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Abstract

Bean planting systems are essential to global agriculture, serving as a vital food source for many populations.
Optimizing these planting methods is crucial for enhancing efficiency and reducing environmental impacts. This
study evaluates the energy inputs and outputs associated with two pinto bean cultivation techniques: flat and
strip systems. Conducted in Fars province, southern Iran, the research involved 90 farms, 60 employing flat
systems and 30 utilizing strip systems. Energy consumption was assessed in MJ ha* for various inputs, including
labor, machinery, diesel, chemical fertilizers, biocides, electricity, and seeds. The flat system exhibited energy
consumption of 20,067.12 MJ ha, while the strip system utilized 18,171.76 MJ ha’. In terms of yield, the flat
system produced 3000 kg ha, in comparison to 3500 kg ha* from the strip system. Energy efficiency metrics
indicated that the strip system outperformed the flat system with a higher energy use efficiency ratio (3.85
against 2.99) and better energy productivity (0.19 kg MJ? vs. 0.15 kg MJ?). Additionally, the strip system
demonstrated lower specific energy consumption at 5.19 MJ kg, compared to 6.69 MJ kg™ for the flat system.
The net energy gain was also greater for the strip system, recording 51,828.24 MJ ha™! versus 39,932.88 MJ ha!
for the flat system. Overall, the results highlight the favorable energy requirements and efficiency of the strip
planting method over the traditional flat system, underscoring its potential for optimized resource allocation in
pinto bean cultivation. The MOGA results indicated that strip systems achieve substantial energy savings of
3749.11 MJ ha' (25.99%), compared to flat systems, which save 3707.62 MJ ha' (22.66%). This further

highlights the efficiency benefits of strip planting.

Keywords: Bean planting systems, Energy consumption, Energy use efficiency, Multi-objective genetic

algorithm

Introduction

Energy  efficiency is  increasingly
acknowledged as a vital element of sustainable
agricultural practices, particularly within crop
production systems (Noorani et al., 2023).
This concept focuses on reducing energy
consumption while either maintaining or
enhancing productivity (Jamali et al., 2021).
Strategies to achieve this include the adoption
of energy-efficient technologies, optimization
of resource utilization, and improvement of
operational methods (Amoozad-Khalili et al.,
2021). Energy efficiency’s importance
transcends mere cost savings; it is essential in
mitigating greenhouse gas emissions and
tackling challenges posed by climate change in

agriculture. Given that agriculture significantly
contributes to energy consumption and
environmental degradation, optimizing energy
use within these systems is crucial for
promoting sustainability and minimizing the
ecological footprint of the sector (Kaab et al.,
2023).

Pinto beans, scientifically known as
Phaseolus vulgaris, are a widely cultivated
variety of bean found in many regions around
the globe (Fonseca Hernandez et al., 2023).
Cultivating pinto beans involves several
essential steps. First, soil preparation is
critical, as these beans flourish in well-drained
soil with a pH level ranging from 6.0 to 7.0.
The soil should be rich in organic matter and
nutrients, so it is important to till the soil and
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remove any weeds or debris prior to planting
(Abad-Gonzélez et al., 2024). Next, planting
typically occurs in the spring, following the
last frost. Seeds can either be sown directly
into the soil or started indoors and transplanted
later. When planting, the seeds should be
placed about 1-2 inches deep and spaced 2-4
inches apart in rows that are 18-24 inches apart
(Bordonal et al., 2018). Watering is another
crucial aspect, as pinto beans require
consistent moisture, particularly during dry
spells. Care must be taken to avoid
overwatering, which can cause root rot. It is
best to water at the base of the plants to keep
the foliage dry, as wet leaves can encourage
disease. Fertilizing also plays a role in the
successful growth of pinto beans. These plants
are nitrogen-fixing, meaning they can utilize
nitrogen from the air, but they may still benefit
from an application of balanced fertilizer
during the growing season (Heusala et al.,
2020). Weeding the area around pinto bean
plants is important to prevent competition for
nutrients and water. Regularly removing
weeds by hand or using a hoe can help
maintain a healthy growing environment
without harming the plants. Harvesting usually
occurs 90-120 days after planting, depending
on the specific variety and environmental
conditions (Mawof et al., 2022). The beans are
ready for harvest when the pods are plump and
filled out, though not yet dried. To harvest,
pull up the entire plant and remove the pods.
Finally, once harvested, pinto beans must be
dried thoroughly before storage. It’s
recommended to spread the beans in a single
layer in a warm, dry area for 1-2 weeks until
they are completely dry. For optimal
preservation, store the dried beans in a cool,
dark place in airtight containers (Altieri et al.,
2012).

