Once the photos have 
been acquired, they must be pre-processed to 
ensure that they are in the correct format for 
training the R-CNN model. This might include 
scaling the photographs, normalizing pixel 
values, and labelling them with bounding 
boxes to show the location of crops, pests, and 
diseases. Following the preparation of the 
dataset, the R-CNN model is trained. A 
convolutional neural network is used to extract 
features from the pictures, followed by a 
region proposal network to provide plausible 
bounding boxes for objects in the images. The 
model is then trained to categorize the items 
that fall inside the suggested boundaries (Patel 
& Bhatt, 2021). Once trained, the model must 
be assessed against a different testing dataset 
to determine its accuracy and performance. 
Following assessment, the model may be used 
to detect and analyze crops, pests, and diseases 
in agricultural settings (Zheng et al., 2019). 

 
Fast R-CNN 

Fast R-CNN was created to address the 
computational inefficiencies of R-CNN. 
Unlike R-CNN, which processes each region 
proposal separately via CNN, fast R-CNN uses 
the whole picture and its region suggestions as 
input in a single forward pass through the 
CNN architecture. This considerably 
minimizes the processing overhead. 
Furthermore, fast R-CNN combines numerous 
architectural components, such as ConvNet, 
RoI pooling, and classification layers, into an 
organised and efficient framework. One of the 
primary benefits of adopting fast R-CNN in 

agriculture is its capacity to reliably identify 
regions that need attention, allowing for 
focused treatments while minimizing total 
input consumption such as pesticides and 
herbicides (Sykes et al., 2023). One of the 
primary benefits of adopting Fast R-CNN in 
agriculture is its ability to recognize items of 
interest in pictures quickly and accurately 
(Halstead et al., 2018). This allows farmers to 
immediately detect and rectify potential issues 
in their fields, resulting in better crop 
management and higher yields (Qiang et al., 
2020). 

 
Faster R-CNN 

Faster R-CNN, proposed by Ren et al. 
(2015), overcomes the bottleneck of selective 
search in its predecessor by including a region 
proposal network. After running the picture 
through a backbone network, it generates 
convolutional feature maps. The area proposal 
network then uses these feature maps to create 
anchors, which represent the centres of sliding 
windows of various sizes and scales. These 
anchors are then processed by the 
classification layer, which determines object 
functioning, and the regression layer, which 
localizes the bounding boxes. This method 
substitutes selective search, considerably 
increasing object detection efficiency by 
including region proposal creation into the 
network design. 

Recently, a smartphone application called 
"PESTPREDICT" which uses weather-based 
pest warnings as part of integrated pest 
management for crop protection was 
developed. This program helps farmers, 
agricultural extension workers, and researchers 
obtain location-specific predictions of desired 
pest or disease for target crops so that they 
may be effectively managed (Szegedy et al., 
2015). Plantix is an influential software that is 
gaining popularity among farmers and 
gardeners. Its key characteristics include plant 
disease diagnosis, pest detection, and 
gardening recommendations (Siddiqua et al., 
2022). The app uses picture recognition 
technology to identify plant pests and diseases, 
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giving users precise information and treatment 
recommendations (Petrellis, 2017). In addition 
to its diagnostic capabilities, Plantix functions 
as an information platform for plant 
enthusiasts, providing articles, videos, and 
other materials to assist users in taking care of 
their plants. Plantix has become an 
indispensable tool for anybody who wants to 
keep their plants healthy and developing 
(Mrisho et al., 2020). In this study by Lin et al. 
(2020), Faster Region-Convolutional Neural 
Networks (Faster R-CNN) and Mask R-CNN 
were utilized to create a knowledge-based 
system capable of automatically identifying 
plant pests and diseases. The Faster R-CNN 
achieved a regional recognition accuracy of 
89%, while the Mask R-CNN demonstrated an 
area recognition accuracy of 81%. This 
research successfully developed a system for 
pest and disease identification. 

 
YOLO (You Only Look Once) 

The YOLO approach to object detection 
revolutionizes the process by enabling 
simultaneous identification and localization of 
objects in an image at a single glance. Unlike 
traditional multi-step methods, YOLO 
redefines object detection as a regression 
problem, directly predicting spatially separated 
bounding boxes and their corresponding class 
probabilities. This is achieved through a single 
neural network evaluation, making the process 
efficient and streamlined (Du, 2018). A 
specialized tomato-picking robot is designed 
exclusively for use in facility agriculture 
environments. A deep learning-based 
recognition technique is implemented. The 
process identifies the positions of peduncles by 
connecting bounding boxes and acquires depth 
data using a depth camera. It then simulates 
manipulator trajectory planning based on 
spatial coordinates, overcoming challenges 
like lighting variations and obstructions. 
YOLO outperforms the SSD algorithm with 
higher accuracy and confidence in tomato 
shape detection. Future studies could adapt 
this approach to other crops like eggplants, 
cucumbers, and oranges with contrasting 
features (Zhaoxin et al., 2022). 

