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Abstract 

Bean planting systems are essential to global agriculture, serving as a vital food source for many populations. 
Optimizing these planting methods is crucial for enhancing efficiency and reducing environmental impacts. This 
study evaluates the energy inputs and outputs associated with two pinto bean cultivation techniques: flat and 
strip systems. Conducted in Fars province, southern Iran, the research involved 90 farms, 60 employing flat 
systems and 30 utilizing strip systems. Energy consumption was assessed in MJ ha-1 for various inputs, including 
labor, machinery, diesel, chemical fertilizers, biocides, electricity, and seeds. The flat system exhibited energy 
consumption of 20,067.12 MJ ha-1, while the strip system utilized 18,171.76 MJ ha-1. In terms of yield, the flat 
system produced 3000 kg ha-1, in comparison to 3500 kg ha-1 from the strip system. Energy efficiency metrics 
indicated that the strip system outperformed the flat system with a higher energy use efficiency ratio (3.85 
against 2.99) and better energy productivity (0.19 kg MJ-1 vs. 0.15 kg MJ-1). Additionally, the strip system 
demonstrated lower specific energy consumption at 5.19 MJ kg-1, compared to 6.69 MJ kg-1 for the flat system. 
The net energy gain was also greater for the strip system, recording 51,828.24 MJ ha-1 versus 39,932.88 MJ ha-1 
for the flat system. Overall, the results highlight the favorable energy requirements and efficiency of the strip 
planting method over the traditional flat system, underscoring its potential for optimized resource allocation in 
pinto bean cultivation. The MOGA results indicated that strip systems achieve substantial energy savings of 
3749.11 MJ ha-1 (25.99%), compared to flat systems, which save 3707.62 MJ ha-1 (22.66%). This further 
highlights the efficiency benefits of strip planting. 
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Introduction 

Energy efficiency is increasingly 
acknowledged as a vital element of sustainable 
agricultural practices, particularly within crop 
production systems (Noorani et al., 2023). 
This concept focuses on reducing energy 
consumption while either maintaining or 
enhancing productivity (Jamali et al., 2021). 
Strategies to achieve this include the adoption 
of energy-efficient technologies, optimization 
of resource utilization, and improvement of 
operational methods (Amoozad-Khalili et al., 
2021). Energy efficiency’s importance 
transcends mere cost savings; it is essential in 
mitigating greenhouse gas emissions and 
tackling challenges posed by climate change in 

agriculture. Given that agriculture significantly 
contributes to energy consumption and 
environmental degradation, optimizing energy 
use within these systems is crucial for 
promoting sustainability and minimizing the 
ecological footprint of the sector (Kaab et al., 
2023).  

Pinto beans, scientifically known as 
Phaseolus vulgaris, are a widely cultivated 
variety of bean found in many regions around 
the globe (Fonseca Hernández et al., 2023). 
Cultivating pinto beans involves several 
essential steps. First, soil preparation is 
critical, as these beans flourish in well-drained 
soil with a pH level ranging from 6.0 to 7.0. 
The soil should be rich in organic matter and 
nutrients, so it is important to till the soil and 
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remove any weeds or debris prior to planting 
(Abad-González et al., 2024). Next, planting 
typically occurs in the spring, following the 
last frost. Seeds can either be sown directly 
into the soil or started indoors and transplanted 
later. When planting, the seeds should be 
placed about 1-2 inches deep and spaced 2-4 
inches apart in rows that are 18-24 inches apart 
(Bordonal et al., 2018). Watering is another 
crucial aspect, as pinto beans require 
consistent moisture, particularly during dry 
spells. Care must be taken to avoid 
overwatering, which can cause root rot. It is 
best to water at the base of the plants to keep 
the foliage dry, as wet leaves can encourage 
disease. Fertilizing also plays a role in the 
successful growth of pinto beans. These plants 
are nitrogen-fixing, meaning they can utilize 
nitrogen from the air, but they may still benefit 
from an application of balanced fertilizer 
during the growing season (Heusala et al., 
2020). Weeding the area around pinto bean 
plants is important to prevent competition for 
nutrients and water. Regularly removing 
weeds by hand or using a hoe can help 
maintain a healthy growing environment 
without harming the plants. Harvesting usually 
occurs 90-120 days after planting, depending 
on the specific variety and environmental 
conditions (Mawof et al., 2022). The beans are 
ready for harvest when the pods are plump and 
filled out, though not yet dried. To harvest, 
pull up the entire plant and remove the pods. 
Finally, once harvested, pinto beans must be 
dried thoroughly before storage. It’s 
recommended to spread the beans in a single 
layer in a warm, dry area for 1-2 weeks until 
they are completely dry. For optimal 
preservation, store the dried beans in a cool, 
dark place in airtight containers (Altieri et al., 
2012). 

