اسکندری نسب، محمد. (1404). شبکه بینالمللی پایداری محاسباتی: کاربست علوم محاسباتی برای تحقق توسعه پایدار. موسسه مطالات و تحقیقات اجتماعی دانشگاه تهران. تهران. قابل دسترسی در:
https://isr.ut.ac.ir/article/93890919
Abdelrahman, H., Berkenkamp, F., Poland, J., & Krause, A. (2016). Bayesian optimization for maximum power point tracking in photovoltaic power plants. In 2016 European Control Conference (ECC) (2078-2083). Aalborg, Denmark.
https://doi.org/10.1109/ECC.2016.7810598
Albers, J. H., Dietterich, T., Hall, K., Lee, K., & Taleghan, M. (2018). Simulator-defined Markov decision processes: A case study in managing bio-invasions. In F. Fang, M. Tambe, B. Dilkina, & A. Plumptre (Eds.), Artificial Intelligence and Conservation. Cambridge University Press. Cambridge, United Kingdom.
Azimi, J., Fern, X., & Fern, A. (2016). Budgeted optimization with constrained experiments. Journal of Artificial Intelligence Research, 56, 119–152.
https://doi.org/10.1613/jair.4896
Bai, J., Xue, Y., Bjorck, J., Le Bras, R., Rappazzo, B., Bernstein, R., Suram, S. K., van Dover, R. B., Gregoire, J. M., & Gomes, C. P. (2018). Phase mapper: Accelerating materials discovery with AI. AI Magazine, 39(1), 15–26.
https://doi.org/10.1609/aimag.v39i1.2785
Barrett, C., Garg, T., & McBride, L. (2016). Well-being dynamics and poverty traps. Annual Review of Resource Economics, 8, 303–327.
https://doi.org/10.1146/annurev-resource-100815-095235
Bernstein, G., McKenna, R., Sun, T., Sheldon, D., Hay, M., & Miklau, G. (2017). Differentially private learning of undirected graphical models using collective graphical models. In Proceedings of the 34th International Conference on Machine Learning. (478–487). Sydney, Australia.
https://proceedings.mlr.press/v70/bernstein17a.html
Chen, D., Xue, Y., & Gomes, C. (2018). End-to-end learning for the deep multivariate probit model. Proceedings of the International Conference on Machine Learning (ICML). Stockholm, Sweden.
https://proceedings.mlr.press/v80/chen18o.html
Coble, K., Mishra, A., Ferrell, S., & Griffin, T. (2018). Big data in agriculture: A challenge for the future. Applied Economic Perspectives and Policy, 40(1), 79–96.
https://doi.org/10.1093/aepp/ppx056
Dilkina, B., Houtman, R., Gomes, C. P., Montgomery, C. A., McKelvey, K. S., Kendall, K., & Schwartz, M. K. (2017). Trade-offs and efficiencies in optimal budget-constrained multi-species corridor networks. Conservation Biology, 31(1), 192–202.
https://doi.org/10.1111/cobi.12814
Donti, P., Kolter, J. Z., & Amos, B. (2017). Task-based end-to-end model learning in stochastic optimization. Advances in Neural Information Processing Systems, 5490–5500.
https://doi.org/10.48550/arXiv.1703.04529
Ermon, S., Xue, Y., Toth, R., Dilkina, B., Bernstein, R., Damoulas, T., Clark, P., DeGloria, S., Mude, A., Barrett, C., & Gomes, C. (2015). Learning Large-Scale Dynamic Discrete Choice Models of Spatio-Temporal Preferences with Application to Migratory Pastoralism in East Africa. Proceedings of the AAAI Conference on Artificial Intelligence, 29(1).
https://doi.org/10.1609/aaai.v29i1.9248
Faghmous, J., & Kumar, V. (2014). A big data guide to understanding climate change: The case for theory-guided data science. Big Data, 2(3), 155–163.
https://doi.org/10.1089/big.2014.0026
Fang, F., Nguyen, T. H., Pickles, R., Lam, W. Y., Clements, G. R., An, B., Singh, A., Schwedock, B. C., Tambe, M., & Lemieux, A. (2017). PAWS — A Deployed Game-Theoretic Application to Combat Poaching. AI Magazine, 38(1), 23-36.
https://doi.org/10.1609/aimag.v38i1.2710
Fang, F., Tambe, M., Dilkina, B., & Plumptre, A. (Eds.). (2018). Artificial Intelligence and Conservation. Cambridge University Press. Cambridge, United Kingdom.
Fink, D., Hochachka, W. M., Zuckerberg, B., Winkler, D. W., Shaby, B., Munson, M. A., & Kelling, S. (2010). Spatiotemporal exploratory models for broad-scale survey data. Ecological Applications, 20(8), 2131-2147.
https://doi.org/10.1890/09-1340.1
Fisher, D. H. (2016). Recent advances in AI for computational sustainability. IEEE Intelligent Systems, 31(4), 56–61.
https://doi.org/10.1109/MIS.2016.61
Freund, D., Henderson, S. G., & Shmoys, D. B. (2018). Sharing Economy: Making Supply Meet Demand. Springer. United States.
