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Abstract

Solving intricate constrained optimization problems with nonlinear con-
straints is usually difficult. To optimize the constraint and structure engi-
neering design challenges, this work presents a novel hybrid method called
SDDS-SABC, which is based on the split-detect-discard-shrink technique
and the Sophisticated ABC algorithm inspired by the integration of branch-
and-bound-like concepts of interval analysis with heuristics, and it differs
from other methods in the literature. The advantage of the SDDS process
is that it shrinks the entire search region through recursive breakdown and
improves computational effort to focus on subregions covering potential so-
lutions for further decomposition. In order to identify the most promising
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subregion, SABC’s values are crucial in assisting in the extraction of the
best solutions from the subregions. Until the region shrinks to a nominal
width that represents the global or nearly global solution(s) to the opti-
mization problem, both SDDS and SABC are successively repeated. The
selection and rating criteria are used to support positive decision-making,
with the mindset of removing the subregion containing the unpromising
solution(s). Simultaneously, the subregion exhibiting a viable solution
is acknowledged as the present shrink region in anticipation of a subse-
quent split. We present a new initialization technique for food sources in
the SABC algorithm, called the quasi-random sequence-based Halton set,
which outperforms the current initialization procedure. Create a composite
strategy that uses the employed bee phase to investigate their neighborhood
while preserving their cooperative nature. In order to increase the optimiza-
tion efficiency, we also present a new dynamic penalty approach that does
not rely on any additional characteristics or factors like the majority of ex-
isting penalty methods. We test the statistical validity of SDDS-SABC by
applying it to engineering design problems and benchmark functions (CEC
2006). The results demonstrate that SDDS-SABC performs better than
its most studied competitors and proves its viability in resolving difficult
real-life problems. Additionally, the SDDS-SABC approach is appropriate
and numerically stable for the optimization problems. The main innova-
tion of the approach being described is its capacity to perform a static and
better optimal solution in the majority of runs, even when the problem is
excessively complex.

AMS subject classifications (2020): 65K10, 90C26, 90C31, 90C59

Keywords: Constrained optimization, ABC algorithm, Dynamic penalty
function, Engineering design problem

1 Introduction

Optimization is a numerical approach to solving practical problems in a va-
riety of domains and is a difficult decision-making process that keeps getting
difficult. The goal of decision-making is to, given the situation, determine the
best set of variables to combine in order to maximize or decrease the objec-
tive function within the specified bounds. Sustainable restrictions mean that
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it is usually more difficult to solve scientific and engineering problems when
the search space structure is limited to regions that are both feasible and
nonfeasible. This makes it challenging to extract the best feasible solution
from a subset of the feasible space. Constrained optimization problems are
what these problems are known as (COPs). In general, typical mathematical
programming techniques found in literature cannot address nonconvex or dis-
crete problems since they require gradient information in order to find optimal
solutions. They are also vulnerable to starting points. When the optimiza-
tion problems feature several or impulsive peaks, selecting the initial points
incorrectly makes the search for the global optimum difficult and unstable.
Furthermore, as the dimension of the choice variable increases and optimiza-
tion problems become extremely nonlinear, conventional methods break down
if the problem’s complexity rises any further. Using sophisticated, effective
algorithms that possess derivation-free formulations, simplicity, and flexibil-
ity is the best option. These algorithms can offer excellent results in vari-
ous real-world optimization scenarios. Numerous nature-inspired intelligent
optimization strategies and constraint-handling methodologies have been de-
veloped to address these kinds of problems [2]. Particle swarm optimization
(PSO) [27], ant colony optimization (ACO) [13], artificial bee colony (ABC)
[26], grey wolf optimizer (GWO) [41], and other swarm-based algorithms
are popular. The Darwinian evolution theory underpins evolutionary algo-
rithms such as genetic algorithm (GA) [42], differential evolution (DE) [48],
and Memetic algorithm [15], among others. The simulated annealing (SA)
[4], gravitational search algorithm (GSA) [50], big-bang big-crunch algorithm
(BBBC) [52], and other chemistry- or physics-based methods are inspired by
chemical or physical phenomena. The last type of algorithms is social or
human-based ones, such as the arithmetic optimization algorithm (AOA) [1],
teaching learning-based optimization (TLBO) [54], and brain storm optimiza-
tion (BSO) [57]. These algorithms are inspired by human or social behaviors.
These algorithms’ drawbacks include their propensity for local convergence,
need for parameter tweaking, and so on. They perform so poorly in the
majority of optimization problems. Furthermore, the majority of these tech-
niques is designed to address unconstrained optimization problems. Several
techniques for handling constraints are integrated into these algorithms to