Pinto beans, a staple food source for 
numerous communities globally, exemplify 
the challenges associated with conventional 
agricultural practices (Fonseca Hernández et 
al., 2023). Traditional planting and harvesting 
methods for pinto beans typically incur high 
energy consumption and considerable 
environmental consequences. To combat these 

issues, researchers are increasingly employing 
advanced optimization techniques, such as 
multi-objective genetic algorithms (MOGA), 
to enhance the efficiency and sustainability of 
pinto bean production systems (Aghili Nategh 
et al., 2021; Kaab et al., 2019; Pourreza 
Movahed et al., 2020). MOGA facilitates the 
simultaneous assessment of multiple 
objectives, including maximizing energy 
efficiency, minimizing greenhouse gas 
emissions, and optimizing economic returns, 
ultimately guiding the discovery of the most 
effective agricultural practices (Fathollahi-
Fard et al., 2023). In recent years, multi-
objective optimization techniques have 
emerged as valuable tools for navigating the 
complex trade-offs inherent in agricultural 
systems. Genetic algorithms (GAs), modeled 
on the principles of natural selection, have 
proven effective for addressing optimization 
problems by exploring multiple solutions 
concurrently (Rahman & Szabó, 2021). By 
utilizing a MOGA framework to assess energy 
use in pinto bean planting systems, researchers 
can evaluate various factors, including yield 
enhancement, cost-effectiveness, and 
environmental impact reduction. This study 
delves into the use of MOGA in optimizing 
pinto bean planting systems, emphasizing the 
delicate balance between competing objectives 
intrinsic to agricultural production (Nategh et 
al., 2021). By generating and iteratively 
refining a diverse array of potential solutions 
inspired by natural selection, MOGA aims to 
pinpoint optimal strategies that enhance 
energy use while diminishing environmental 
impact. This methodology not only 
underscores the trade-offs among various 
objectives but also provides a framework for 
developing sustainable farming practices that 
can adapt to the evolving challenges of climate 
change and resource scarcity (Pourreza 
Movahed et al., 2020). One paper addresses 
low agricultural production efficiency by 
studying multi-objective optimization of 
sustainable agricultural structures using 
genetic algorithms. It reviews agricultural 
development, the status of optimization 
algorithms, and establishes a model for 
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optimal industrial allocation. The improved 
genetic algorithm enhances both the economic 
value and sustainability of the agricultural 
structure (Zhou & Fan, 2018). The quest for 
energy optimization in pinto bean planting 
systems through a multi-objective genetic 
algorithm presents a promising pathway 
toward bolstering agricultural sustainability. 
By integrating advanced optimization 
techniques into farming practices, this research 
aspires to offer insightful contributions to 
sustainable agriculture and practical 
recommendations for improving energy 
efficiency in bean production systems. 
Growing concerns regarding sustainable 
agricultural practices have underscored the 
need to optimize energy use across various 
cropping systems (Rahman & Szabó, 2021). 
As a vital legume in numerous diets and a key 
crop in diverse agricultural settings, pinto 
beans serve as a crucial case study for 
investigating energy efficiency in planting 
systems. Traditional farming practices often 
result in significant energy consumption, 
driven by machinery usage, fertilizer 
applications, and irrigation techniques, which 
can exacerbate environmental challenges and 
diminish overall sustainability (Boix-Cots et 
al., 2022). Energy consumption and its 
environmental impacts have become 
significant concerns in recent centuries. 
Agriculture, as both an energy user and 
bioenergy supplier, is crucial for global 
economics and food security. Research in 
developing countries shows inefficiencies in 
energy flow in crop production. To address 
this, MOGAs were used to optimize 
agricultural inputs, minimizing greenhouse gas 
(GHG) emissions while maximizing energy 
output and benefit-cost ratios. Results 
indicated a potential 28% reduction in energy 
use and a 33% decrease in GHG emissions in 
watermelon production, with a significant 
increase in the benefit-cost ratio 

(Shamshirband et al., 2015).  
Optimizing energy use in pinto bean 

planting systems is a key advancement in 
sustainable agriculture, balancing productivity 
and environmental impact. A MOGA 
addresses trade-offs between yield, energy 
consumption, and costs by simulating natural 
selection. Solutions are refined through 
selection, crossover, and mutation, identifying 
strategies that harmonize energy efficiency 
with economic viability. This adaptable 
approach integrates with precision farming and 
eco-friendly practices, enhancing sustainability 
and resource management. Ultimately, 
applying this algorithm can transform farming, 
promoting economic and environmental 
sustainability, contributing to food security, 
and addressing challenges like climate change.  

