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Abstract 

Monitoring the status of machinery is a crucial aspect of production and service units to uphold operational 
efficiency. Timely changes in engine lubricant significantly contribute to enhanced performance and extended 
engine lifespan. However, determining the precise replacement time remains a challenge. Oil spectral analysis, 
while effective, is both expensive and time-intensive. This study aims to introduce an alternative method to 
engine lubricant spectral analysis. The investigation involves analyzing the results of spectral analysis and 
dielectric coefficients of 17 engine lubricant samples through statistical methods. The primary objective is to 
develop models for predicting oil contaminants based on dielectric properties, offering a substitute for spectral 
analysis. To achieve this, several intermediate goals are pursued. Multilayer perceptron artificial neural networks 
(MLP-ANN) and support vector machine (SVM) methods are employed for modeling. The performance of the 
two models is assessed using indicators such as Root Mean Square Error (RMSE), model efficiency, and R-
squared (R2). The results indicate that the SVM model consistently demonstrates an efficiency exceeding 0.95 
for all predicted indices (Fe, Pb, Cu, Al, Mo, Na, Si, and Vis@100). Consequently, dielectric spectroscopy of 
lubricant emerges as a viable alternative to traditional oil spectral analysis. 
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Abbreviations 
ASTM American Society for Testing and Materials DS Dielectric spectroscopy 

E Efficiency FTIR Fourier transform infrared 

GA Genetic algorithm ISM Industrial, Scientific and Medical 

MLP Multilayer Perceptron MAPE Mean absolute percentage error 

NN Neural network R2 Coefficient of determination 

RBF Radial basis function RFE Recursive feature elimination 

RMSE Root means square error SA Spectral Analysis 

SC Soft computing SVM Support vector machine 

TAN Total acid number VNA Vector network analyzer 

 
Introduction 

Condition monitoring, a cornerstone of 
predictive maintenance, plays a pivotal role in 
anticipating equipment failures, safeguarding 
safety, and adhering to regulatory 
requirements (Mosher, 2007). This is 
particularly crucial for complex systems, 
where a comprehensive assessment of 
operational parameters and human inspection 
findings is essential for evaluating equipment 
performance and identifying anomalous 
conditions (Pourramezan, Rohani, Keramat 

Siavash, & Zarein, 2022). As illustrated in 
Figure 1, the evolution of maintenance 
strategies has transitioned from reactive 
approaches to proactive methods, including 
preventive and condition-based maintenance. 
This transformation has yielded substantial 
advancements in safety, reliability, and cost-
effectiveness across diverse industries such as 
manufacturing, transportation, agriculture, and 
energy production (Lazakis, Raptodimos, & 
Varelas, 2018; Pourramezan, Rohani, & 
Abbaspour-Fard, 2023b). 
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Fig. 1. Evolution of maintenance strategies: a shift from reactive to proactive approaches (Pourramezan et al., 2023b) 

 
Engine lubricants play a multitude of 

crucial roles in optimizing engine performance 
(Zhu, Zhong, & Zhe, 2017). These lubricants 
effectively reduce friction and wear between 
moving components, facilitate heat transfer 
and energy distribution, prevent corrosion, and 
cleanse the internal engine compartments 
(Kim, Seo, Kang, & Kim, 2016; Mondelin, 
Claudin, Rech, & Dumont, 2011; Zhu, Wang, 
Luo, Zhang, & Liu, 2022). However, engine 
lubricants degrade over time, particularly at 
elevated temperatures, significantly impacting 
their tribological performance. This 
degradation manifests as a reduction in 
lubricant viscosity, base number (BN), and 
flash point, accompanied by the formation of 
detrimental substances such as heavy metals 
and polycyclic aromatic hydrocarbons (PAHs) 
(Heredia-Cancino, Ramezani, & Álvarez-
Ramos, 2018; Zzeyani, Mikou, & Naja, 2018). 
traditional machinery maintenance practices 
often involve monitoring lubricant levels and 
replacing lubricants based on mileage 
schedules. However, this "quantity-based" 
approach is no longer sufficient to ensure 
optimal lubrication performance and minimize 
power losses and maintenance costs. The 
development of advanced engine oil 
monitoring systems is essential for assessing 

lubricant degradation and maintaining 
lubrication effectiveness (Pourramezan, 
Rohani, & Abbaspour-Fard, 2025). Numerous 
sensors and systems have been developed by 
scientists and specialists for monitoring one or 
more of an engine's performance parameters 
(Hong & Jeon, 2022). These systems employ a 
diverse range of techniques, including 
electrical (magnetic), physical, chemical, and 
optical methods (Zhu et al., 2017). However, 
monitoring chemical changes in hydraulic oils 
and lubricants remains challenging due to the 
limitations of laboratory-based techniques for 
real-time industrial applications (Duchowski & 
Mannebach, 2006). The adoption of low-cost 
condition monitoring techniques offers 
significant practical benefits and economic 
advantages (Woodley, 1978; You, Liu, & 
Meng, 2011). Additionally, continuous 
monitoring of error patterns and parameter 
variations is crucial for fault diagnosis and 
condition-based maintenance (Bhattacharya & 
Dan, 2014). 