Pinto beans, a staple food source for
numerous communities globally, exemplify
the challenges associated with conventional
agricultural practices (Fonseca Hernandez et
al., 2023). Traditional planting and harvesting
methods for pinto beans typically incur high
energy  consumption and  considerable
environmental consequences. To combat these

issues, researchers are increasingly employing
advanced optimization techniques, such as
multi-objective genetic algorithms (MOGA),
to enhance the efficiency and sustainability of
pinto bean production systems (Aghili Nategh
et al., 2021, Kaab et al., 2019; Pourreza
Movahed et al., 2020). MOGA facilitates the

simultaneous  assessment  of  multiple
objectives, including maximizing energy
efficiency, minimizing greenhouse gas

emissions, and optimizing economic returns,
ultimately guiding the discovery of the most
effective agricultural practices (Fathollahi-
Fard et al., 2023). In recent years, multi-
objective  optimization techniques have
emerged as valuable tools for navigating the
complex trade-offs inherent in agricultural
systems. Genetic algorithms (GAs), modeled
on the principles of natural selection, have
proven effective for addressing optimization
problems by exploring multiple solutions
concurrently (Rahman & Szabd, 2021). By
utilizing a MOGA framework to assess energy
use in pinto bean planting systems, researchers
can evaluate various factors, including yield
enhancement, cost-effectiveness, and
environmental impact reduction. This study
delves into the use of MOGA in optimizing
pinto bean planting systems, emphasizing the
delicate balance between competing objectives
intrinsic to agricultural production (Nategh et
al., 2021). By generating and iteratively
refining a diverse array of potential solutions
inspired by natural selection, MOGA aims to
pinpoint optimal strategies that enhance
energy use while diminishing environmental
impact. This  methodology not only
underscores the trade-offs among various
objectives but also provides a framework for
developing sustainable farming practices that
can adapt to the evolving challenges of climate
change and resource scarcity (Pourreza
Movahed et al., 2020). One paper addresses
low agricultural production efficiency by
studying multi-objective  optimization of
sustainable  agricultural  structures  using
genetic algorithms. It reviews agricultural
development, the status of optimization
algorithms, and establishes a model for
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optimal industrial allocation. The improved
genetic algorithm enhances both the economic
value and sustainability of the agricultural
structure (Zhou & Fan, 2018). The quest for
energy optimization in pinto bean planting
systems through a multi-objective genetic
algorithm presents a promising pathway
toward bolstering agricultural sustainability.
By integrating advanced  optimization
techniques into farming practices, this research
aspires to offer insightful contributions to
sustainable  agriculture  and  practical
recommendations  for improving energy
efficiency in bean production systems.
Growing concerns regarding sustainable
agricultural practices have underscored the
need to optimize energy use across various
cropping systems (Rahman & Szabo, 2021).
As a vital legume in numerous diets and a key
crop in diverse agricultural settings, pinto
beans serve as a crucial case study for
investigating energy efficiency in planting
systems. Traditional farming practices often
result in significant energy consumption,
driven by machinery usage, fertilizer
applications, and irrigation techniques, which
can exacerbate environmental challenges and
diminish overall sustainability (Boix-Cots et
al., 2022). Energy consumption and its
environmental  impacts have  become
significant concerns in recent centuries.
Agriculture, as both an energy user and
bioenergy supplier, is crucial for global
economics and food security. Research in
developing countries shows inefficiencies in
energy flow in crop production. To address
this, MOGAs were used to optimize
agricultural inputs, minimizing greenhouse gas
(GHG) emissions while maximizing energy
output and benefit-cost ratios. Results
indicated a potential 28% reduction in energy
use and a 33% decrease in GHG emissions in
watermelon production, with a significant
increase in  the benefit-cost ratio

(Shamshirband et al., 2015).

Optimizing energy use in pinto bean
planting systems is a key advancement in
sustainable agriculture, balancing productivity
and environmental impact. A MOGA
addresses trade-offs between vyield, energy
consumption, and costs by simulating natural
selection. Solutions are refined through
selection, crossover, and mutation, identifying
strategies that harmonize energy efficiency
with economic viability. This adaptable
approach integrates with precision farming and
eco-friendly practices, enhancing sustainability
and resource management.  Ultimately,
applying this algorithm can transform farming,
promoting economic and environmental
sustainability, contributing to food security,
and addressing challenges like climate change.