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1538–1588



1541 Combining an interval approach with a heuristic to solve constrained ...

handle restricted optimization problems. During the algorithm’s iterative
process, these techniques direct the population of solutions towards the more
feasible region. Furthermore, the aforementioned significant shortcomings
of the heuristic algorithms prompted the necessity of creating a more so-
phisticated version of the algorithms in terms of computing efficiency and
solution quality. Therefore, obtaining more robust algorithms, fusing local
search methods combined with additional heuristic approaches, or combining
multiple heuristic methods captured the researcher’s interest to form hybrid
algorithms (see [14, 2, 58, 20, 21]). Hybridization of PSO with GWO [55], GA
with GSA [16], Cuckoo Search (CS) with DE [67], hybrid firefly algorithm
with grouping attraction (HFA-GA) [8], an improved firefly algorithm (UFA)
[6], an enhanced leadership-based GWO (GLF-GWO) [19], GGA with the
gradient-descent (GD) [10], PSO with DE [32], and many more have been
recently proposed hybrid algorithms. Additionally, other approaches to man-
aging constraints have been proposed, such as (1) penalty function meth-
ods [64, 60] (2) handling the goal function and constraints independently
[38, 45, 12, 53, 59] (3) Hybrid approaches [45, 38] and (4) multiobjective-
optimization methods [62, 23]. Using penalty functions, such as the death
penalty, static penalties, dynamic penalties, annealing penalties, adaptive
penalties, and co-evolutionary penalties, is a common and simple method of
handling constraints. These functions convert restricted problems into un-
constrained ones. The majority of these constraint handling strategies have
significant disadvantages. Certain methods may yield an unfeasible solution
or necessitate numerous more factors with uncertain values; still others are
situation-specific, meaning that a special approach must be developed for a
given problem. By lowering their fitness values in proportion to the degrees
of constraint violation, these techniques penalize impractical solutions. Fur-
thermore, the majority of these penalty systems have parameters that need
to be carefully experimented with in order to determine the proper values in
order to produce workable solutions. Certain problems may respond well to
the specified parameter values, while other problems may not respond well to
them. In order to address this reliance of algorithm performance on penalty
parameters, scholars have developed advanced penalty function methodolo-
gies.
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It is worth questioning what the better sampling methods are that could
be employed for generating initial solutions in evolutionary algorithms and
what the appropriate penalty function value is to improve the advancement
of solutions towards feasibility. It is usually more difficult to solve scientific
and engineering problems when the search space structure is limited to re-
gions that are both feasible and nonfeasible. This makes it challenging to
extract the best feasible solution from a subset of the feasible space. The
objective of this study is to present a hybrid optimization approach combin-
ing an interval approach with the ABC algorithm to solve the benchmark
constrained optimization and engineering design problems. The aims of this
work are to implement a new initialization method in the ABC algorithm and
formulate a new dynamic penalty function formula to handle the constraints
of the benchmark optimization problems.