Presence of contaminants, both solid and 
liquid particles, can lead to premature bearing 
wear and performance degradation 
(Pourramezan et al., 2022). Studies have 
demonstrated that contamination and physical 
changes significantly impact lubricant 
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performance, invariably altering the lubricant's 
dielectric constant (Pourramezan et al., 2023b; 
Raadnui & Kleesuwan, 2005). The dielectric 
constant, a crucial indicator of oil aging, is 
also influenced by factors such as base oil 
type, additives, temperature, and electric field 
frequency (Chun, 2006; Gomółka & 
Augustynowicz, 2019). Published research has 
established a strong correlation between 
increased lubricant operating hours, oil sample 
degradation, and an increase in dielectric 
constant. In essence, determining the dielectric 
constant of an oil sample can provide insights 
into the lubricant's degradation rate. Studies 
have confirmed that extended oil operating 
hours lead to further degradation and an 
elevated dielectric constant (Altıntaş, Aksoy, 
Ünal, Akgöl, & Karaaslan, 2019). Researchers 
have employed dielectric spectroscopy to 
investigate engine lubricant oxidation and 
determine total acid number (TAN). Their 
findings, compared to Fourier transform 
infrared (FTIR) results, demonstrate the 
effectiveness of both methods in monitoring 
lubricant condition (Guan, Feng, Xiong, & 
Xie, 2011). One study has proposed a 
methodology for locomotive system 
maintenance. This research investigated the 
relationship between dielectric properties and 
metallic and non-metallic particles, including 
iron (Fe), aluminum (Al), chromium (Cr), lead 
(Pb), copper (Cu), zinc (Zn), and silicon (Si). 
Artificial neural networks were employed to 
explore the correlation between dielectric 
constant, dielectric loss factor, and oil 
impurities. The highest regression values (R) 
were obtained for the dielectric constant and 
dielectric loss factor at 7.4 GHz, with values of 
0.8513 and 0.8015, respectively (Altıntaş et 
al., 2019). Dielectric or impedance 
spectroscopy, a non-destructive technique, 
offers numerous advantages for researchers 
and engineers. Not only is it a cost-effective 
method, but it also provides valuable insights 
into the electrical behavior of materials 
(Gerhardt, 2022; Sapotta, Schwotzer, Wöll, & 
Franzreb, 2022).  

Fuzzy logic techniques and artificial neural 
networks (ANNs) have emerged as valuable 

tools for data analysis in the context of 
position analysis and equipment 
troubleshooting within autonomous 
monitoring systems for industrial equipment 
(Li, Fei, & Zhang, 2022). Recognizing the 
importance of reliability, safety, optimal 
machinery utilization, and the intricate nature 
of maintenance challenges, researchers have 
turned to soft computing methodologies for 
lubrication status monitoring (Król, Gocman, 
& Giemza, 2015; Li, Chang, Zhou, & Xiao, 
2017). Researchers have developed a support 
vector machine (SVM)-based model to 
identify and forecast external wear failures 
based on oil condition monitoring data. This 
study employed recursive feature elimination 
(RFE) to reduce independent variables within 
the model. The highest achieved accuracy in 
this work was 94.20%. The findings revealed 
that iron, aluminum, and lead are crucial 
factors in determining diesel engine erosion 
status (Li et al., 2017). Yu et al. proposed a 
method for diagnosing oil pump failures using 
radial basis function (RBF) neural networks 
(NNs) in conjunction with a genetic algorithm 
(GA). Their results demonstrated that the 
proposed model achieved an accuracy 
exceeding 96% (Yu, Zhao, Chen, & Hou, 
2016). Sanga et al. employed an RBF neural 
network to classify breakdowns based on 
information obtained from the car engine's 
airway. Their findings indicated that the RBF 
model could classify failures with an error rate 
of 2% (Sangha, Gomm, & Yu, 2008). 

A soft computing-based method (KNN and 
RBF-ANN) was developed to evaluate engine 
health using a reduced set of lubricant 
parameters, reducing testing costs. Analyzing 
681 engine lubricant reports identified seven 
key indicators—iron, chromium, lead, copper, 
aluminum, nickel, and time depending on the 
particle quantifier (TDPQ)—that significantly 
impacted distinguishing between normal, 
caution, and critical wear stages. Both models 
exhibited high accuracy and sensitivity, with 
the RBF-ANN achieving an accuracy of 
approximately 99.85% across all three training 
set sizes (40%, 60%, and 80%). Overall, the 
findings suggest that soft computing methods 
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can accurately diagnose engine health using a 
minimized set of indicators (Pourramezan et 
al., 2022). The impact of metal and non-metal 
contaminants on diesel engine conditions was 
investigated using Support Vector Machines 
(SVM) and Radial Basis Function (RBF) 
models. Among the models tested, RBF 
demonstrated the best generalization 
performance across varying dataset sizes (10% 
to 90%). The study also identified key metal 
contaminants, such as Cr, Si, and Fe, that 
significantly influenced engine identification 
in normal and critical states. The confusion 
matrix approach of RBF-NN achieved an 
accuracy of 99.38% in diagnosing the critical 
state of the engine (Rahimi, Pourramezan, & 
Rohani, 2022). The feasibility of using soft 
computing models to predict elemental 
spectroscopy of engine lubricants based on 
their electrical properties was explored. A 
dataset of 49 lubricant samples, including 
elemental spectroscopy and dielectric 
properties, was utilized to train and test models 
such as RBF, ANFIS, SVM, MLP, and GPR. 
The RBF model consistently provided the 
most accurate predictions for silicon at 7.4 
GHz, with root mean squared error (RMSE) 
and mean absolute percentage error (MAPE) 
values of 0.4 and 0.7, respectively 
(Pourramezan et al., 2023b). The potential of 
soft computing models for predicting the 
viscosity of used engine lubricant based on oil 
analysis results was evaluated. A dataset of 
555 engine oil analysis reports related to two 
types of oils (15W40 and 20W50) was 
employed. Six models, including SVM, 
ANFIS, GPR, MLR, MLP, and RBF, were 
developed and assessed for viscosity 

prediction. The RBF model demonstrated 
superior accuracy, consistency, and 
generalizability compared to the other models, 
achieving RMSE values of 0.20 during 
training and 0.11 during testing, and efficiency 
(EF) values of 0.99 during training and 1 
during testing (Pourramezan, Rohani, & 
Abbaspour-Fard, 2023a). 