This study seeks to harness MOGA to
develop optimized planting strategies that
lower energy consumption while maximizing
agricultural outputs. By pinpointing best
practices customized for the specific
conditions of pinto bean cultivation, this
research not only aims to enhance productivity
but also supports the broader movement
toward sustainable agriculture. The findings
from this work are expected to extend beyond
pinto beans, offering valuable insights
applicable to other crops and farming systems
facing similar sustainability challenges.

Materials and Methods

Background information about the studied region

The research was conducted in Fars
province, located in southern Iran, spanning
latitudes from 27° 2’ to 31° 42’ and
longitudes from 50° 42" to 55° 36’ , with
an area of 133,299 km? characterized by an
arid and semi-arid climate (Ministry of Jihad-
e-Agriculture of Iran, 2024). The location of
the case study is illustrated in Figure 1.
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Fig. 1. The area of study in Fars province, Iran

The study involved 90 farms, comprising
60 that utilized flat cultivating systems and 30
that employed strip cultivating systems. A
random survey was conducted with pinto bean
producers to collect data on various
agricultural input parameters, including seed
quantities, fertilizer use, biocide application,
energy sources, equipment and machinery,
cultivated land areas, and Pinto bean yields.
The sample size was determined using the
method outlined in Eq. (1) (Cochran, 1977),
and data collection was performed through in-
person interviews.

z°pq
n= = (2)

B 1 ,z%pq
1+ (ke q)

The sample size (n) needed is calculated
using the number of farms in the target
population (N), a reliability coefficient (z) of
1.96 for a 95% confidence level, an estimated
population attribute proportion (p) of 0.5, the
complement of the estimated proportion (Q)
also at 0.5, and an allowable error deviation
from the average population (d) of 0.05.

Energy use analysis
Energy analysis involves evaluating and
assessing the energy consumption and

efficiency of systems, buildings, or processes
(Ghasemi-Mobtaker, Kaab, & Rafiee, 2020).
This process includes gathering data on energy
usage, pinpointing areas of waste, and
formulating strategies to reduce consumption
and enhance efficiency. Energy analysis can
be applied across various sectors, such as
residential, ~commercial, industrial, and
transportation (Kaab et al., 2019). It enables
organizations and individuals to comprehend
their energy usage patterns, identify potential
savings, and make informed choices regarding
energy conservation. Common methodologies
in energy analysis include energy audits and
energy modeling (Ghasemi-Mobtaker, Kaab,
Rafiee, & Nabavi-Pelesaraei, 2022). These
tools facilitate the quantification of energy
consumption and identification of energy-
saving opportunities.  Ultimately, energy
analysis is vital for promoting energy
efficiency, decreasing  greenhouse gas
emissions, and meeting sustainability targets.
It supports informed decision-making, propels
energy  conservation initiatives, and
contributes to a more sustainable and resilient
energy future. The energy equivalent of each
input is outlined in Table 1.
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Table 1- Conversion factors of energy inputs and outputs in the production of pinto bean

Energy equivalent

Item Unit (MJ unit?) Reference
A. Input
1. Human labor h 1.96 (Mohammadi & Omid, 2010)
2. Machinery kg yra 62.70 (Kaab, Khanali, Shadamanfar, & Jalalvand, 2024)
3. Diesel fuel L 56.31 (Ghasemi-Mobtaker, Akram, & Keyhani, 2012)
4. Chemical K
fertilizers g
(a) Nitrogen 78.10 (Hosseinzadeh-Bandbafha, Safarzadeh, Ahmadi, Nabavi-
' Pelesaraei, & Hosseinzadeh-Bandbafha, 2017)
(b) Phosphate 17.40 (Zangina, Suleiman, & Ahmed, 2023)
(c) Potassium 13.70 (Ramedani et al., 2019)
5. Biocides kg 250.00 (Khosruzzaman, Asgar, Karim, & Akbar, 2010)
7. Electricity kWh 12.00 (Mandal et al., 2015)
8. Seed kg 20.00 (Boydston et al., 2018)
B. Output
1. Pinto bean kg 20.00 (Boydston et al., 2018)

2 the economic life of machine (year)

Energy indicators refer to the metrics used
to evaluate and monitor energy consumption,
efficiency, and performance. These indicators
offer meaningful insights into energy usage
trends, highlight opportunities for
improvement, and guide decisions aimed at
optimizing energy use and minimizing costs
(Hassan Ghasemi-Mobtaker et al., 2024).
Common energy indicators encompass energy
intensity, energy efficiency ratios, energy
consumption per production unit, and energy
cost per output unit. Some of these indicators
are outlined in equations (2) to (5). Businesses,
industries, and governments can leverage these
indicators to oversee and enhance their energy
usage and sustainability initiatives.