This study seeks to harness MOGA to 
develop optimized planting strategies that 
lower energy consumption while maximizing 
agricultural outputs. By pinpointing best 
practices customized for the specific 
conditions of pinto bean cultivation, this 
research not only aims to enhance productivity 
but also supports the broader movement 
toward sustainable agriculture. The findings 
from this work are expected to extend beyond 
pinto beans, offering valuable insights 
applicable to other crops and farming systems 
facing similar sustainability challenges. 

 
Materials and Methods 

Background information about the studied region 

The research was conducted in Fars 
province, located in southern Iran, spanning 

latitudes from 27° 2′ to 31° 42′ and 

longitudes from 50° 42′ to 55°36′, with 

an area of 133,299 km2 characterized by an 
arid and semi-arid climate (Ministry of Jihad-
e-Agriculture of Iran, 2024). The location of 
the case study is illustrated in Figure 1. 
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Fig. 1. The area of study in Fars province, Iran 

 
The study involved 90 farms, comprising 

60 that utilized flat cultivating systems and 30 
that employed strip cultivating systems. A 
random survey was conducted with pinto bean 
producers to collect data on various 
agricultural input parameters, including seed 
quantities, fertilizer use, biocide application, 
energy sources, equipment and machinery, 
cultivated land areas, and Pinto bean yields. 
The sample size was determined using the 
method outlined in Eq. (1) (Cochran, 1977), 
and data collection was performed through in-
person interviews. 

𝒏 =

𝑧2𝑝𝑞

𝑑2

1 +
1

𝑁
(
𝑧2𝑝𝑞

𝑑2
− 1)

 (1) 

The sample size (n) needed is calculated 
using the number of farms in the target 
population (N), a reliability coefficient (z) of 
1.96 for a 95% confidence level, an estimated 
population attribute proportion (p) of 0.5, the 
complement of the estimated proportion (q) 
also at 0.5, and an allowable error deviation 
from the average population (d) of 0.05. 

 
Energy use analysis 

Energy analysis involves evaluating and 
assessing the energy consumption and 

efficiency of systems, buildings, or processes 
(Ghasemi-Mobtaker, Kaab, & Rafiee, 2020). 
This process includes gathering data on energy 
usage, pinpointing areas of waste, and 
formulating strategies to reduce consumption 
and enhance efficiency. Energy analysis can 
be applied across various sectors, such as 
residential, commercial, industrial, and 
transportation (Kaab et al., 2019). It enables 
organizations and individuals to comprehend 
their energy usage patterns, identify potential 
savings, and make informed choices regarding 
energy conservation. Common methodologies 
in energy analysis include energy audits and 
energy modeling (Ghasemi-Mobtaker, Kaab, 
Rafiee, & Nabavi-Pelesaraei, 2022). These 
tools facilitate the quantification of energy 
consumption and identification of energy-
saving opportunities. Ultimately, energy 
analysis is vital for promoting energy 
efficiency, decreasing greenhouse gas 
emissions, and meeting sustainability targets. 
It supports informed decision-making, propels 
energy conservation initiatives, and 
contributes to a more sustainable and resilient 
energy future. The energy equivalent of each 
input is outlined in Table 1. 
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Table 1- Conversion factors of energy inputs and outputs in the production of pinto bean 

Item Unit Energy equivalent 
(MJ unit-1) 

Reference 
A. Input    

1. Human labor h 1.96 (Mohammadi & Omid, 2010) 

2. Machinery kg yr-1a 62.70 (Kaab, Khanali, Shadamanfar, & Jalalvand, 2024) 

3. Diesel fuel L 56.31 (Ghasemi-Mobtaker, Akram, & Keyhani, 2012) 

4. Chemical 

fertilizers kg   

(a) Nitrogen  78.10 (Hosseinzadeh-Bandbafha, Safarzadeh, Ahmadi, Nabavi-

Pelesaraei, & Hosseinzadeh-Bandbafha, 2017) 
(b) Phosphate   17.40 (Zangina, Suleiman, & Ahmed, 2023) 
(c) Potassium  13.70 (Ramedani et al., 2019) 

5. Biocides kg 250.00 (Khosruzzaman, Asgar, Karim, & Akbar, 2010) 

7. Electricity kWh 12.00 (Mandal et al., 2015) 

8. Seed kg 20.00 (Boydston et al., 2018) 

B. Output    

1. Pinto bean kg 20.00 (Boydston et al., 2018) 
a the economic life of machine (year) 

 
Energy indicators refer to the metrics used 

to evaluate and monitor energy consumption, 
efficiency, and performance. These indicators 
offer meaningful insights into energy usage 
trends, highlight opportunities for 
improvement, and guide decisions aimed at 
optimizing energy use and minimizing costs 
(Hassan Ghasemi-Mobtaker et al., 2024). 
Common energy indicators encompass energy 
intensity, energy efficiency ratios, energy 
consumption per production unit, and energy 
cost per output unit. Some of these indicators 
are outlined in equations (2) to (5). Businesses, 
industries, and governments can leverage these 
indicators to oversee and enhance their energy 
usage and sustainability initiatives. 