In this work, we propose a novel approach 
to evaluating engine oil condition by 
employing dielectric spectroscopy (DS) as a 
non-invasive and cost-effective alternative to 
conventional spectral analysis (SA). DS 
measures the dielectric properties of oil over a 
wide range of frequencies, providing a wealth 
of data for developing robust soft computing 
(SC) models that accurately predict oil indices. 
Our research utilizes lubricant samples 
extracted directly from engines, ensuring the 
relevance of our findings to real-world 
conditions and enhancing their applicability. 
Despite the limited sample size, we believe our 
work serves as a promising proof-of-concept 
and paves the way for future validation on an 
industrial scale. The wide frequency range 
employed (300 MHz to 9 GHz) further 
enriches the data available for modeling, 
enabling deeper insights into oil degradation 
and performance. Additionally, our method 
holds the potential to significantly reduce the 
cost and time associated with engine oil 
spectral analysis, overcoming the limitations 
inherent in current monitoring practices. 

 
Materials and Methods 

The study was carried out in three distinct 
phases, as depicted in Figure 2.  
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Fig. 2. Research general process flow chart 

 
Spectral analysis method 

The study initially employed spectral 
analysis (SA) to characterize the diesel engine 
lubricants. Oil analysis involves measuring 
viscosity, acidity, wear, and metal 
contamination through spectroscopy (Macián, 
Tormos, Olmeda, & Montoro, 2003; Newell, 
1999). Sixteen diesel engine lubricant samples 
were obtained from various machines (road 
construction machines, mainly dump trucks). 
The oil grade (20W50) and engine type (TYM 
T2300T3) were identical for all samples. All 
the machines were property of the Tirage 

Company in Iran. The concentrations of Fe, 
Pb, Cu, Al, Mo, Na, and Si were determined 
according to ASTM D6595. Additionally, the 
viscosity at 100°C (Vis@100) was determined 
according to ASTM D445. One sample of 
fresh 20W50 lubricant was prepared for a 
more comprehensive study. Measurements 
were conducted at the commercial laboratory 
of Tavan Kav Net in Iran. All results are 
presented in Table 1. 

 

Table 1- The results of spectral analysis on lubricant samples 

Vis@100 Si Na Mo Al Cu Pb Fe 
Oil Hours Sample NO. 

Unit: Cst Unit: PPM 

16.23 8.79 3.46 48.68 3.62 2.83 0.98 11.05 100 1 
15.3 17.77 2.56 46.11 1.61 0 0.97 9.94 150 2 

20.03 9.23 8.99 50.36 10.18 0 1.64 30.25 50 3 
15.94 36.21 9.32 52.23 34.59 0 2.59 81.17 80 4 
15.99 7.14 2.33 36.24 1.09 1.8 0.59 13.19 100 5 
16.35 9.89 3.81 48.78 5.05 0 1.25 24.65 160 6 
15.33 6.11 2.86 45.75 1 0 0.92 9.24 130 7 
15.02 4.01 2.31 45.81 0.38 0 1.75 15.46 160 8 
17.5 16.29 9.99 28.84 10.93 4.42 7.78 39 100 9 

17.83 15.44 13.67 77.64 3.77 3.2 1.4 39.76 100 10 
17.81 16.55 4.15 37.75 13.45 0.18 1.23 34.69 70 11 
17.59 16.33 5.32 46.98 12.45 3.91 2.31 39.67 150 12 
18.64 40.05 3.46 52.53 10.95 1.17 2.76 86.06 50 13 
15.33 7.27 3.89 40.78 5.31 3.22 7.23 21.73 74 14 
7.85 7.22 1.2 26.86 0 1.79 3.23 8.17 100 15 

13.67 13.65 9.57 12.16 5.07 3.51 4.11 49.75 100 16 
22 0 0 0 0 0 0 0 0 17 (Fresh oil) 

 
Measurement of dielectric properties 

The second step involved measuring the 
dielectric properties of all 17 lubricant samples 

(16 used and one fresh) at various frequency 
points. Every material in nature possesses 
fundamental electrical parameters, including 
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permittivity, permeability, and conductivity. 
Permittivity exhibits both real and imaginary 
components, and their relationship with the 
dielectric constant is defined by Equation (1) 
(Altıntaş et al., 2019): 

(1) 𝑘 =  𝜀∗ =  𝜀′ − 𝑗𝜀′′ 
where k is the dielectric constant, also 

known as relative permittivity (𝜀∗). 𝜀′ 
represents the real part of the dielectric 
constant, while 𝜀′′ denotes the imaginary part. 
The symbol j represents the imaginary unit 

√−1. 
The dielectric constant of a material 

quantifies its ability to store electrical energy 
relative to free space. However, it can vary 
under different conditions, such as frequency, 
temperature, composition, and pressure 
(Mumby, 1989;  

Zeng, Zhang, Zhang, & Hu, 2010). The real 
part of the dielectric constant, ε', reflects a 
material’s ability to store electrical energy 
when subjected to an electromagnetic field. 
The imaginary part, ε'', indicates the 
dissipation of electromagnetic energy in the 
material. The loss coefficient,  

tan 𝛿, quantifies the conversion of 
electromagnetic energy into heat and is 
calculated using Equation (2) (Pourramezan, 
Rohani, & Abbaspour-Fard, 2024):  

(2) tan 𝛿 =
𝜀′′

𝜀′
 

In this study, a wide frequency band was 
employed to measure the dielectric properties. 
Furthermore, the probe reflectance method 
was employed to monitor the environmental 
state (Pourramezan et al., 2023b). This method 
involves determining the dielectric properties 
of lubricant samples by comparing the 
amplitude and phase values of the reflected 
wave with the radiated wave (Zarein, 
Khoshtaghaza, & Ameri Mahabadi, 2019). The 
dielectric properties (ε', ε'', tan 𝛿) of the 
lubricant samples were measured using an 
R&S ZVL 13 vector network analyzer (VNA) 
manufactured in the USA. This VNA can 
accurately analyze microwave absorbing 
properties in the 9 kHz to 13.6 GHz frequency 
range with ±0.2 dB accuracy (see Fig.3). 