Output energy (MJ )

Energy use efficiency = Input energy (MJ) @)
. ductivity — Production (kg) 3
HeTEY ProQuetVIY = 1 bt energy (MJ) ®)
. Input energy (MJ)
f' =
Specific energy Production (kg) (4)
Net energy 5
= Output energy (MJ) - Input energy (MJ) ©
MOGA analysis

MOGA comprises multi criteria decision-
making units (DMUs) that are associated
with mathematical optimization
problems when more than one objective

function is to be quickly optimized. Multi-
objective optimization (MOOQ) has been used
in  many fields, including preparation,
economics, and engineering, where optimal
decisions are entailed to be derived in the
presence  of compensation among multiple
inconsistent objectives. Typical examples of
MOO  problems include  maximizing
tranquility ~while  minimizing costs in
purchasing a car, and minimizing emission of
pollutants and fuel use while simultaneously
maximizing vehicle performance, etc. There
can be three or even more objectives in actual
problems (Abidi et al., 2018).

For a typical MOO problem, there cannot
exist a solitary resolution that is able to
optimize every objective. Instead, there exist
unlimited numbers of Pareto optimal solutions,
which are all considered good solutions. As
such, the objectives are to determine a set of
Pareto optimal solutions, or quantify trade-offs
in fulfilling various aims, or assign a solitary
resolution that can fulfil largely intrinsic
priorities of a decision maker (DM) (Hu et al.,
2017).

An MOO problem is an optimization
problem involving multi-objective functions. A

typical MOO problem is expressed
mathematically as Eq. (6):
min( ,(x), f,(X)...., f, (X)) ©

stxe X
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where the set X signifies the possible set of
determination directions and the integer k>
2 denotes the number of aims. The possible set
usually comprises some constraint functions.
Furthermore, the objective function vector is
expressed as Eq. (7):
fiX >RGO =(F,(X),.... f. (X)) (7)

where x signifies a possible solution and
f(x) €¢R denotes the compatibility of the
possible solution. Pareto optimal solutions
provide a way to solve this limitation. In real-
world cases, the dissolutions that are not
overmatched by other dissolutions across the
entire search area constitute the collection of
Pareto optimal solutions. The underlying
significance is that these dissolutions cannot
be altered for each purpose without inevitably
compromising at least one of the other
objectives (Konak et al., 2006).

This study presents a technique used in
MOGA to address these contradictory
objectives simultaneously when solving MOO
problems. GA usually functions by a set of
chromosomes, which is named the population.
The population is usually initialized randomly.
As the calculation progresses, the population
includes fitter and fitter solutions, and
eventually it converges towards a solitary
dissolution. GA employs two factors to
produce new dissolutions from existing ones,
crossover and mutation. During crossover
operation, the chromosomes are re-composed
to generate new chromosomes, resulting in
viable offspring. In selecting chromosomes
from the population, parents prioritize those
that exhibit a higher compatibility function.
Using a repetitious crossover operator, a good
chromosome gene is expected to be more
visible in the population and eventually
converge to a single solution. The mutation
operator furnishes a random transformation to
the characteristics of the chromosome. In a
generic GA, the mutation ratio is usually low.
Whilst the crossover operation attempts to
guide towards a convergent population with
similar chromosomes in the population, the
mutation operation again enters the genetic
diversity of the population and helps to escape
from local optimum. The proliferation

comprises selection of chromosomes for the
subsequent  generation.  Different fitness
functions in GA include proportionate choices,
grading, and competition, etc. (Deb et al.,
2003). GA is considered one of the best
customary artificial intelligence (Al) methods
owing to its robustness (Taghdisian et al.,
2015). Older systems of Al usually reverse,
even if the outputs are only altered to a slight
extent (Habibi-Yangjeh et al.,, 2009).
Moreover, when it comes to operating an
exceptional conditional space, multimodal
conditional space GA offers considerable
advantages compared to other popular
optimization techniques (Arthur et al., 2016).