Energy use efficiency =
Output energy (MJ )

Input energy (MJ )
 (2) 

Energy productivity =
Production (kg)

Input energy (MJ)
 (3) 

Specific energy =
Input energy (MJ)

Production (kg)
 (4) 

Net energy 

=  Output energy (MJ) - Input energy (MJ) 
(5) 

 
MOGA analysis  

MOGA comprises multi criteria decision-
making units (DMUs) that are associated 
with mathematical optimization 
problems when more than one objective 

function is to be quickly optimized. Multi-
objective optimization (MOO) has been used 
in many fields, including preparation, 
economics, and engineering, where optimal 
decisions are entailed to be derived in the 
presence of compensation among multiple 
inconsistent objectives. Typical examples of 
MOO problems include maximizing 
tranquility while minimizing costs in 
purchasing a car, and minimizing emission of 
pollutants and fuel use while simultaneously 
maximizing vehicle performance, etc. There 
can be three or even more objectives in actual 
problems (Abidi et al., 2018). 

For a typical MOO problem, there cannot 
exist a solitary resolution that is able to 
optimize every objective. Instead, there exist 
unlimited numbers of Pareto optimal solutions, 
which are all considered good solutions. As 
such, the objectives are to determine a set of 
Pareto optimal solutions, or quantify trade-offs 
in fulfilling various aims, or assign a solitary 
resolution that can fulfil largely intrinsic 
priorities of a decision maker (DM) (Hu et al., 
2017). 

An MOO problem is an optimization 
problem involving multi-objective functions. A 
typical MOO problem is expressed 
mathematically as Eq. (6): 

))(),...,(),(min( 21 xfxfxf k   (6) 
s.t.x  X 
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where the set X signifies the possible set of 

determination directions and the integer k≥
2 denotes the number of aims. The possible set 
usually comprises some constraint functions. 
Furthermore, the objective function vector is 
expressed as Eq. (7): 

T

k

k xfxfxfXf ))(),...,(()(,: 1=→
 (7) 

where x signifies a possible solution and 
f(x) ϵ ℜ denotes the compatibility of the 
possible solution. Pareto optimal solutions 
provide a way to solve this limitation. In real-
world cases, the dissolutions that are not 
overmatched by other dissolutions across the 
entire search area constitute the collection of 
Pareto optimal solutions. The underlying 
significance is that these dissolutions cannot 
be altered for each purpose without inevitably 
compromising at least one of the other 
objectives (Konak et al., 2006). 

This study presents a technique used in 
MOGA to address these contradictory 
objectives simultaneously when solving MOO 
problems. GA usually functions by a set of 
chromosomes, which is named the population. 
The population is usually initialized randomly. 
As the calculation progresses, the population 
includes fitter and fitter solutions, and 
eventually it converges towards a solitary 
dissolution. GA employs two factors to 
produce new dissolutions from existing ones, 
crossover and mutation. During crossover 
operation, the chromosomes are re-composed 
to generate new chromosomes, resulting in 
viable offspring. In selecting chromosomes 
from the population, parents prioritize those 
that exhibit a higher compatibility function. 
Using a repetitious crossover operator, a good 
chromosome gene is expected to be more 
visible in the population and eventually 
converge to a single solution. The mutation 
operator furnishes a random transformation to 
the characteristics of the chromosome. In a 
generic GA, the mutation ratio is usually low. 
Whilst the crossover operation attempts to 
guide towards a convergent population with 
similar chromosomes in the population, the 
mutation operation again enters the genetic 
diversity of the population and helps to escape 
from local optimum. The proliferation 

comprises selection of chromosomes for the 
subsequent generation. Different fitness 
functions in GA include proportionate choices, 
grading, and competition, etc. (Deb et al., 
2003). GA is considered one of the best 
customary artificial intelligence (AI) methods 
owing to its robustness (Taghdisian et al., 
2015). Older systems of AI usually reverse, 
even if the outputs are only altered to a slight 
extent (Habibi-Yangjeh et al., 2009). 
Moreover, when it comes to operating an 
exceptional conditional space, multimodal 
conditional space GA offers considerable 
advantages compared to other popular 
optimization techniques (Arthur et al., 2016). 