The No Free Lunch idea is supported by the fact that, despite the fact that
numerous heuristic algorithms have been created; they are all plagued by the
inability to effectively address every optimization problem that is presented
to us. Furthermore, research demonstrated that certain algorithms yield
more optimal outcomes than others. Thus, creating an enhanced heuristic
method for various optimization issues remains an unresolved matter and
is greatly appreciated by scholars, provided that they provide a noteworthy
contribution to the domain. This encourages us to present a novel, efficient
heuristic algorithm for solving COPs that differs from the one seen in the
literature.

We present a novel hybrid optimization technique in this work, termed
“(SDDS-SABC)”, that combines two phases: Phase 1 involves the split-
detect-discard-shrink (SDDS) strategy, and Phase 2 involves the sophisti-
cated artificial bee colony (SABC) algorithm being executed. The funda-
mental principle of the SDDS is to divide the whole of n-dimensional Eu-
clidean space into two subregions of a specific form by first splitting near
the first variable’s midpoint on its axis. Every subregion has undergone the
SABC phase in order to identify and eliminate any subregions that cover
unpromising solutions. By analyzing the two solutions that SABC created in
each subregion and selecting the subregion with the most promising solution,
the interval arithmetic rule has been utilized to identify the subregions that
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can be rejected. The hybrid algorithm’s first cycle is now finished. Through
repetitive switching of the SDDS and SABC phases, the approach explores
the search for the region of promise. The ith variable’s axis is split about the
chosen subregion’s midpoint in n-dimensional Euclidean space during the ith
cycle SDDS phase. During each splitting, the selected subregion is split into
two subregions, and ABC is implemented for every subregion. The proce-
dure for splitting, detecting, discarding, and shrinking the chosen subregion
is repeated several times using SDDS and SABC, concentrating computing
effort on the promising subregion each time. When the reduced zone ap-
proaches negligible width, the cycle count comes to an end. This condition
means that the global optimum, or something close to it, has been identified.
This improves the search space’s exploitation potential while enhancing the
ability to explore high-quality solutions and combine algorithmic strength.
A variety of numerical test issues and engineering design difficulties have
been resolved in order to assess the effectiveness of the suggested methodol-
ogy. The Friedman and Wilcoxon test was used to compare the suggested
SDDS-SABC algorithm to other cutting-edge algorithms.

Our results demonstrate that for most benchmark functions in the domain
of wide and restricted search spaces. We find that our hybrid methodology
outperforms the majority of recently developed techniques.

2 Novelty and contributions of our proposed method

We propose a novel hybrid algorithm called SDDS-SABC to address the lim-
itations of the existing heuristic algorithms and the penalty function. In the
following paragraphs, we highlight our paper’s novelty and contributions.
a. In this paper, we provide a novel hybrid algorithm that combines the ideas
of interval analysis and heuristics to solve intricate restricted optimization
problems. The goal of this integration is to increase algorithms’ robustness,
convergence rate, and solution quality while guiding them toward an efficient,
effective, and robust search.
b. We present a quasi-random formulation for initialization after recognizing
the drawbacks of random, chaotic, or logistic initialization of the food source.
In this case, we create an initial population that is more uniformly dispersed
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over the search area, which may lead to more reliable results.
c. To increase the algorithm’s adaptability, the composite strategy is em-
ployed the bee stage to introduce a two-way search space exploration.
d. We present a new dynamic penalty approach that is straightforward in
form and does not require any additional parameters or penalty factors in
order to address the drawbacks of the current penalty factors. In order to
increase the optimization efficiency, the burden of fine-tuning the penalty
factors and parameters has been eliminated. It has not yet been documented
in the literature that these three key features were used in the heuristic al-
gorithm’s creation.
e. Analyze our proposed hybrid algorithm’s effectiveness through compre-
hensive numerical testing on benchmark CEC 2006 and some engineering
design problems in MATLAB.
f. Compare our SDDS-SABC hybrid algorithm with other state-of-the-art
algorithms using the Friedman and Wilcoxon test and demonstrate its sta-
tistical performance.
g. Our results demonstrate that our method works well for the majority of
benchmark optimization problems in the domain of wide and narrow search
spaces. The proposed approach performs more accurately than the most
recent methods.