Given its population-based methodology,
GA is well suited to solve MOO problems. A
single-objective GA can be configured to
deliver a set of multiple solutions in a single
step. The capability of GA to probe different
regions of a dissolution space presents it
feasible to determine various sets of
dissolutions  for hard difficulties by
multimodal, interchangeable, and non-convex
dissolutions spaces. The crossover manager of
GA is able to extract accurate solutions to
various objectives, identifying new solutions
in unexplored sectors of the Pareto front. As
such, GA has been one of the most popular
heuristic method to solve MOO problems
(Mousavi-Avval et al., 2017).

In this study, MOGA is employed for MOO
in pinto bean production with two objectives
comprising: (1) Minimizing energy
consumption, (2) Maximizing the performance
of pinto bean farms. The aim function is
demonstrated as follows:

Frext min =ZJ:CiXi+ei (8)
i=1

where C; denotes model coefficient, X;
denotes variable inputs, and Fmavmin Signifies
the objective function to be minimized or
maximized. When tackling an optimization
problem, the MATLAB workbox solely
permits the minimization of the target goal
function. Therefore, for a maximized objective
function, it must be multiplied by (-1).

Results and Discussion
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Energy use analysis

Table 2 illustrates the energy inputs and
outputs associated with two different planting
systems used in pinto bean production: Flat
and Strip. It outlines various energy inputs for
each system, including human labor,
machinery, diesel fuel, chemical fertilizers
(nitrogen, phosphate, and potassium), biocides,
electricity, and seeds. The energy consumption
for these inputs is expressed in MJ ha? for
both systems. For the flat planting system, the
total energy usage amounts to 20,067.12 MJ
hat, whereas the strip system records a total of
18,171.76 MJ hal. Additionally, the table
presents the production yields in kilograms for
each system: the Flat system yields 3000 kg
(equivalent to 60,000 kg hal), while the strip
system vyields 3500 kg (or 70,000 kg ha™).
This information sheds light on the energy
efficiency and productivity of the two planting
approaches, enabling stakeholders to make
informed  decisions  regarding  resource
allocation and productivity in pinto bean
farming. Figure 2 illustrates the distribution of
energy sources used in different planting
systems for pinto bean production. This
depiction likely highlights the various energy

inputs involved in cultivating pinto beans
across multiple agricultural methods. These
inputs may encompass human labor,
machinery, fertilizers, pesticides, water,
electricity, and other necessary resources for
bean cultivation. By examining this
distribution, researchers and farmers can
evaluate the energy efficiency and
sustainability of the various planting systems
employed in pinto bean production. Efficient
energy use in crop production can reduce
greenhouse gas emissions (GHG) and promote
sustainable agriculture. The study utilizes a
MOGA to optimize energy inputs and reduce
GHG emissions in wetland rice production in
Malaysia. The findings indicated that farmers
are using 37.8% more energy than needed for
transplanting and 40% more for broadcast
seeding. By implementing MOGA, GHG
emissions could be decreased by 95.89 kg
CO2eq ha! for transplanting and by 236.13 kg
COzeq ha? for broadcast seeding. Notably,
even with reduced energy inputs, crop yields
remained robust at 9.4 tonnes ha® and 9.2
tonnes ha™, respectively (Elsoragaby et al.,
2020).

Table 2- Energy inputs and outputs of different planting systems production of pinto bean

Planting system

Flat land Strip
Item Unit per Energy use Unit per Energy use
ha (MJ ha'h) ha (MJ hah)
1. Human labor (h) 350.00 686.00 300.00 588.00
2. Machinery (kg) 26.00 1630.20 35.00 2194.50
3. Diesel fuel (L) 32.00 1801.92 46.00 2590.26
4. Chemical fertilizers (kg)
(a) Nitrogen 150.00 11715.00 150.00 9372.00
(b) Phosphate (P2Os) 50.00 870.00 40.00 696.00
(c) Potassium 20.00 274.00 20.00 274.00
5. Biocides (kg) 3.00 750.00 2.50 625.00
6. Electricity (kwh) 45.00 540.00 36.00 432.00
8. Seed (kg) 90.00 1800.00 70.00 1400.00
Total energy use (MJ) - 20067.12 18171.76
B. Output (kg)
1. Flat 3000.00 60000.00 - -
1. Strip - - 3500.00 70000.00
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Fig. 2. Distribution of energy sources for the production of pinto beans in flat and strip planting systems

The information presented in Table 3 offers
a comparative analysis of energy-related
metrics for pinto bean production under two
different planting systems: flat and strip.
Firstly, the strip system exhibits a significantly
higher energy use efficiency of 3.85, in
contrast to the flat system’s 2.99. This ratio
reflects how effectively energy inputs are
utilized during production. Secondly, when
examining energy productivity, the strip
system again outperforms the flat system with
values of 0.19 kg MJ? versus 0.15 kg MJ™.