Given its population-based methodology, 
GA is well suited to solve MOO problems. A 
single-objective GA can be configured to 
deliver a set of multiple solutions in a single 
step. The capability of GA to probe different 
regions of a dissolution space presents it 
feasible to determine various sets of 
dissolutions for hard difficulties by 
multimodal, interchangeable, and non-convex 
dissolutions spaces. The crossover manager of 
GA is able to extract accurate solutions to 
various objectives, identifying new solutions 
in unexplored sectors of the Pareto front. As 
such, GA has been one of the most popular 
heuristic method to solve MOO problems 
(Mousavi-Avval et al., 2017). 

In this study, MOGA is employed for MOO 
in pinto bean production with two objectives 
comprising: (1) Minimizing energy 
consumption, (2) Maximizing the performance 
of pinto bean farms. The aim function is 
demonstrated as follows: 

i

j

i

ii eXCF +=
=1

minmax/

 
(8) 

where Ci denotes model coefficient, Xi 
denotes variable inputs, and Fmax/min signifies 
the objective function to be minimized or 
maximized. When tackling an optimization 
problem, the MATLAB workbox solely 
permits the minimization of the target goal 
function. Therefore, for a maximized objective 
function, it must be multiplied by (-1). 

 
Results and Discussion 
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Energy use analysis  

Table 2 illustrates the energy inputs and 
outputs associated with two different planting 
systems used in pinto bean production: Flat 
and Strip. It outlines various energy inputs for 
each system, including human labor, 
machinery, diesel fuel, chemical fertilizers 
(nitrogen, phosphate, and potassium), biocides, 
electricity, and seeds. The energy consumption 
for these inputs is expressed in MJ ha-1 for 
both systems. For the flat planting system, the 
total energy usage amounts to 20,067.12 MJ 
ha-1, whereas the strip system records a total of 
18,171.76 MJ ha-1. Additionally, the table 
presents the production yields in kilograms for 
each system: the Flat system yields 3000 kg 
(equivalent to 60,000 kg ha-1), while the strip 
system yields 3500 kg (or 70,000 kg ha-1). 
This information sheds light on the energy 
efficiency and productivity of the two planting 
approaches, enabling stakeholders to make 
informed decisions regarding resource 
allocation and productivity in pinto bean 
farming. Figure 2 illustrates the distribution of 
energy sources used in different planting 
systems for pinto bean production. This 
depiction likely highlights the various energy 

inputs involved in cultivating pinto beans 
across multiple agricultural methods. These 
inputs may encompass human labor, 
machinery, fertilizers, pesticides, water, 
electricity, and other necessary resources for 
bean cultivation. By examining this 
distribution, researchers and farmers can 
evaluate the energy efficiency and 
sustainability of the various planting systems 
employed in pinto bean production. Efficient 
energy use in crop production can reduce 
greenhouse gas emissions (GHG) and promote 
sustainable agriculture. The study utilizes a 
MOGA to optimize energy inputs and reduce 
GHG emissions in wetland rice production in 
Malaysia. The findings indicated that farmers 
are using 37.8% more energy than needed for 
transplanting and 40% more for broadcast 
seeding. By implementing MOGA, GHG 
emissions could be decreased by 95.89 kg 
CO2eq ha-1 for transplanting and by 236.13 kg 
CO2eq ha-1 for broadcast seeding. Notably, 
even with reduced energy inputs, crop yields 
remained robust at 9.4 tonnes ha-1 and 9.2 
tonnes ha-1, respectively (Elsoragaby et al., 
2020). 

 
Table 2- Energy inputs and outputs of different planting systems production of pinto bean 

 Planting system 

Item 

Flat land Strip 

Unit per 

ha 

Energy use  

(MJ ha-1) 

Unit per 

ha 

Energy use  

(MJ ha-1) 

1. Human labor (h) 350.00 686.00 300.00 588.00 

2. Machinery (kg) 26.00 1630.20 35.00 2194.50 

3. Diesel fuel (L) 32.00 1801.92 46.00 2590.26 

4. Chemical fertilizers (kg)     

(a) Nitrogen 150.00 11715.00 150.00 9372.00 

(b) Phosphate (P2O5) 50.00 870.00 40.00 696.00 

(c) Potassium 20.00 274.00 20.00 274.00 

5. Biocides (kg) 3.00 750.00 2.50 625.00 

6. Electricity (kwh) 45.00 540.00 36.00 432.00 

8. Seed (kg) 90.00 1800.00 70.00 1400.00 

Total energy use (MJ) - 20067.12  18171.76 

B. Output (kg)     

1. Flat 3000.00 60000.00 - - 

1. Strip - - 3500.00 70000.00 
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Fig. 2. Distribution of energy sources for the production of pinto beans in flat and strip planting systems 

 
The information presented in Table 3 offers 

a comparative analysis of energy-related 
metrics for pinto bean production under two 
different planting systems: flat and strip. 
Firstly, the strip system exhibits a significantly 
higher energy use efficiency of 3.85, in 
contrast to the flat system’s 2.99. This ratio 
reflects how effectively energy inputs are 
utilized during production. Secondly, when 
examining energy productivity, the strip 
system again outperforms the flat system with 
values of 0.19 kg MJ-1 versus 0.15 kg MJ-1. 