3 An overview of the hybrid ABC algorithm

Karaboga introduced the ABC algorithm, a nature-inspired stochastic opti-
mization technique based on swarm intelligence, in 2005 (see[24]). The clever
way that honey bees look for food and communicate that knowledge to other
bees in their hive has served as inspiration for the algorithm. The tech-
nique was originally designed to solve unconstrained optimization problems.
On the one hand, its capacity to resolve a wide range of multidimensional
and multimodal real-world optimization problems has drawn a lot of interest
since its inception. However, it also had some significant drawbacks, includ-
ing a slow rate of convergence, inept exploration, limited exploitation, and a
propensity to become trapped in local optima. The algorithm has been found
to be better than other algorithms despite its drawbacks due of its adaptabil-

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1538–1588



1545 Combining an interval approach with a heuristic to solve constrained ...

ity, simplicity, resilience, and requirement for a smaller number of training
parameters. Therefore, it is easier to combine it with multiple algorithms.
Considering its benefits and shortcomings, academics have been inspired to
expand, alter, or combine ABC with different population-based algorithms or
traditional techniques in order to improve its efficiency. The study expanded
the scope of hybrid ABC algorithm development beyond numerical COPs to
include a broad spectrum of application-based problem optimization.

For example, in order to deal with restrictions, Karaboga and Akay [25]
devised an updated ABC to solve COPs, applying Deb’s feasibility-based
tournament selection operator criteria [25]. Changes have been made to
ABC’s scout bee operator and selection mechanism by Mezura-Montes and
Cetina-Domı́nguez [40]. They dealt with using the search area confined by
the equality and inequality criteria by using the dynamic tolerance prop-
erty and tournament selection. In order to improve exploitation, Brajevic [5]
suggested updating the ABC algorithm and changing the phases of the em-
ployed and scout bees. Deb’s feasibility-based principles helped them keep
the limitations under control. Once more, Li and Yin [28] have presented
a self-adaptive constrained ABC algorithm (SACABC) based on the feasible
rule approach and multiobjective optimization technique. The employed bees
produced better results in their method by using the new search scheme that
adheres to the feasible rule. To further investigate the new search area, the
observer bees employed an improved search approach based on the multiob-
jective optimization problem technique. Brajevic and Tuba [7] proposed an
upgraded ABC algorithm and modified employed and scout bee’s phases for
better exploitation. They used Deb’s feasibility-based rules to manage the
constraints. Furthermore, Brajevic [5] has presented a new version of the
crossover-based ABC method, called CBABC, to solve constrained optimiza-
tion issues.

Two distinct formulas for inequality and equality constraints were estab-
lished in order to address border restrictions and dynamic tolerance. Con-
versely, Deb’s feasibility-based rules have been loosened in the improved
ABC (IABC) algorithm suggested [30] by approximating feasible solutions
to a better objective function value with a slight violation. Inspired by the
gbest-guided ABC (GABC) method, they have also developed a new search
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technique to improve exploitation, utilizing the most optimal solution’s data.
It has been pointed out by Liu et al. [33] that Deb’s feasibility-based rules
may result in premature convergence, especially for the problems with an
equality constraint. In order to address limitations, Long et al. [37] have
developed a unique constrained optimization technique called IABC-MAL.
This method combines the advantages of the modified augmented Lagrangian
(MAL) method with IABC algorithm capability for achieving the global opti-
mum. The first attempt to combine the augmented Lagrangian approach and
the ABC algorithm is presented in this publication. For restricted optimiza-
tion problems, Bansal, Joshi, and Sharma [3] suggested modifying GABC
(MGABC). In their work, GABC [68] is adjusted by introducing the idea
of fitness probability-based individual mobility in both the employed and
onlooker bee phases. This inspired them to suggest a brand-new dynamic
penalty function and an ABC-based Levy flight algorithm (DPLABC) for
resolving the COPs.

