[1] Amarjeet and Chhabra, J.K. Many-objective artificial bee colony algorithm for large-scale software module clustering problem, Soft Comput., 22(19) (2018), 6341–6361.
[2] Antonio, L.M. and Coello, C.A.C. Use of cooperative coevolution for solving large scale multiobjective optimization problems, Proc. IEEE Congr. Evol. Comput., (2013), 2758–2765.
[3] Babu, B. and Jehan, M.M.L. Differential evolution for multi-objective optimization, Proc. Congr. Evol. Comput. 2003. CEC’03., vol. 4, pp. 2696–2703. IEEE, 2003.
[4] Bechikh, S., Elarbi, M. and Ben Said, L. Many-objective optimization using evolutionary algorithms: A survey, Recent Adv. Evol. Multi-Obj. Optim., (2017), 105–137.
[5] Brockhoff, D. and Zitzler, E. Are all objectives necessary? On dimen-sionality reduction in evolutionary multiobjective optimization, Proc. Int. Conf. Parallel Prob. Solving Nature, (2006), 533–542.
[6] Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y. and Yang, P. Large-scale many-objective deployment optimization of edge servers, IEEE Trans. Intell. Transp. Syst., 22(6) (2021), 3841–3849.
[7] Cao, B., Zhang, Y., Zhao, J., Liu, X., Skonieczny, L. and Lv, Z. Recom-mendation based on large-scale many-objective optimization for the intelligent internet of things system, IEEE Internet Things J., 9(16) (2021),
15030–15038.
[8] Cao, B., Zhao, J., Lv, Z., Liu, X., Yang, S., Kang, X. and Kang, K. Distributed parallel particle swarm optimization for multi-objective and many-objective large-scale optimization, IEEE Access, 5 (2017), 8214–8221.
[9] Chand, S. and Wagner, M. Evolutionary many-objective optimization: A quick-start guide, Surv. Oper. Res. Manage. Sci., 20(2) (2015), 35–42.
[10] Chen, H., Cheng, R., Wen, J., Li, H. and Weng, J. Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations, Inf. Sci., 509 (2020), 457–469.
[11] Cheng, R., Jin, Y., Olhofer, M. and Sendhoff, B. A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20(5) (2016), 773–791.
[12] Cheng, R., Jin, Y., Olhofer, M. and Sendhoff, B. Test problems for large-scale multiobjective and many-objective optimization, IEEE Trans. Cybern., 47(12) (2016), 4108–4121.
[13] Cheng, R., Rodemann, T., Fischer, M., Olhofer, M. and Jin, Y. Evolutionary many-objective optimization of hybrid electric vehicle control: From general optimization to preference articulation, IEEE Trans. Emerg.
Topics Comput. Intell., 1(2) (2017), 97–111.
[14] Deb, K. and Agrawal, R.B. Simulated binary crossover for continuous search space, Complex Syst., 9(2) (1995), 115–148.
[15] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6(2) (2002), 182–197.
[16] Deb, K., Sindhya, K. and Hakanen, J. Multi-objective optimization, in Decision Sciences, CRC Press (2016), 161–200.
[17] Deb, K., Thiele, L., Laumanns, M. and Zitzler, E. Scalable test problems for evolutionary multiobjective optimization, in Evolutionary Multi-objective Optimization: Theoretical Advances and Applications, Springer
(2005), 105–145.
[18] Fleming, P.J., Purshouse, R.C. and Lygoe, R.J. Many-objective optimization: An engineering design perspective, Proc. Int. Conf. Evol. Multi-Criterion Optim., (2005), 14–32.
[19] Gu, Z.M. and Wang, G.G. Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Future Gener. Comput. Syst., 107 (2020), 49–69.
[20] Harman, M. and Yao, X. Software module clustering as a multi-objective search problem, IEEE Trans. Softw. Eng., 37(2) (2010), 264–282.
[21] He, C., Cheng, R., Li, L., Tan, K.C. and Jin, Y. Large-scale multiobjective optimization via reformulated decision variable analysis, IEEE Trans. Evol. Comput., 28(1) (2022), 47–61.
[22] He, C., Li, L., Tian, Y., Zhang, X., Cheng, R., Jin, Y. and Yao, X. Accel-erating large-scale multiobjective optimisation via problem reformulation, IEEE Trans. Evol. Comput., 23(6) (2019), 949–961.
[23] Hong, H., Ye, K., Jiang, M., Cao, D. and Tan, K.C. Solving large-scale multiobjective optimization via the probabilistic prediction model, Memetic Comput., 14(2) (2022), 165–177.
[24] Li, B., Li, J., Tang, K. and Yao, X. Many-objective evolutionary algorithms: A survey, ACM Comput. Surv., 48(1) (2015), 1–35.
[25] Li, H. and Zhang, Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Trans. Evol. Comput., 13(2) (2008), 284–302.
[26] Li, K., Wang, R., Zhang, T. and Ishibuchi, H. Evolutionary many-objective optimization: A comparative study of the state-of-the-art, IEEE Access, 6 (2018), 26194–26214.
[27] Liu, Q., Zou, J., Yang, S. and Zheng, J. A multiobjective evolutionary algorithm based on decision variable classification for many-objective optimization, Swarm Evol. Comput., 73 (2022), 101108.
[28] Liu, R., Ren, R., Liu, J. and Liu, J. A clustering and dimensionality reduction based evolutionary algorithm for large-scale multi-objective problems, Appl. Soft Comput., 89 (2020), 106120.
[29] Ma, L., Huang, M., Yang, S., Wang, R. and Wang, X. An adaptive local-ized decision variable analysis approach to large-scale multiobjective and many-objective optimization, IEEE Trans. Cybern., 52(7) (2021), 6684–6696.