This indicates greater output relative to energy 
consumption in the strip system. In terms of 
specific energy, the strip system shows an 
advantage with a lower value of 5.19 MJ kg-1 
compared to 6.69 MJ kg-1 for the flat system, 
revealing that it requires less energy for 
production. Furthermore, the net energy gain is 
significantly higher in the strip system, 
reaching 51,828.24 MJ ha–1, compared to 
39,932.88 MJ ha–1 in the flat system. This 
metric illustrates the overall energy balance 
and productivity per unit area. In summary, the 
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data indicates that the strip planting system 
demonstrates superior performance regarding 
energy efficiency, productivity, and net energy 
gain when compared to the flat planting 
system for pinto bean production. One study 
compared energy consumption in sugarcane 
production at Salman Farsi Sugarcane Agro-
Industrial Company, Iran, highlighting that 

plant cane requires more energy than ratoon 
cycles but is less efficient. Recommendations 
included optimizing machinery use and 
irrigation. The research also assessed health 
impacts, species loss, and cost differences, 
advocating for improved sustainability 
practices (Behnia et al., 2025). 

 
Table 3- Different energy indices for the different planting systems of pinto bean 

production 

Energy indices (unit) 
Planting system 

Flat Strip 

Energy use efficiency (ratio) 2.99 3.85 

Energy productivity (kg MJ−1) 0.15 0.19 

Specific energy (MJ kg-1) 6.69 5.19 

Net energy gain (MJ ha–1) 39932.88 51828.24 

 
Optimization results 

MOGA is a sophisticated method for 
addressing multi-criteria decision-making 
units (DMUs) within mathematical 
optimization frameworks, particularly when 
involving the simultaneous optimization of 
multiple objective functions. In many real-
world scenarios, such as in engineering and 
economics, MOO is crucial for making 
optimal decisions when faced with conflicting 
objectives. For instance, in purchasing a 
vehicle, one may aim to maximize comfort 
while minimizing costs. Typical MOO 
problems often yield a multitude of Pareto 
optimal solutions, which represent trade-offs 
between the different objectives, rather than a 
sole optimal solution. A fundamental 
characteristic of MOO problems is that no 
single solution can achieve perfection for 
every objective. Instead, one seeks to identify 
a set of Pareto optimal solutions or to quantify 
trade-offs that fulfill various objectives. 
Mathematically, an MOO problem is 
represented as an optimization problem 
involving multiple objective functions, 
typically expressed through specific equations 
where the solution set is subject to various 
constraints. 

In this context, MOGA is employed to 
handle conflicting objectives effectively. The 
algorithm operates on a population of potential 
solutions, represented as chromosomes. This 

population is initially generated randomly, and 
through successive iterations, the algorithm 
refines the solutions, guiding them towards 
more optimal states. Essential to this process 
are two genetic operators: crossover and 
mutation. Crossover allows for the 
recombination of existing chromosomes to 
produce offspring solutions, while mutation 
introduces random alterations, promoting 
diversity and assisting in escaping local 
optima. GA’s selection mechanisms, including 
proportionate selection and tournament 
selection, drive the reproductive process, 
allowing fitter chromosomes to propagate 
through generations. This adaptability makes 
GA a robust method for solving complex 
optimization problems, especially in multi-
modal landscapes typical of MOO. This study 
utilizes MOGA to optimize pinto bean 
production with the dual objectives of 
minimizing energy input and maximizing farm 
performance. The objective functions 
incorporated in the analysis consider various 
inputs and their associated energy 
requirements. The results in Table 4 indicate 
that the strip planting method outperforms the 
flat planting method in terms of energy 
efficiency across several input categories. For 
instance, in human labor energy requirements, 
strip systems require 470.23 MJ ha-1, leading 
to a 25.05% energy saving compared to 547.15 
MJ ha-1 for flat systems. Similarly, for 
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machinery, strip systems demand more overall 
energy but achieve significant savings in other 
input categories, such as nitrogen and 
phosphate, where they show lower energy 
requirements and higher percentage savings. 
The total energy inputs and savings reinforce 
the finding that strip planting consistently 
offers lower energy demands and better 
energy-saving benefits than flat systems, 
highlighting its efficacy in pinto bean 
production. 