This indicates greater output relative to energy
consumption in the strip system. In terms of
specific energy, the strip system shows an
advantage with a lower value of 5.19 MJ kg
compared to 6.69 MJ kg™ for the flat system,
revealing that it requires less energy for
production. Furthermore, the net energy gain is
significantly higher in the strip system,
reaching 51,828.24 MJ ha, compared to
39,932.88 MJ ha' in the flat system. This
metric illustrates the overall energy balance
and productivity per unit area. In summary, the
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data indicates that the strip planting system
demonstrates superior performance regarding
energy efficiency, productivity, and net energy
gain when compared to the flat planting
system for pinto bean production. One study
compared energy consumption in sugarcane
production at Salman Farsi Sugarcane Agro-
Industrial Company, Iran, highlighting that

plant cane requires more energy than ratoon
cycles but is less efficient. Recommendations
included optimizing machinery use and
irrigation. The research also assessed health
impacts, species loss, and cost differences,
advocating for improved sustainability
practices (Behnia et al., 2025).

Table 3- Different energy indices for the different planting systems of pinto bean

production
- . Planting system
Energy indices (unit) Flat Strip
Energy use efficiency (ratio) 2.99 3.85
Energy productivity (kg MJ™?) 0.15 0.19
Specific energy (MJ kg™?) 6.69 5.19
Net energy gain (MJ ha™) 39932.88 51828.24

Optimization results

MOGA is a sophisticated method for
addressing  multi-criteria  decision-making
units (DMUs) within mathematical
optimization frameworks, particularly when
involving the simultaneous optimization of
multiple objective functions. In many real-
world scenarios, such as in engineering and
economics, MOO is crucial for making
optimal decisions when faced with conflicting
objectives. For instance, in purchasing a
vehicle, one may aim to maximize comfort
while minimizing costs. Typical MOO
problems often yield a multitude of Pareto
optimal solutions, which represent trade-offs
between the different objectives, rather than a
sole optimal solution. A fundamental
characteristic of MOO problems is that no
single solution can achieve perfection for
every objective. Instead, one seeks to identify
a set of Pareto optimal solutions or to quantify
trade-offs that fulfill wvarious objectives.
Mathematically, an MOO problem is
represented as an optimization problem
involving multiple  objective  functions,
typically expressed through specific equations
where the solution set is subject to various
constraints.

In this context, MOGA is employed to
handle conflicting objectives effectively. The
algorithm operates on a population of potential
solutions, represented as chromosomes. This

population is initially generated randomly, and
through successive iterations, the algorithm
refines the solutions, guiding them towards
more optimal states. Essential to this process
are two genetic operators: crossover and
mutation.  Crossover allows for the
recombination of existing chromosomes to
produce offspring solutions, while mutation
introduces random alterations, promoting
diversity and assisting in escaping local
optima. GA’s selection mechanisms, including
proportionate  selection and tournament
selection, drive the reproductive process,
allowing fitter chromosomes to propagate
through generations. This adaptability makes
GA a robust method for solving complex
optimization problems, especially in multi-
modal landscapes typical of MOO. This study
utilizes MOGA to optimize pinto bean
production with the dual objectives of
minimizing energy input and maximizing farm
performance. The  objective  functions
incorporated in the analysis consider various
inputs and  their  associated  energy
requirements. The results in Table 4 indicate
that the strip planting method outperforms the
flat planting method in terms of energy
efficiency across several input categories. For
instance, in human labor energy requirements,
strip systems require 470.23 MJ ha, leading
to a 25.05% energy saving compared to 547.15
MJ hatl for flat systems. Similarly, for
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machinery, strip systems demand more overall
energy but achieve significant savings in other
input categories, such as nitrogen and
phosphate, where they show lower energy
requirements and higher percentage savings.
The total energy inputs and savings reinforce
the finding that strip planting consistently
offers lower energy demands and better
energy-saving benefits than flat systems,
highlighting its efficacy in pinto bean
production.