To expedite the local search, they have used a dynamic logistic map in con-
junction with the Levy flying technique with the used bee phase. Wang and
Kong [63] have discussed the enhanced artificial bee colony (EABC) algorithm
and its application in solving optimization problems. The algorithm is com-
pared to other variants of the ABC algorithm on various test functions and
engineering optimization problems. Phoemphon [46] has introduced grouping
and reflection of the artificial bee colony, a distinctive adaptation of the tra-
ditional ABC algorithm meticulously tailored to meet the specific demands of
high-dimensional numerical optimization problems by balancing exploration
and exploitation processes. Patra et al. [44] have presented an efficient multi-
objective optimization approach utilizing the ABC algorithm for minimizing
generation fuel cost and transmission loss through the optimal placement
and sizing of flexible AC transmission system (FACTS) controllers. Liu et
al. [36] have developed a learning-based ABC algorithm by integrating deep
reinforcement learning for operation optimization in gas pipelines. In addi-
tion to the aforementioned algorithms, some hybrid ABC algorithms were
specially created by researchers to address real-world application problems
in the fields of economics (ABC with CMA-ES [66]), industrial engineering,
electrical engineering [39], and mechanical engineering (ABC with LS-SVM
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[18]); inventory model (ABC with GA [47]; DE with ABC, [9]; sheduling
(HABC [17]); cluster analysis (PSO-ABC [49]); routing problem [51, 22]; and
wireless network [61, 65, 43].

4 Sophisticated artificial bee colony (SABC) algorithm

Based on the fundamentals of Karaboga’s ABC algorithm, we provide a
SABC algorithm that includes changes to the initialization procedure, used,
and scout bees search approach, all of which we will cover in the upcoming
subsections. According to the idea, one potential solution to the optimiza-
tion problem is to locate the food sources. The associated solution’s fitness
and the objective function are represented by the amount of nectar present
in the food supply. Finding the food source with the most nectar is the goal
(optimal solution). The employed bee, spectator bee, and scout bee are the
three groups into which the SABC algorithm divides the bees in order to do
this. There are an equal number of food sources, working bees, and bystander
bees. Each bee group’s participation is crucial for producing higher-quality
honey. In order to reach the optimum, the mathematical formula used by the
bees in a new food location update must be sufficiently competitive. In order
to draw in other interested bees, employed bees search for food sources and
disseminate information about them. Assuming a probability related to the
quality of the food sources, observer bees follow and utilize the food sources
found by all working bees. The hired bees, known as scouts, abandon a food
source and look for other sources if a solution matching that food supply
is not improved by a particular number of limits. Each step of the SABC
process is explained in depth in the algorithm below:

Algorithm-1:
begin
Define it, MaxIt and MNC as current iteration numbers, maximum
iteration number and maximum number of cycle, respectively.
Compute initial population of probable solutions xi,j of popsize SN

(i = 1, 2, . . . , SN, j = 1, 2, . . . , n) using our proposed quasi-random method
(see Sec 4.2) and calculate their fitness value.
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repeat

begin Employed bee’s stage:
The Employed bee’s, produce new solutions vi,j using our proposed

strategy search techniques. (see Sec. 4.3).
Apply greedy selection
Memorise the best solution achieved so far

end

begin Onlooker bee’s stage:
Compute the probability value for the new found ith solution using the
formula:

pi =
fiti(xi)∑SN
i=1 fiti(xi)

,

where

fiti(xi) =

{
1 + |f(xi)| if f(xi) ≤ 0,

1
1+f(xi)

if f(xi) ≥ 0.

is the fitness value of the ith solution and f(xi) is the objective function
value of the solution xi.
Using Roulette wheel selection to produce a new solution:

vi,j = xi,j + sin(i− it

MaxIt
) ∗ (xi,j − xk,j) (i ̸= j)

Compute the fitness value and apply greedy selection
end

begin Scout bee’s stage:
if xi,j remains same till max limit is reached abandon xi,j using our
proposed scout bees formula (see sec. 4.4)
end

Compute the fitness of new found solutions

Memorize the best found solution achieved so far
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end

Update the best found solution.