One study utilized a MOGA to optimize 
mixing energy, economic, and environmental 
indices in canola production. Data were 
gathered from oilseed farms in Mazandaran, 
Iran. A life cycle assessment evaluated 
environmental emissions, while econometric 
modeling identified relationships among 
energy inputs and three outputs: emissions, 
energy output, and productivity. The MOGA 
model aimed to maximize output energy and 
benefit-cost ratio, while minimizing emissions. 
Results showed a 32.1% reduction in 
emissions, with increases of 24.1% in output 
energy and 14.2% in benefit-cost ratio. 
Reductions in chemical use further benefited 
environmental, energy, and economic aspects 
(Mousavi-Avval et al., 2017). Energy 

consumption and environmental damage from 
agriculture have increased in recent centuries. 
A study used life cycle assessment to evaluate 
the impacts of chickpea production, employing 
data envelopment analysis and MOGA 
techniques. Data from 110 enterprises during 
the 2014-2015 season revealed that MOGA 
significantly reduced energy requirements to 
27,570.61 MJ ha−1, a 17% decrease compared 
to DEA’s 31,511.72 MJ ha−1. MOGA also 
lowered environmental impacts, reducing 
acidification potential by 29% and global 
warming potential by 10%. Overall, MOGA 
outperformed DEA in optimizing energy use 
and minimizing environmental impacts 
(Elhami et al., 2016).  

Another study investigated biodiesel 
production from waste cooking palm oil 
containing 6% free fatty acids. The process 
involves both esterification and trans-
esterification, which were simulated and 
optimized using Aspen Plus and Excel-based 
multi-objective optimization techniques. The 
findings indicate that this method is more 
efficient, reducing organic waste by 32% and 
decreasing heat duty requirements by 39%. 
Additionally, it is 1.6% more profitable (Patle 
et al., 2014). 

 
Table 4- Optimum energy requirement and saving energy of different planting systems of pinto bean production 

Input 
Optimum energy requirement  

(MJ ha-1) 
Saving energy (MJ ha-1) Saving energy (%) 

Flat Strip Flat Strip Flat Strip 

1. Human labor  547.15 470.23 138.85 117.77 25.38 25.05 

2. Machinery  1356.14 1872.65 274.06 321.85 20.21 17.19 

3. Diesel fuel  1426.42 2145.35 375.5 444.91 26.32 20.74 

4.Nitrogen 9546.23 7125.49 2168.77 2246.51 22.72 31.53 

5.Phosphate  640.00 487.00 230.00 209.00 35.94 42.92 

6.Potassium 210.56 210.56 63.44 63.44 30.13 30.13 

7. Biocides  650.00 510.25 100.00 114.75 15.38 22.49 

8. Electricity  410.00 326.54 130.00 105.46 31.71 32.30 

9. Seed 1546.00 1274.58 254.00 125.42 16.43 9.84 

Total energy input  16359.50 14422.65 3707.62 3749.11 22.66 25.99 

 

Conclusion 

The evaluation of pinto bean cultivation 
methods in Fars province, southern Iran, 
underscores the significant advantages of 
adopting the strip planting system over the 
traditional flat system. The comprehensive 

analysis of energy inputs and outputs 
demonstrates that the strip system not only 
consumes less energy—18,171.76 MJ ha-1 
compared to the 20,067.12 MJ ha-1 required by 
the flat system—but also produces higher 
yields, with 3,500 kg ha-1 against the 3,000 kg 
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ha-1 from the flat method. This translates into a 
more favorable energy efficiency ratio (3.85 
versus 2.99) and enhanced energy productivity 
(0.19 kg MJ-1 compared to 0.15 kg MJ-1), 
reflecting the efficacy of the strip system in 
optimizing resource allocation and reducing 
environmental impacts. Moreover, the net 
energy gain of the strip system, at 51,828.24 
MJ ha-1, surpasses that of the flat system, 
which records 39,932.88 MJ ha-1. This 
substantial difference in energy performance 
illustrates the pressing need for transformation 
in agricultural practices, advocating for a shift 
that aligns with global sustainability goals in 
food production. The findings from this study 
not only highlight the economic viability of 
the strip planting method but also suggest 
profound implications for future agricultural 
practices as the sector faces mounting 
pressures to enhance efficiency and reduce 
carbon footprints. To realize the benefits of 
strip planting, it is essential to promote 
educational initiatives aimed at training 
farmers and agricultural workers in its 
principles. Enhanced understanding of the 
technique’s advantages—including energy 
savings and improved yields—will empower 
farmers to adopt this innovative approach. 