 

  
Fig. 3. Experimental and schematic setup for dielectric properties measurement 

 
As shown in Figure 3, 50 ml of each 

lubricant sample was poured into a beaker, and 
a coaxial dielectric probe was inserted into the 
oil sample. Initially, the frequencies of 434, 
915, 2450, and 5800 MHz were considered, 
corresponding to industrial, scientific, and 
medical (ISM) frequencies (Nüchter, 

Ondruschka, Bonrath, & Gum, 2004). 
Subsequently, appropriate frequency points 
were determined within each frequency range. 
Finally, the measurements were conducted at 
40 frequency points distributed across the 300 
MHz to 9 GHz frequency range (Table 2). The 
measurements for each sample were repeated 
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three times under identical conditions to ensure consistency and accuracy. 
 

Table 2- Frequency points used in the 300 MHz to 9 GHz frequency range 

Frequency 

(GHz) 
Symbol Frequency 

(GHz) 
Symbol Frequency 

(GHz) 
Symbol Frequency 

(GHz) 
Symbol 

6.9495 f31 4.6895 f21 2.45 f11 0.3 f1 

7.1755 f32 4.9155 f22 2.6 f12 0.434 f2 
7.4015 f33 5.1415 f23 2.84 f13 0.675 f3 
7.6275 f34 5.3675 f24 3.085 f14 0.915 f4 
7.8535 f35 5.5935 f25 3.325 f15 1.16 f5 
8.0795 f36 5.8195 f26 3.565 f16 1.4 f6 
8.3055 f37 6.0455 f27 3.8 f17 1.64 f7 
8.5315 f38 6.2715 f28 4 f18 1.88 f8 
8.7575 f39 6.4975 f29 4.2375 f19 2.12 f9 

9 f40 6.7235 f30 4.4635 f20 2.36 f10 
 

Design of soft computing models 

This section explores the application of soft 
computing models to predict the values of oil 
analysis indices (Section 2.1) from their 
dielectric properties (Section 2.2). Soft 
computing systems directly utilize data to 
learn, eliminating the need for predefined 
equations to identify patterns and trends 
(Cardoso & Ferreira, 2020; Pourramezan et 
al., 2024). The backpropagation algorithm 
(Lillicrap, Cownden, Tweed, & Akerman, 
2016) serves as a learning mechanism, 
providing efficient weight adjustments and 
achieving low error rates. To enhance the 
performance of soft computing methods, the 
dielectric characteristic data are normalized 
using Equation (3) (Heidari, Rezaei, & 
Rohani, 2020; Rohani, Abbaspour-Fard, & 
Abdolahpour, 2011). This normalization 
technique transforms the data into a range 
between -1 and 1, ensuring consistency and 
facilitating the model's training process. Two 
soft computing models, multilayer perceptron 
(MLP) and support vector machine (SVM), 
were employed for this study. Their specific 
implementation details are described in the 
subsequent sections. 

𝐶𝑁 =
(𝐶𝑖 − 𝐶𝑚𝑖𝑛)

(𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)
× (𝑟𝑚𝑎𝑥

− 𝑟𝑚𝑖𝑛) + 𝑟𝑚𝑖𝑛 
(3) 

The normalized value (CN) of each 
dielectric property is calculated using Equation 

(3), where Ci represents the original value of 
the dielectric property, Cmax and Cmin represent 
the maximum and minimum values of the 
property across all samples, and rmax and rmin 
represent the maximum and minimum values 
considered for the normalized data. 

 
Multilayer perceptron neural network (MLP-NN) 

The multilayer perceptron neural network 
(MLP-NN) comprises an input layer, an output 
layer, and one hidden layer. In this study, 
MLP-NN is employed to predict the spectral 
analysis indices (Fe, Pb, Cu, Al, Mo, Na, Si, 
and Vis@100) of engine lubricant using the 
dielectric properties of the oil (ε', ε'', tan 𝛿), as 
illustrated in Figure 4. The input layer is 
defined based on the correlation analysis of 
dielectric properties at different frequencies, as 
shown in Table 2. The output layer represents 
the desired spectral analysis index of the 
engine lubricant that we aim to predict. In 
modeling, the training set constitutes 80% of 
the dataset, while the testing set accounts for 
the remaining 20%. The hidden layer 
incorporates the sigmoid conversion function 
(Equation 4) (Ashtiani, Rohani, & Aghkhani, 
2020; Shi, Song, & Song, 2021). 

(4) 𝐼 =
1

1 + 𝑒− ∑ 𝐶𝑖𝑤𝑖𝑗+𝑏
 

where 𝐶𝑖 represents the ith input, b denotes 
the bias factor, and wij shows the weight of the 
jth neuron. 
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Fig. 4. MLP structure used to predict lubricant indices 

 

Support vector machine (SVM) 

Support vector machines (SVMs) were first 
introduced by Vapnik in the 1990s (Fayazi, 
Arabloo, Shokrollahi, Zargari, & Ghazanfari, 
2014). In this study, SVMs are utilized to 
predict the spectral analysis indices (Fe, Pb, 

Cu, Al, Mo, Na, Si, and Vis@100) of engine 
lubricants based on their dielectric properties 
(ε', ε'', tan 𝛿) at various frequencies (see 
Fig.5). 