Until
predefined MNC is reached.

4.1 ABC parameters and the effect of the algorithm’s
initial solutions

We are well aware that ABC conducts excellent exploration but subpar ex-
ploitation. Furthermore, for certain complicated functions, it can become
caught in local optima and has a rapid convergence rate. The ABC Algo-
rithm’s convergence depends heavily on the parameters needed to run it;
hence, they must be carefully chosen. These include the population size or
popsize (SN), the maximum number of cycles (MNC), the limit value (L)
for giving up the food source, and the first potential solution (s) or loca-
tion of food sources (n). Selecting these parameters incorrectly can lead
to pre-convergence or the convergence to an optimal solution at a higher
computational cost. ABC is also a black-box optimizer. As a result, when
optimizing complex functions, it is impossible to pinpoint the ideal solution’s
location within the problem’s search space. Consequently, these solutions
will be improved iteratively by the ABC optimization process’s steps until a
stopping condition is satisfied, regardless of how well the initial population
guess turned out. Generally speaking, accurate first guesses can facilitate
the algorithm’s search for the optima. Conversely, if poor predictions are
made at the beginning, then the algorithm might not be able to discover
the global optima. In these circumstances, scientists can decide to employ
a sophisticated initialization procedure to produce a diversified initial pop-
ulation that spreads widely and covers interesting areas of the search space
that may include good local optima or potential global optima. Furthermore,
by improving the methods used by employed bees, observer bees, and scout
bees to produce new food sources, one can overcome the negative effects of
parameters and initial solutions. In each iteration, the structured approach
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needs to provide sufficient force to move those suboptimal solutions towards
the optimal region.

As a result, the ABC study has made avoiding local optima and quickening
the rate of convergence attractive objectives. We change the search equation
of the fundamental ABC algorithm and provide a new initialization technique
to address these. This improved ABC algorithm is known as the SABC
algorithm.

4.2 Quasi-random sequence based food sources
initialization

To enhance the quality of the current initialization procedure, we are driven
to implement a new initialization method in the ABC algorithm. One of
the common techniques employed by researchers is random initialization, in
which food sources and/or beginning solutions are randomly chosen from
a uniform distribution between the lower and upper bounds of the decision
variables. On the other hand, there is little likelihood that a randomly gener-
ated population will encompass interesting areas of the search space for tiny
populations. Consequently, it reduces the likelihood of discovering global
optima. Conversely, if the population size is extended to encompass the
whole search space region, the computing cost goes up. Another possibility
is that the population becomes concentrated in a certain location as a result
of repeated generation and overlap of identical solutions. In order to obtain
a decent distribution of initial solutions regardless of population size, some
writers focused on substituting the chaotic initialization approach based on
a chaotic or logistic map for the random initialization. With less calculation
time, this mapping strategy explores a superior solution and performs consid-
erably better than the random one. However, their disadvantage is that the
mapping that is employed is dependent on a chaotic/bifurcation parameter,
the values of which must be carefully chosen by the user and vary depending
on the situation.

