[1] Aregbesola, Y., Numerical solution of Bratu problem using the method of weighted residual, Electron. J. South. Afr. Math. Sci. Assoc. 3(1) (2003), 1–7.
[2] Ascher, U.M. and Russell, R.D., Numerical solution of boundary value problems for ordinary differential equations, SIAM, Philadelphia, PA, 1995.
[3] Bratu, G., Sur les équations intégrale non linéaires, Bull. Soc. Math. France 42 (1914), 113–142.
[4] Chang, S.-H. and Chang, I.-L., A new algorithm for calculating one-dimensional differential transform of nonlinear functions, Appl. Math. Comput. 195(2) (2008), 799–808.
[5] Chen, C.K. and Ho, S.H., Applications of differential transformation to eigenvalue problem, J. Appl. Math. Comput. 79 (1996), 173–188.
[6] Chen, C.K. and Ho, S.H., Transverse vibration of a rotating twisted Timo-shenko beam under axial loading using differential transform, Int. J. Mech. Sci. 41 (1999), 1339–1356.
[7] Chou, W.-S., Hsu, L.C. and Shiue, P.J.-S., Application of Faà di Bruno’s formula in characterization of inverse relations, J. Comput. Appl. Math. 190(1-2) (2006), 151–169.
[8] Gezer, N.A., An application of recurrence relations to central force fields, Turk. J. Astron. Astrophys. 5(2) (2024), 13–21.
[9] Gharechahi, R., Ameri, M.A. and Bisheh-Niasar, M., High order com-pact finite difference schemes for solving Bratu-type equations, J. Appl. Comput. Mech. 5(1) (2019), 91–102.
[10] Hassan, I.H.A.H. and Erturk, V.S., Applying differential transformation method to the one-dimensional planar Bratu problem, Int. J. Contemp. Math. Sci. 2 (2007), 1493–1504.
[11] Khuri, S.A., A new approach to Bratu’s problem, Appl. Math. Comput. 147 (2004), 131–136.
[12] Mohsen, A., A simple solution of the Bratu problem, Comput. Math. Appl. 67 (2014), 26–33.
[13] Syam, M.I. and Hamdan, A., An efficient method for solving Bratu equa-tions, Appl. Math. Comput. 176 (2006), 704–713.
[14] Wazwaz, A.M., The modified decomposition method applied to unsteady flow of gas through a porous medium, Appl. Math. Comput. 118(2-3) (2001), 123–132.
[15] Wazwaz, A.M., Adomian decomposition method for a reliable treatment of the Bratu-type equations, Appl. Math. Comput. 166 (2005), 652–663.
[16] Wazwaz, A.M., The successive differentiation method for solving Bratu-type equations, Rom. J. Phys. 61(5–6) (2016), 774–783.
[17] Yu, L.T. and Chen, C.K., The solution of the Blasius equation by the differential transformation method, Math. Comput. Modelling 28 (1998), 101–111.
[18] Zhou, J.K., Differential transformation and its applications for electric circuits, Huazhong Univ. Press, Wuhan, China (in Chinese), 1986.