 

  
Fig. 5. SVM structure used to predict lubricant indices 

 

 
Support vector machines (SVMs) are based 

on statistical learning principles, governed by 
the following relationships (Chamkalani, 
Mohammadi, Eslamimanesh, Gharagheizi, & 

Richon, 2012; Eslamimanesh et al., 2012). The 
nonlinear function employed in the SVM 
approach to approximate data sets {(X1, Y1), 
(X2, Y2), …, (Xn, Yn)} is given by Equation 
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(5): 
(5) 𝑓(𝑥) = 𝑤𝜑(𝑥) + 𝑏 

where 𝜑(𝑥) represents a nonlinear mapping 
function, w represents the weight vector of the 
input layer, and b represents the bias factor. 

SVM optimization is achieved by 
minimizing Equation (6) using the Lagrange 
function (Equation (7)): 

(6) 

𝑚𝑖𝑛𝑤,𝑏,𝑒𝐽(𝑤, 𝑒)

=  
1

2
‖𝑤‖2

+  
1

2
𝛾 ∑ 𝜉𝑖

2

𝑛

𝑖=1

 

𝑠. 𝑡. 𝑦𝑖 = 𝑤. 𝜑(𝑥𝑖) + 𝑏 +  𝜉𝑖, 𝑖

= 1,2, … , 𝑛 

(7) 

𝐿(𝑤, 𝑏, 𝜉, 𝛼) =
1

2
‖𝑤‖2 +  

𝛾

2
∑ 𝜉𝑖

2

𝑛

𝑖=1

−  ∑ 𝛼𝑖

𝑛

𝑖=1

(𝑤𝜑(𝑥𝑖)

+ 𝑏 +  𝜉𝑖 − 𝑦𝑖) 
where 𝜉𝑖 represents the regression error for 

n training items, γ is the regularization 
parameter, αi is the Lagrange coefficient, and 
Equation (7) is obtained by considering partial 
derivatives of w, b, ξ, and α. 

 
Performance evaluation of soft computing models 

This study aims to predict spectral analysis 
indices for engine lubricants based on 
dielectric properties measured at different 
frequencies. The performance of the soft 
computing models, namely MLP and SVM, is 
assessed using four metrics: root mean square 
error (RMSE), mean absolute percentage error 
(MAPE), model efficiency (E), and R-squared 
(R2) (Pourramezan, Omidvar, 

Motavalizadehkakhky, Zhiani, & Darzi, 2024; 
Pourramezan & Rohani, 2024; Siavash et al., 
2021; Soltanali, Rohani, Abbaspour-Fard, & 
Farinha, 2021): 

(8) 𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑝𝑖 − 𝑦𝑒𝑖)2𝑛

𝑖=1

𝑛
 

(9) 𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑦𝑝𝑖 − 𝑦𝑒𝑖|

𝑦𝑝𝑖

𝑛

𝑖=1

 

(10) 𝐸 =  
1

𝑛
∑(𝑦𝑝𝑖 − 𝑦𝑒𝑖)

2

𝑛

𝑖=1

 

(11) 

𝑅2

=  
(∑ (𝑦𝑒𝑖 − 𝑦𝑒𝑖̅̅̅̅ )(𝑦𝑝𝑖 − 𝑦𝑝𝑖̅̅ ̅̅ )𝑛

𝑖=1 )2

∑ (𝑦𝑒𝑖 − 𝑦𝑒𝑖̅̅̅̅ )2𝑛
𝑖=0 ∑ (𝑦𝑝𝑖 − 𝑦𝑝𝑖̅̅ ̅̅ )2𝑛

𝑖=0

 

where 𝑦𝑝𝑖 and 𝑦𝑒𝑖 represent the predicting 

and the measuring indices of engine lubricant 
spectral analysis, respectively. Here, 𝑛 
represents the number of oil samples. 

To assess the performance of the soft 
computing models, we evaluated the mean, 
variance, and normal distribution of the 
predicted values. After comparing the MLP 
and SVM models, the regression diagram of 
the predicted and actual values for the superior 
model was plotted. 

 
Results and Discussion 

The optimal frequency for the study was 
initially identified based on the highest value 
of the determination coefficient (R2) (see 
Fig.6). Subsequently, the ability of dielectric 
indices (ε', ε'', tan 𝛿) to predict the spectral 
analysis indices of engine lubricants was 
examined using soft computing techniques. 
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Fig. 6. R2 of dielectric properties (𝜀′, 𝜀′′, tan 𝛿) at different frequencies (Table 2) by attention to various evaluated 

lubricant conditions 

 
As depicted in Figure 6, the ε' index 

exhibited superior performance in the 
pollution assessment at f40 frequency (R2 = 
75.16) and the viscosity assessment at f40 
frequency (R2= 4.95). However, R2 = 4.95 is 
insufficient for reliable prediction. The ε' index 
also demonstrated exceptional performance in 
the wear and total assessments at f24 
frequency (R2= 99.29). Additionally, Figure 6 
reveals that the ε'' index achieved the highest 
R2 value of 88.21 in the pollution assessment 
at f26 frequency. Furthermore, the ε'' index 
exhibited the best results in the wear (R2= 
99.41), viscosity (R2= 26.14), and total 
assessments at frequency f1, respectively. 
However, R2= 26.14 is not sufficiently robust 
for viscosity prediction. As shown in Figure 6, 
the tan 𝛿 index demonstrated exceptional 

performance in the pollution assessment at f26 
frequency (R2= 88.81) and the viscosity 
assessment at f1 frequency (R2= 24.93). While 
R2 = 24.93 is insufficient for accurate 
prediction, the tan 𝛿 index also achieved the 
highest R2 value of 99.35 in the wear and total 
assessments at f40 frequency. 