Furthermore, supportive policy measures, such 
as grants and subsidies for sustainable 
agricultural practices, should be prioritized to 
encourage the transition towards more energy-
efficient methodologies. Overall, the current 
research advocates for a critical reassessment 
of traditional farming techniques. By 
encouraging the adoption of modern, efficient 
alternatives like the strip planting system, 
stakeholders can pave the way for a more 
sustainable future in pinto bean cultivation—
one that promotes both environmental 
stewardship and economic prosperity. The 
urgency of such a transformation is paramount 
as agriculture evolves to meet global 
challenges, ensuring food security while 
safeguarding our planet’s resources. 
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 چکیده

 یسازینهکند. بهیها عمل میتاز جمع یاریبس یبرا یاتیح ییمنبع غذا یکعنوان است و به یضرور یجهان یکشاورز یبرا یاکاشت لوب  یهاسامانه
ماارتبب بااا دو   یاناار   هاااییو خروج  هااایمطالعه ورود  ینمهم است. ا  یاربس  یطیمحیستو کاهش اثرات ز  ییکارا  یشافزا  یکاشت برا  یهاروش  ینا

 60مزرعااه،  90انجام شااد، شااامل  یرانکه در استان فارس، جنوب ا یقتحق  ین. ایتخت و نوار  هاییستم: سکندیم  یابیرا ارز  یتیچ  یاکشت لوب  یکتکن
مختلف  یهانهاده یبرا بر حسب مگا ول در هکتار  یمصرف انر   یابیارز ینبود. ا  ینوار یستمبا استفاده از س  30تخت و   یهایستممزرعه با استفاده از س

در  مگااا ول 12/20067مصاارف  تخاات سامانه. دهدیپوشش م، برق و بذر را شیمیاییسموم  یمیایی،ش یکودها یل،، گازوئهاماشینکار،  یرویاز جمله ن
در هکتار  یلوگرمک 3000تخت  سامانهکند. از نظر عملکرد، یدر هکتار استفاده م گا ولم 76/18171از  نواری یستمکه سیدهد، در حالیهکتار را نشان م

کنااد و عملکاارد برتاار یم  یرا بررس  یانر   یوربهره  یارهایمع  یشترمطالعه ب  ینکند. ایم  یدتول  نواری  سامانه  یدر هکتار برا  یلوگرمک  3500با    یسهدر مقا
 یلوگرمک15/0با   یسهدر مقا بر مگا ول کیلوگرم  19/0 یشترب یانر  یور( و بهره99/2در مقابل    85/3بالاتر ) یمصرف انر   یینوار را با نسبت کارا  سامانه

 5/ 19 کندیشده مصرف میدتول یالوب  کیلوگرمهر   یازابه یکمتر یانر   نواری  سامانهدهد که  یخاص نشان م  یانر   یارهایکند. معیبر مگا ول برجسته م
مگااا ول در هکتااار بااالاتر اساات، در مقاباال  24/51828بااا  نااواری سااامانه یباارا  یسود خالص انر   ین،علاوه بر ا  یلوگرممگا ول بر ک  69/6در مقابل  

 هاییازمناادین یج،نتااا ی،طور کلاا به کنند،یم یدتأک سامانههر دو  یبرا یانر  ینهبه یازهایبر ن هایافته تخت سامانه یمگا ول در هکتار برا 88/39932
 یااامنابع در کشاات لوب ینهبه یصتخص  یآن برا یلو بر پتانس دهدینشان م یمسطح سنت یستمرا نسبت به س  یروش کاشت نوار  ییمطلوب و کارا  یانر 
مگااا  ول در هکتااار  62/3707مسطح کااه  یهاسامانهبا  یسهدر مقا ینوار یهاسامانهنشان داد که  الگوریتم  نتیک چندهدفه یجنتا کند.یم یدتاک یتیچ
 یااایمزا  یشااترب  ینکنند. ایم  یانر   جوییصرفه(  درصد  99/25مگا ول در هکتار )  11/3749  یتوجهقابل  یزانکنند، به میم  ییجودرصد( صرفه  66/22)

 .کندیرا برجسته م یکاشت نوار ییکارا

 
  یمصرف انر  ی،مصرف انر  ییکارا یا،کاشت لوب هایسامانه ،چندهدفه یک نت یتمالگور : یدیکل هایواژه

 

 

 
 یرانتاکستان، ا   ی، دانشگاه آزاد اسلام یوسیستم، ب  یگروه مهندس  -1
 یرانشهر قدس، ا   ی، دانشگاه آزاد اسلام  یک، مکان  یگروه مهندس  -2
 یرانتهران، ا   ی، دانشگاه آزاد اسلام  یی، غذا  یعصنا یگروه علوم و مهندس  -3
 (Email: Mohammad.gholami@iau.ac.ir: مسئول یسندهنو -)*

https://doi.org/10.22067/jam.2025.91535.1331 

mailto:Email:%20Mohammad.gholami@iau.ac.ir
https://doi.org/10.22067/jam.2025.91535.1331