Using a stratified-random approach called quasi-random sequence, we cre-
ate a parameter-free and more equally distributed beginning population in
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our algorithms, which could yield more accurate results than the methods
mentioned previously. To determine if using quasi-random sequences with
the Halton set in the beginning population would result in a better value for
the objective function at the end is our goal. A GA’s starting population
is typically referred to as random. However, it is a well-known fact that
algorithms cannot produce random numbers. Commonly used algorithmi-
cally produced numbers simply attempt to mimic random numbers. More
precisely, they are known as pseudorandom numbers. We refer to numbers
that are genuinely independent as “genuine random numbers” in order to
distinguish them from pseudorandom numbers. Quasi-random sequences are
another type. A quasi-random sequence’s points are arranged to keep as far
away from one another as possible. Stated differently, the points produced
by quasi-random sequences attempt to mimic points with a “perfect uniform
distribution,” whereas the points produced by pseudorandom numbers at-
tempt to mimic actual random points. The former is unachievable, whereas
the latter is highly challenging if not impossible. Large partitions that are
not needed, however, will raise the cost of computing.

The Halton set initialization method based on quasi-random sequences is
computed and discussed in Algorithm-2 below.

Algorithm-2:
begin

define the n-dimensional decision variable xi ∈ [xmin, xmax] (i = 1, 2, . . . , n)

& xmin < xmax, xmin and xmax may or may not be the same for each xi

Set i = 1

Set SN = The number of food sources that will be accessible to bees

repeat

(i) define halton set object Q that contains n-dimensional decision variable
xi points

(ii) each P (i, :) is a point in a Halton sequence, the jth coordinate of the
point,

P (i, j) is equal to
∑∞

k=1 aij(k)b
−k−1
j , where bj is the jth prime number
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(iii) aij(k) coefficients are nonnegative integers less than bj such that

i− 1 =
∑∞

k=0 aij(k)b
k
j

i.e. the aij(k) values are the base bj digits of the integer i− 1.

(iv) generate random variable Halri r = 1, 2, . . . , SN using the formula
Halri = xmin +Q.(xmax − xmin), where Q is Halton point set in (0, 1)

(v) set i = i+ 1

until (i = n)

represent Hal1i ,Hal2i ,Hal3i , . . . , HalSN
i as the first, second, third,. . ., SN th

randomly selected food source (i = 1, 2, . . . , n)

end

Using quasi-random initialization, we display the widely dispersed locations
of sources of food in two dimensions in Figure 1 and the deviation from the
uniform random distribution in Figure 2.
From Figures 1 and 2, we can see that the quasi-random method covers the
space better than all the other methods. Additionally, the quasi-random set
initialization method increases the distance between the generated points,
and this is also a good indicator for covering a large area in the space. On
the other hand, with the uniform random method, which is the most
commonly used sampling method, the generated points do not cover the
whole space, and there are many gaps.

4.3 Composite-strategy for employed bees stage

Upon initializing the food sources or solutions xi,j

(i = 1, . . . , SN, j = 1, 2, . . . , n) of size popsize, the ABC algorithm directs
the employed bees to the search zone that corresponds to the food source’s
position. Every bee travels to a single food source xi,j and learns where it is
by heart. Then, in search of new food sources, hired bees start to search the
area around the food sources they have committed to memory. Of course,
not every bee behaves the same way when it comes to foraging, and
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Figure 1: Quasi random sampling

Figure 2: Uniform random sampling

individual bee behavior may vary throughout. Occasionally, their distinctly
distinct behaviors serve as the foundation for developing new strategy
equations for the neighborhood search process in (1). This allows them to
explore their neighborhood and generate a new solution vi,j while
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preserving their cooperative contribution.

vi,j =
xi,j + xi,k

2
+ sin(exp(i− it

MaxIt
)) ∗ (xi,j − xi,k), for 1 ≤ i ≤ SN.

(1)

where j, k ∈ {1, 2, . . . , n} are selected at random, and k and j are distinct
from one another.

The bees in (1) swap out their previously learned food places, xij , for
a randomly selected food position, xi,k( ̸= xi,j). They then explore locally,
rotating 360 degrees to create a new position, vi,j , by moving left to right
or above to downward. When deciding whether to keep the old location xi,j

or consider the new one vi,j , a greedy selection method is used to assess the
fitness value at each step.