 
Setting input parameters for MLP and SVM 

As described in the Materials and Methods 
section, MLP and SVM models were 
employed to predict the spectral analysis 
indices of engine lubricants from the measured 
values of dielectric properties (ε', ε'', tan 𝛿) at 
different frequencies. The neural network 
inputs were determined based on the 
correlation analysis and expert judgment 
presented in Table 3. 
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Table 3- Neural network input parameters for MLP and SVM 

Inputs model* Predicted index 
p1, p12, p23, p27, p34, z 1, z2, z27, z34 Vis@100 
p12, p27, z1, z2, z12, z34, d 1, d2, d12 Si 

p1, p12, p23, p27, p34, z1, z12, z27, z34 Na 
p1, p12, p27, z1, z2, z12, z27, z34, d1, d2, d12, d27 Fe 

p1, p12, p15, p16, p23, p27, p28, p34, z1, z2, z12, z27, z30, z34, d1, d2, d3, d12, d24, d25, d26, 

d27, d35, d39 Pb 

z31, z32, z33, z34, z35, z36, z37, z38, z39, d30, d31, d32, d33, d34, d35, d36, d37, d38, d39 Cu 
p1, p2, p12, p22, p26, p27, p38, z1, z2, z3, z12, z17, z27, z29, z34, d1, d2, d3, d12, d27 Al 
p1, p2, p12, p22, p26, p27, p38, z1, z2, z3, z12, z17, z27, z29, z34, d1, d2, d3, d12, d27 Mo 

*The p, z, and d are 𝜀′, 𝜀′′, and tan 𝛿, respectively. The numeral of each symbol represents the measured frequency 

point (attention to Table 2). 

 
Comparing the performance of MLP and SVM 

In this section, the MLP and SVM models 
developed in Section 3.1 are evaluated and 
compared using the performance metrics 
RMSE, MAPE, and E (Table 4). Generally, 

smaller values of RMSE and MAPE indicate 
better model performance, while E values 
closer to 1 indicate improved model accuracy. 

 
Table 4- Comparative performance of the SVM and MLP models 

MLP SVM 
Phase Predicted 

index E MAPE RMSE E MAPE RMSE 
0.98 1.91 0.38 0.99 1.2 0.23 Train 

Vis@100 0.96 1.99 0.49 0.96 2.74 0.49 Test 
0.97 1.93 0.41 0.99 1.5 0.3 Total 
0.99 - 0.5 0.99 - 0.74 Train 

Si 0.97 - 1.5 0.99 - 1 Test 
0.99 - 0.8 0.99 - 0.8 Total 
0.96 - 0.69 0.98 - 0.43 Train 

Na 0.92 - 0.93 0.98 - 0.52 Test 
0.95 - 0.75 0.98 - 0.45 Total 
0.92 - 5.83 0.99 - 1.88 Train 

Fe 0.93 - 5 0.95 - 4.44 Test 
0.93 - 5.67 0.98 - 2.59 Total 
0.61 - 0.99 0.98 - 0.21 Train 

Pb 0.71 - 0.82 0.91 - 0.46 Test 
0.62 - 0.96 0.97 - 0.28 Total 
0.88 - 0.57 0.96 - 0.34 Train 

Cu 0.81 - 0.97 0.96 - 0.46 Test 
0.86 - 0.67 0.96 - 0.37 Total 
0.86 - 2.38 0.99 - 0.65 Train 

Al 0.94 - 2.09 0.98 - 1.16 Test 
0.89 - 2.32 0.99 - 0.78 Total 
0.82 - 7.25 0.99 - 1.05 Train 

Mo 0.82 - 5.47 0.98 - 1.84 Test 
0.82 - 6.94 0.99 - 1.24 Total 

 
Table 4 presents the performance of the 

MLP and SVM models in predicting the 
spectral analysis indices of engine lubricants. 
The results indicate that the SVM model 
consistently exhibits superior performance 

across all indices, as evidenced by its higher E 
values and lower RMSE scores. For instance, 
in the prediction of iron content, the SVM 
model achieved an E value of 0.98 and an 
RMSE of 2.59, compared to the MLP model's 
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0.93 and 5.67, respectively. Similarly, Table 5 
compares the MLP and SVM models based on 
the mean, variance, and normal distribution of 
the predicted values, confirming the SVM 
model's superior modeling capabilities. Figure 
7 depicts the coefficient of determination (R2) 
between the actual and predicted values of the 
spectral analysis indices. The R2 values for 
both training and testing stages demonstrate 

that the SVM model closely aligns the actual 
and predicted values. This is further evident 
from the slopes of the regression lines, which 
approach unity and zero in the SVM model. 
Consequently, the SVM model successfully 
predicts the values of most spectral analysis 
indices with a high degree of accuracy, 
achieving an R2 value of approximately 0.99. 

 
Table 5- Evaluating MLP and SVM models by mean, variance, and normal distribution 

MLP SVM 
Phase Predicted index 

Distribution Variance Mean Distribution Variance Mean 
0.9 0.98 0.83 0.99 0.83 0.95 Train  

Vis@100 
0.11 0.99 0.81 0.11 0.92 0.82 Test 
0.69 0.99 0.76 0.69 0.86 0.96 Total 
0.99 0.99 0.99 0.55 0.85 0.98 Train 

Si 0.97 0.99 0.99 0.97 0.86 0.92 Test 
0.96 0.98 0.99 0.37 0.91 0.95 Total 
0.9 0.85 0.99 0.55 0.72 0.93 Train 

Na 0.68 0.99 0.77 0.97 0.89 0.9 Test 
0.52 0.86 0.89 0.52 0.7 0.89 Total 
0.99 0.74 0.98 0.9 0.79 0.94 Train 