One study utilized a MOGA to optimize
mixing energy, economic, and environmental
indices in canola production. Data were
gathered from oilseed farms in Mazandaran,
Iran. A life cycle assessment -evaluated
environmental emissions, while econometric
modeling identified relationships among
energy inputs and three outputs: emissions,
energy output, and productivity. The MOGA
model aimed to maximize output energy and
benefit-cost ratio, while minimizing emissions.
Results showed a 32.1% reduction in
emissions, with increases of 24.1% in output
energy and 14.2% in benefit-cost ratio.
Reductions in chemical use further benefited
environmental, energy, and economic aspects
(Mousavi-Avval et al., 2017). Energy

consumption and environmental damage from
agriculture have increased in recent centuries.
A study used life cycle assessment to evaluate
the impacts of chickpea production, employing
data envelopment analysis and MOGA
techniques. Data from 110 enterprises during
the 2014-2015 season revealed that MOGA
significantly reduced energy requirements to
27,570.61 MJ ha™l, a 17% decrease compared
to DEA’s 31,511.72 MJ hal. MOGA also
lowered environmental impacts, reducing
acidification potential by 29% and global
warming potential by 10%. Overall, MOGA
outperformed DEA in optimizing energy use

and minimizing environmental impacts
(Elhami et al., 2016).
Another study investigated biodiesel

production from waste cooking palm oil
containing 6% free fatty acids. The process
involves both esterification and trans-
esterification, which were simulated and
optimized using Aspen Plus and Excel-based
multi-objective optimization techniques. The
findings indicate that this method is more
efficient, reducing organic waste by 32% and
decreasing heat duty requirements by 39%.
Additionally, it is 1.6% more profitable (Patle
etal., 2014).

Table 4- Optimum energy requirement and saving energy of different planting systems of pinto bean production

Optimum energy requirement

Saving energy (MJ ha')  Saving energy (%)

Input (MJ ha't)
Flat Strip Flat Strip Flat Strip
1. Human labor 547.15 470.23 138.85 117.77 25.38 25.05
2. Machinery 1356.14 1872.65 274.06 321.85 20.21 17.19
3. Diesel fuel 1426.42 2145.35 375.5 444.91 26.32 20.74
4.Nitrogen 9546.23 7125.49 2168.77 2246.51 22.72 31.53
5.Phosphate 640.00 487.00 230.00 209.00 35.94 42.92
6.Potassium 210.56 210.56 63.44 63.44 30.13 30.13
7. Biocides 650.00 510.25 100.00 114.75 15.38 22.49
8. Electricity 410.00 326.54 130.00 105.46 31.71 32.30
9. Seed 1546.00 1274.58 254.00 125.42 16.43 9.84
Total energy input 16359.50 14422.65 3707.62 3749.11 22.66 25.99

Conclusion analysis of energy inputs and outputs

The evaluation of pinto bean cultivation
methods in Fars province, southern Iran,
underscores the significant advantages of
adopting the strip planting system over the
traditional flat system. The comprehensive

demonstrates that the strip system not only
consumes less energy—18,171.76 MJ ha'
compared to the 20,067.12 MJ ha™* required by
the flat system—but also produces higher
yields, with 3,500 kg ha* against the 3,000 kg
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ha! from the flat method. This translates into a
more favorable energy efficiency ratio (3.85
versus 2.99) and enhanced energy productivity
(0.19 kg MJ? compared to 0.15 kg MJ?),
reflecting the efficacy of the strip system in
optimizing resource allocation and reducing
environmental impacts. Moreover, the net
energy gain of the strip system, at 51,828.24
MJ ha?, surpasses that of the flat system,
which records 39,932.88 MJ hal. This
substantial difference in energy performance
illustrates the pressing need for transformation
in agricultural practices, advocating for a shift
that aligns with global sustainability goals in
food production. The findings from this study
not only highlight the economic viability of
the strip planting method but also suggest
profound implications for future agricultural
practices as the sector faces mounting
pressures to enhance efficiency and reduce
carbon footprints. To realize the benefits of
strip planting, it is essential to promote
educational initiatives aimed at training
farmers and agricultural workers in its
principles. Enhanced understanding of the
technique’s advantages—including energy
savings and improved yields—will empower
farmers to adopt this innovative approach.
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