Giesen, N., Hut, R., & Selker, J. (2014). The Trans-African Hydro-Meteorological Observatory (TAHMO). Wiley Interdisciplinary Reviews: Water, 1(4), 341–348.
https://doi.org/10.1002/wat2.1034
Gomes, C. P. (2009). Computational sustainability: Computational methods for a sustainable environment, economy, and society. The Bridge, 39(4), 5–13.
https://nap.nationalacademies.org/read/12821/chapter/7#28
Grover, A., Markov, T., Attia, P., Jin, N., Perkins, N., Cheong, B., & Ermon, S. (2018, March). Best arm identification in multi-armed bandits with delayed feedback. In International conference on artificial intelligence and statistics (833-842). PMLR. New York, USA.
https://proceedings.mlr.press/v84/grover18b.html
Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790–794.
https://doi.org/10.1126/science.aaf7894
Kelling S, Johnston A, Hochachka WM, Iliff M, Fink D, & Gerbracht J. (2015) Can Observation Skills of Citizen Scientists Be Estimated Using Species Accumulation Curves?. PLoS ONE, 10(10), e0139600.
https://doi.org/10.1371/journal.pone.0139600
Khazaei, J., & Powell, W. B. (2018). SMART-Invest: A stochastic, dynamic planning for optimizing investments in wind, solar, and storage in the presence of fossil fuels. Energy Systems, 9(2), 277–303.
https://doi.org/10.1007/s12667-016-0226-4
Kraus, S. (2001). Automated negotiation and decision-making in multiagent environments. In ECCAI Advanced Course on Artificial Intelligence. Springer. United States.
Lässig, J., Kersting, K., & Morik, K. (Eds.). (2016). Computational Sustainability (Vol. 645). Springer. United States.
Molina, S., Fuller, A. K., Morin, D. J., & Royle, J. A. (2017). Use of spatial capture–recapture to estimate density of Andean bears in northern Ecuador. Ursus, 28(1), 117-126.
https://doi.org/10.2192/URSU-D-16-00030.1
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.
https://doi.org/10.1016/j.ecolmodel.2005.03.026
Powell, W. (2019). A unified framework for stochastic optimization. European Journal of Operational Research, 275(3), 795–821.
https://doi.org/10.1016/j.ejor.2018.07.014
Reynolds, M. D., & et al. (2017). Dynamic conservation for migratory species. Science Advances, 3(8), e1700707.
https://doi.org/10.1126/sciadv.1700707
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F. S., Lambin, E., & Foley, J. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2), Article 32.
https://doi.org/10.1126/sciadv.1700707
Rudin, C., & Wagstaff, K. (2014). Machine learning for science and society. Machine Learning, 95(1), 1–9.
https://doi.org/10.1007/s10994-013-5425-9
Ruiz-Muñoz, J. F., You, Z., Raich, R., & Fern, X. Z. (2018). Dictionary learning for bioacoustics monitoring with applications to species classification. Journal of Signal Processing Systems, 90(2), 233–247.
https://doi.org/10.1007/s11265-016-1155-0
Russell, S., Dietterich, T., Horvitz, E., Selman, B., Rossi, F., Hassabis, D., Legg, S., Suleyman, M., George, D., & Phoenix, S. (2015). Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter. AI Magazine, 36(4), 3-4.
https://doi.org/10.1609/aimag.v36i4.2621
Sheldon, D. R., & Dietterich, T. G. (2011). Collective graphical models. Proceedings of the 25th International Conference on Neural Information Processing Systems, 1161–1169. Granada, Spain.
https://dl.acm.org/doi/10.5555/2986459.2986589
Sheldon, D., Farnsworth, A., Irvine, J., Van Doren, B., Webb, K., Dietterich, T., & Kelling, S. (2013). Approximate Bayesian Inference for Reconstructing Velocities of Migrating Birds from Weather Radar. Proceedings of the AAAI Conference on Artificial Intelligence. 27(1), 1334-1340. California, USA.
https://doi.org/10.1609/aaai.v27i1.8486
Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., & Kelling, S. (2014). The eBird enterprise: An integrated approach to development and application of citizen science. Biological Conservation, 169, 31–40.
https://doi.org/10.1016/j.biocon.2013.11.003
Tambe, M., & Rice, E. (Eds.). (2018). Artificial Intelligence and Social Work. Cambridge University Press. Cambridge, United Kingdom.
United Nations. (2018a). Our Common Future. Retrieved Aug. 25; http://www.un-documents.net/our-common-future.pdf
United Nations. (2018b). Transforming Our World: The 2030 Agenda for Sustainable Development. Retrieved Aug. 25; http://www.un.org/ga/search/view_doc.asp?symbol=a/res/70/&lang=e
United Nations. (2018c). A World That Counts: Mobilizing The Data Revolution for Sustainable Development. Retrieved June 16;
Http://Www.Undatarevolution.Org/Wp-Content/Uploads/2014/12/A-World-That-Counts2.Pdf
Wahabzada, M., Mahlein, A. K., Bauckhage, C., Steiner, U., Oerke, E. C., & Kersting, K. (2016). Plant phenotyping using probabilistic topic models: uncovering the hyperspectral language of plants. Scientific reports, 6(1), 22482.
https://doi.org/10.1038/srep22482
Wu, X., Gomes-Selman, J., Shi, Q., Xue, Y., Garcia-Villacorta, R., Anderson, E., Sethi, S., Steinschneider, S., Flecker, A., & Gomes, C. (2018). Efficiently Approximating the Pareto Frontier: Hydropower Dam Placement in the Amazon Basin. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1).
https://doi.org/10.1609/aaai.v32i1.11347
Xue, Y., Davies, I., Fink, D., Wood, C., & Gomes, C. P. (2016). Avicaching: A two-stage game for bias reduction in citizen science. Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems. Singapore. 776–785.
https://dl.acm.org/doi/10.5555/2936924.2937038
Yadav, A., & et al. (2017). Influence maximization in the field: The arduous journey from emerging to deployed application. Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems, Sao Paulo, Brazil. 150–158.
https://dl.acm.org/doi/10.5555/3091125.3091152