Fe 0.97 0.94 0.97 0.97 0.71 0.99 Test 
0.96 0.74 0.99 0.85 0.69 0.94 Total 
0.01 0 0.49 0 0.53 0.94 Train 

Pb 0.68 0.52 0.54 0.31 0.47 0.72 Test 
0 0 0.36 0 0.39 0.83 Total 

0.74 0.51 0.71 0.55 0.67 0.94 Train 
Cu 0.97 0.95 0.94 0.97 0.88 0.99 Test 

0.69 0.65 0.72 0.52 0.65 0.96 Total 
0.09 0.08 0.46 0.94 0.85 0.97 Train 

Al 0.97 0.97 0.8 0.77 0.99 0.74 Test 
0.06 0.22 0.46 0.52 0.97 0.55 Total 
0.55 0.15 0.86 0.74 0.81 0.95 Train 

Mo 0.97 0.2 0.85 0.31 0.89 0.95 Test 
0.52 0.08 0.82 0.37 0.78 0.94 Total 

 
Sensitivity analysis 

The SVM model demonstrated superior 
performance in predicting the spectral analysis 
indices of engine lubricants, as evidenced by 
its higher E values, lower RMSE scores, and 
closer alignment of actual and predicted values 
(Tables 4 and 5). Further analysis revealed that 
the SVM model's regression line closely 
approximates unity and zero, indicating a high 
degree of accuracy. Sensitivity analysis plays a 
crucial role in model development and 
application by identifying the most influential 
parameters and simplifying the model 

(Glagolev, 2012). It enables the assessment of 
how changes in input parameters affect the 
model's output (Iooss & Lemaître, 2015). In 
this study, sensitivity analysis was employed 
to evaluate the importance of each dielectric 
index value in predicting the spectral analysis 
indices of engine lubricants. RMSE was used 
as the criterion for assessing sensitivity. 
Therefore, if removing an input increases 
RMSE, it indicates its significance (RMSE 
should approach zero). Conversely, if 
removing an input reduces RMSE, it suggests 
its lower importance (Chaudhry, Buchwald, & 
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Nagel, 2021; Rezaei, Rohani, Heidari, & 
Lawson, 2021). Figure 8 illustrates the results 
of sensitivity analysis conducted by the SVM 

model to predict the spectral analysis 
parameters of engine lubricants. 

 

  

  

  

  
Fig. 7. Comparison of experimental and predicted lubricant spectral analysis (SA) indexes using the SVM model 
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The sensitivity analysis results for 

predicting viscosity revealed that removing 
inputs z27, p23, p27, and z34 resulted in 
increased RMSE, indicating their higher 
significance. Conversely, removing inputs 
p34, z1, and z27 did not significantly impact 
RMSE. Removing inputs p1 and p12 led to 
reduced RMSE, implying their lower 
significance. Three models with reduced 
inputs were subsequently proposed; however, 
none improved RMSE. The sensitivity analysis 
for predicting silicon indicated that removing 
inputs p12, p27, d12, and z34 increased 
RMSE, while eliminating inputs d1, d2, z1, z2, 
and z12 reduced RMSE. Two models with 
limited inputs were proposed, and one (p12, 
p27, z34, d1, and d12) achieved improved 
RMSE. Sensitivity analysis for predicting 
sodium showed that removing inputs z27 and 
p34 increased RMSE, while removing inputs 
p1, p12, p27, and z12 had no significant 
impact. Removing inputs p23, z1, and z34 
decreased RMSE, suggesting their lower 
significance. One model (p1, p12, p27, p34, 
z12, and z27) was proposed and successfully 
improved RMSE. Iron prediction sensitivity 
analysis revealed that removing inputs p27, 
d27, and d1 resulted in increased RMSE, while 
removing inputs z12, z27, z34, p1, p12, z1, d2, 
d12, and z2 reduced RMSE. One model (z12, 
z27, z34, p1, p12, p27, d1, and d27) was 
suggested and improved RMSE. Lead 
prediction sensitivity analysis indicated that 
removing inputs d25, z1, d27, d39, d15, z12, 
d12, z27, p1, d2, d3, z2, p12, p16, p27, p34, 
d1, p28, d26, z34, d24, d35, and p23 led to 
increased RMSE, while removing input z30 
reduced RMSE. No model with limited inputs 
improved RMSE. The sensitivity analysis for 
predicting copper revealed that removing 
inputs d39, z35, d31, z36, z39, and d33 
increased RMSE, while removing input d38 
did not affect RMSE and removing inputs d32, 
d35, z32, z33, z37, z38, d30, d36, d37, z31, 
z34, and z35 decreased RMSE. One model 

(d39, z35, d31, z36, z39, d33, d38, d32, and 
d35) was proposed and successfully improved 
RMSE. 

The sensitivity analysis for predicting 
aluminum revealed that removing inputs d12, 
d3, z3, z27, z17, d2, z29, z34, and d27 led to 
increased RMSE, indicating their higher 
significance. Conversely, removing inputs p1, 
p2, p12, p22, p26, p27, z1, z2, z12, and d1 had 
no significant impact on RMSE. Removing 
input p38 resulted in reduced RMSE, 
suggesting its lower significance. A model 
with the reduced inputs (d12, d3, z3, z27, z17, 
d2, z29, z34, d27, and p1) was proposed and 
successfully improved RMSE. Molybdenum 
prediction sensitivity analysis indicated that 
removing inputs z27, z12, z34, z17, d3, z2, 
p38, z1, p2, d12, p12, p1, z29, d27, d2, z3, and 
d1 led to increased RMSE, while removing 
inputs p27, p22, and p26 resulted in reduced 
RMSE. No model with limited inputs 
improved RMSE. 