 
Boons 

Large data sets can be analyzed by machine 
learning algorithms, which can spot patterns 
and trends that are invisible to the human eye 
(Gauriau et al., 2024). This makes it possible 
for agriculture specialists to more precisely 
forecast and warn of impending outbreaks of 
pests and diseases (Ifft et al., 2018). Machine 
learning models can provide early warnings by 
utilizing environmental conditions, historical 
data, and crop health indicators. This enables 
farmers to take proactive actions to reduce the 
impact of pests and diseases on their crops 
(Veeragandham & Santhi, 2020). Farmers can 
save a large amount of money by utilizing 
machine learning to forecast pests and 
diseases. Farmers can decrease the needless 
use of chemical pesticides and fertilizers, 
resulting in lower costs and more sustainable 
agricultural practices, by precisely anticipating 
and diagnosing potential dangers to their crops 
(Bestelmeyer et al., 2020). Farmers can also 
reduce crop losses and guarantee a more 
consistent and dependable production by using 
preventative measures based on machine 
learning insights, which will further contribute 
to agriculture’s long-term sustainability 
(Rehman et al., 2019). Based on the unique 
requirements and conditions of each farmer’s 
crop, machine learning algorithms can offer 
customized recommendations and decision 
support (Ahmed et al., 2024). These 
algorithms can adjust and improve their 
recommendations by evaluating real-time data 
and continuously learning from new 
information, accounting for fluctuations in 
crop types, weather, and soil conditions 
(Sudduth et al., 2020). With this degree of 
individualized support, farmers are better 
equipped to manage pests and diseases, and 
make well-informed decisions that improve 
crop output and health (Benos et al., 2021). 

 
Conclusion 

Overall, the implementation of 
microclimate-based pest and disease warning 
systems in tomato agriculture has the potential 
to transform the way farmers manage their 
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crops. This technique enables farmers to make 
educated choices by using real-time data and 
advanced analytics, resulting in more effective 
pest and disease management strategies. It 
minimizes pesticide use, and also promotes 
sustainable agriculture practices and crop 
quality. More research and technical 
improvements will improve the accuracy and 
reliability of microclimate-based forewarning 
systems. This will allow for greater adoption 
across areas and crop kinds, eventually 
improving agricultural production and 
environmental sustainability. As the 
agricultural industry evolves, adopting novel 
solutions such as microclimate-based 
forewarning will be critical in tackling pest 
and disease concerns, resulting in a more 
resilient and productive agricultural sector. In 
addition, incorporating microclimate-based 
pest and disease forewarning into tomato 
growing might provide farmers with economic 
advantages. Farmers may be able to boost their 
total production and revenues by lowering 
their reliance on pesticides and crop loss. This, 
in turn, may help ensure the long-term 
profitability of agricultural enterprises and the 
livelihoods of rural communities. Furthermore, 
as technology advances and these systems 
become more accessible and user-friendly, it is 
expected that small-scale farmers will be able 
to utilize the advantages of microclimate-
based forewarning, democratizing access to 

effective pest and disease control tools. 
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 دهیچک 

 آفات بر یمیاقل راتییتغ ریثات از یاعمده بخش شده،کنترل یهاطیمح در هاآن تعامل ای پاتوژن زبان،یم بر یهواشناس ریمتغ ای یجو لفهوم  کی  ریثات
 مقاومررت هررا،یماریب و  آفررات رشررد سرررعت و  مراحل در یراتییتغ به منجر تواندیم یمیاقل راتییتغ. است داده اختصاص خود به را گیاهان یهایماریب  و 
 در.  گررردد  یفرنگگوجرره  محصول  عملکرد  کاهش  و   توجهقابل  بیآس  باعث  تواندیم  که  شودآفت  -زبانیم  ایپاتوژن  -زبانیم  تعاملات  یولوژیزیف  و   زبانیم

 قیعم کانولوشن یعصب یهاشبکه در توجهقابل شرفتیپولی . اندبوده ناموفق هایماریب و  آفات دقیق ینیبشیپ در مختلف یکردهایرو  ،گذشته  یهاسال
(DCNN)و  هیرر تجز با یمصنوع هوش یهامدل نیا. شده است یکشاورز  محصولات  در  هایماریب  و   آفات  زودهنگام  صیدر تشخ  یانقلاب  ، باعث ایجاد 

 یریچشمگ دقت با را هایماریب وعیش توانندیم ر،یو اتص  یبندطبقه و  ایاش ییشناسا کنار در ،گذشته و   حال حاضر  یمیاقل  یهاداده  از  یادیز  ریمقاد  لیتحل
های اقلیمی با داده عنصر دو  بیترک. است مهم اریبس ثروم مداخله یبرا یماریب و   آفت  هر  یبرا  مناسب  خاص  میزاقلیر  درک  حال،  نیا  با.  کنند  ینیبشیپ

 از اسررتفاده کرراهش برره توانرردیم هشررداردهنده سررتمیس کیرر . کندیم جادیا محصولات حفاظت از یبرا هدفمند و  قدرتمند  کردیرو   کی  ،پردازش تصویر
 ،مختلررف طیشرا در هایماریب و  آفات بهتر ینیبشیپ یبرا. دهد کاهش را ستیزطیمح یآلودگ و  محصول دیتول نهیهز جهینت در  و   کند  کمک  هاکشآفت

 .کرد استفاده ایاش نترنتیا بر یمبتن حسگر یهاشبکه و  مناسب یابر یسرورها از دیبا

 

  نیماش یریادگی ،یفرنگگوجه م،یاقلخرد  آفات، ینیبشیپ، CNN : یدیکل یهاواژه
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