[30] Ma, X., Liu, F., Qi, Y., Wang, X., Li, L., Jiao, L., Yin, M. and Gong, M. A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables,
IEEE Trans. Evol. Comput., 20(2) (2015), 275–298.
[31] Maltese, J., Ombuki-Berman, B.M. and Engelbrecht, A.P. A scalability study of many-objective optimization algorithms, IEEE Trans. Evol. Comput., 22(1) (2016), 79–96.
[32] Miguel Antonio, L. and Coello Coello, C.A. Decomposition-based approach for solving large scale multi-objective problems, Proc. Parallel Prob. Solving Nature (PPSN XIV), (2016), 525–534. Springer.
[33] Okola, I., Omulo, E.O., Ochieng, D.O. and Ouma, G. A comparison of evolutionary algorithms on a large scale many-objective problem in food–energy–water nexus, Results Control Optim., 10 (2023), 100195.
[34] Pan, X., Wang, L., Qiu, Q., Qiu, F. and Zhang, G. Many-objective optimization for large-scale EVs charging and discharging schedules considering travel convenience, Appl. Intell., 52(3) (2022), 2599–2620.
[35] Prajapati, A. A comparative study of many-objective optimizers on large-scale many-objective software clustering problems, Complex Intell. Syst., 7(2) (2021), 1061–1077.
[36] Prajapati, A. A customized PSO model for large-scale many-objective software package restructuring problem, Arab. J. Sci. Eng., 47(8) (2022), 10147–10162.
[37] Prajapati, A. A particle swarm optimization approach for large-scale many-objective software architecture recovery, J. King Saud Univ. Comput. Inf. Sci., 34(10) (2022), 8501–8513.
[38] Prajapati, A. Software module clustering using grid-based large-scale many-objective particle swarm optimization, Soft Comput., 26(17) (2022), 8709–8730.
[39] Prajapati, A. and Chhabra, J.K. Madhs: Many-objective discrete harmony search to improve existing package design, Comput. Intell., 35(1) (2019), 98–123.
[40] Purshouse, R.C. and Fleming, P.J. Evolutionary many-objective optimi-sation: An exploratory analysis, Proc. Congr. Evol. Comput., 3 (2003), 2066–2073.
[41] Riquelme, N., von Lücken, C. and Baran, B. Performance metrics in multi-objective optimization, Proc. Latin Amer. Comput. Conf. (CLEI), (2015), 1–11.
[42] Saxena, D.K. and Deb, K. Dimensionality reduction of objectives and constraints in multi-objective optimization problems: A system design perspective, Proc. IEEE Congr. Evol. Comput., (2008), 3204–3211.
[43] Tian, Y., Si, L., Zhang, X., Cheng, R., He, C., Tan, K.C. and Jin, Y. Evolutionary large-scale multi-objective optimization: A survey, ACM Comput. Surv., 54(8) (2021), 1–34.
[44] Tian, Y., Zheng, X., Zhang, X. and Jin, Y. Efficient large-scale multiobjective optimization based on a competitive swarm optimizer, IEEE Trans. Cybern., 50(8) (2019), 3696–3708.
[45] Wang, Y., Zhang, Q. and Wang, G.G. Improving evolutionary algorithms with information feedback model for large-scale many-objective optimization, Appl. Intell., 53(10) (2023), 11439–11473.
[46] Xu, Y., Xu, C., Zhang, H., Huang, L., Liu, Y., Nojima, Y. and Zeng, X. A multi-population multi-objective evolutionary algorithm based on the contribution of decision variables to objectives for large-scale multi/many-objective optimization, IEEE Trans. Cybern., 53(11) (2022), 6998–7007.
[47] Zhang, J., Wei, L., Fan, R., Sun, H. and Hu, Z. Solve large-scale many-objective optimization problems based on dual analysis of objective space and decision space, Swarm Evol. Comput., 70 (2022), 101045.
[48] Zhang, K., Shen, C. and Yen, G.G. Multipopulation-based differential evolution for large-scale many-objective optimization, IEEE Trans. Cybern., 53(12) (2022), 7596–7608.
[49] Zhang, Q. and Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11(6) (2007), 712–731.
[50] Zhang, X., Tian, Y., Cheng, R. and Jin, Y. A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization, IEEE Trans. Evol. Comput., 22(1) (2016), 97–112.
[51] Zhang, Y., Wang, G.G., Li, K., Yeh, W.C., Jian, M. and Dong, J. Enhancing MOEA/D with information feedback models for large-scale many-objective optimization, Inf. Sci., 522 (2020), 1–16.
[52] Zhou, Y., Kong, L., Cai, Y., Wu, Z., Liu, S., Hong, J. and Wu, K. A decomposition-based local search for large-scale many-objective vehicle routing problems with simultaneous delivery and pickup and time windows, IEEE Syst. J., 14(4) (2020), 5253–5264.
[53] Zille, H. Large-scale multi-objective optimisation: New approaches and a classification of the state-of-the-art, PhD thesis, Otto von Guericke Univ. Magdeburg, 2019.
[54] Zille, H., Ishibuchi, H., Mostaghim, S. and Nojima, Y. A framework for large-scale multiobjective optimization based on problem transformation, IEEE Trans. Evol. Comput., 22(2) (2017), 260–275.
[55] Zille, H. and Mostaghim, S. Comparison study of large-scale optimisation techniques on the LSMOP benchmark functions, Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), (2017), 1–8.
[56] Zitzler, E. SPEA2: Improving the performance of the strength Pareto evolutionary algorithm, Tech. Rep., Computer Engineering and Communication Networks Lab, Swiss Federal Institute of Technology (ETH
Zurich) 2001.