Building upon the insights gained from 
sensitivity analysis, the final models for 
predicting the viscosity, Si, Na, Fe, Pb, Cu, 
Mo, and Al values of engine lubricant using 
SVM were proposed. While models with 
fewer inputs were considered for viscosity 
prediction, none of them could significantly 
enhance the RMSE. For Si prediction, a model 
with reduced inputs was proposed, and it 
successfully improved RMSE. Similarly, 
models with less significant inputs were 
identified for Na and Fe predictions, leading to 
improved RMSE values. In contrast, a model 
with more significant inputs was developed for 
Pb prediction, but it failed to improve RMSE. 
For Cu and Al prediction, models with less 
significant inputs were found, and they 
effectively reduced RMSE. Overall, the final 
models exhibit promising accuracy, as RMSE 
improvements were achieved by eliminating 
less influential inputs. 
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Fig. 8. Result of sensitivity analysis (attention to Table 3) 

 

Conclusion This study investigated the dielectric 
properties (ε', ε'', tan δ) of 17 lubricant 
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samples, including 16 used oil samples and 
one fresh oil sample. Dielectric measurements 
were performed at 40 frequencies ranging 
from 300 MHz to 9 GHz. Initially, the 
correlation between dielectric properties and 
lubricant conditions was analyzed in four 
evaluation categories: pollution, erosion, 
viscosity, and general. The dielectric constant 
(ε') index exhibited the highest coefficient of 
determination (R2) for pollution at frequencies 
f40, f24, and f26, and for erosion, viscosity, 
and general at frequencies f26, f40, f1, and 
f40, respectively. The dielectric loss tangent 
(tan δ) index displayed the strongest 
correlation with pollution at frequency f27 and 
with erosion, viscosity, and general at 
frequencies f1, f26, and f40, respectively. 
Subsequently, multilayer perceptron (MLP) 
and support vector machine (SVM) models 
were designed to predict the spectral analysis 
indices of engine lubricants based on dielectric 
properties. The inputs for these models were 
determined using correlation and speculation 
analyses. The performance of the models was 
evaluated and compared using three metrics: 
root mean squared error (RMSE), mean 
absolute percentage error (MAPE), and 
efficiency (E). The SVM model outperformed 
the MLP model and was selected as the 
preferred model for predicting lubricant 
condition indices. Sensitivity analysis was 
employed to assess the importance of each 
model input. The findings of this study 
demonstrate that soft computing techniques 
can effectively estimate the spectral analysis 
indices of engine lubricants (Fe, Pb, Cu, Al, 
Mo, Na, Si, and Vis@100) using their 
dielectric properties (ε', ε'', tan δ). This 
approach offers a promising and practical 
method for monitoring the condition of diesel 
engine lubricants, particularly for off-road 
machinery operating in remote areas with 
limited access to oil analysis laboratories. The 
SVM model achieved an efficiency score 
exceeding 0.95 for all predicted indices, 
highlighting its potential for real-world 
applications. While the limited sample size 
somewhat restricts the scope of this research, 
the results provide a strong proof-of-concept 

and pave the way for further validation on an 
industrial scale. Despite the potential for 
online and portable equipment 
implementation, the study's laboratory setting 
under controlled conditions raises concerns 
about the accuracy and consistency of input 
data in real-world scenarios. Therefore, further 
research involving a larger statistical 
population and a broader range of lubricant 
types is necessary to fully assess the 
comprehensiveness and commercialization 
potential of this method. The accuracy of 
predictions based on electrical properties may 
depend on the quality and consistency of the 
input data, emphasizing the need for rigorous 
validation in field conditions. 
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 چکیده

موقع های حیاتی واحدهای تولیدی و خدماتی برای حفظ کارایی عملیاتی استتتا از ایتتن روو تعتتوی  بتتهآلات یکی از جنبهوضعیت ماشیننظارت بر  
کندا با این حالو تعیین زمان دقیق تعوی  همچنان یک چالش توجهی به افزایش عملکرد و افزایش طول عمر موتور کمک میطور قابلروغن موتور به

بر استا هدف این مطالعه معرفتتی یتتک روش جتتایرزین بتترای تیلیتتل طیفتتی که موثر استو هم گران و هم زماناستا آنالیز طیفی روغنو در عین این
هتتای نمونه روغتتن موتتتور از طریتتق روش 17الکتریک روانکار موتور استا این تیقیق شامل تجزیه و تیلیل نتایج تجزیه و تیلیل طیفی و ضرایب دی

الکتریک است که جایرزینی برای تجزیتته و های موجود در روغن بر اساس خواص دیبینی آلایندههایی برای پیشآماری استا هدف اصلی توسعه مدل
و  (MLP-ANN) عصبی مصتتنوعی پرستتنترون چندلایتته شبکه اشوددهدا برای رسیدن به این هدف چند هدف میانی دنبال میتیلیل طیفی ارائه می

 هایی مانند ریشتته میتتانرین مربعتتات خطتتاشوندا عملکرد دو مدل با استفاده از شاخصسازی استفاده میبرای مدل  (SVM)ماشین بردار پشتیبان    روش
(RMSE) 2(و کارایی مدل و ضریب تبیین(R دهد که مدلشودا نتایج نشان میارزیابی میSVM  را بتترای همتته  95/0طور مداوم کارایی بتتیش از به
عنوان کننتتده بتتهالکتریتتک روانسنجی دیدهدا در نتیجهو طیفنشان می(  Vis@100و   Siو  Naو  Moو  Alو  Cuو  Pbو  Fe)  شدهبینیهای پیششاخص

 .باشدمی یک جایرزین مناسب برای آنالیز مرسوم طیفی روغن متصور

 
 روغن موتور  تینظارت بر وضع ویمترولوژ ومیاسبات نرم یهاروش کویالکتریثابت د واژه های کلیدی: 
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