4.4 Scout bee’s phase

We have put out a new formula for scout bees that will enhance the perfor-
mance of the SABC algorithm. Here, using our suggested formula, the bees
haphazardly create a new food source or solution to replace the abandoned
one.

xi,j = xmin
j + P.(xmax

j − xmin
j ), (2)

where P = ϕi,j ∗ ( 1

1+e(
j

maxIt
)
), ϕi,j ∈ rand(0, 1), i = 1, 2, . . . , SN , j =

1, 2, . . . , n and MaxIt is the maximum number of iteration.

It is important to note that this formula aids in exploring the whole solu-
tion space, gradually shifting to the upper bound as the number of iterations
increases from the lower bound.

5 Problem definition

We take a look at the COP, which is defined as follows:

Optimize f(x) = f(x1, x2, . . . , xn),
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subject to S = {Gl(x) ≤ 0,Hk(x) = 0; l = 1, 2, . . . , p; k = 1, 2, . . . , q}, (3)

for all x ∈ Rn.

The feasible region specified by a set of p+q constraints is denoted by S ⊆ D,
and the objective function f(x) is defined on the search space D ⊆ Rn.
The domain of the decision variables of the problem are defined by the n-
dimensional interval vector in Euclidean spaceRn = xj ≤ xj ≤ xj ; j = 1, 2, . . . , n,
where xj is the jth variable whose upper and lower bounds are xj and xj ,
respectively. The function f(x) is not necessarily differentiable, but it might
be linear, nonlinear, convex, nonconvex, and differentiable. The p equal-
ity and q inequality constraints are Gl(x), Hk(x), and they might be lin-
ear, nonlinear, convex, or nonconvex. In practice, inequality constraints
Gk(x) = |Hk(x)| − ε ≤ 0, (k = 1, 2, . . . , q) are used in place of equality con-
straints Hk(x) = 0, (k = 1, 2, . . . , q). Here, ε is a very tiny positive value. As
a result, (m+p) inequality restrictions replace all of the previously mentioned
constraints.

In order to solve the inequality COPs using our proposed SDDS-SABC
approach, we now employ the penalty function method, which is a widely used
constraint handling technique appropriate for population-based optimization.
The process of converting into an unconstrained one from a constrained op-
timization problem is the main characteristic of this approach.

When their related solutions defy the constraints, penalize the objective
function by a certain amount. This allows for the preservation of work-
able solutions while rejecting unworkable ones. However, as neither over-nor
under-penalization is desirable, determining a suitable penalty amount is a
matter of interest. Many penalty methods have been proposed in the litera-
ture; each has its advantages and disadvantages. The functions for the death
penalty, static penalty, and dynamic penalty approach (Joines and Houck
1994a), adaptive penalty (Yen 2009), exact penalty (Yu et al. 2010), and
so on are a few examples of these techniques. The most sophisticated and
widely used approach is the technique of the dynamic penalty function, which
we will talk about in Section 5.1. This section introduces many variants of
dynamic penalty function techniques that Liu et al. have recently developed
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in the following years. In Section 5.2, we also present a novel approach using
the dynamic penalty function.

5.1 Existing methods for dynamic penalty function

While there are other approaches to penalize the nonfeasible function, such
as dynamic, adaptive, static, and so on, a dynamic penalty works better.
Here, nonstationary values are applied at various iterations as a penalty to
the unfeasible individuals. As near the feasible area inside the search space,
the penalty parameter progressively increases with the number of iterations.
They frequently rely on other, difficult-to-determine characteristics. We will
now talk about the recently suggested dynamic penalty systems, pointing out
their shortcomings and suggesting a new one to get around them.

(a) The dynamic penalty function was developed by Liu et al. [35] in
2015. It involves changing the values of the penalty parameters based on the
generation number (gen). According to definitions, the penalized function is

F (x) = f(x) +H(β, x), (4)

= f(x) +

q∑
j=1

pjP
β
j (x) +

m∑
j=q+1

pjPj(x),

where

Pj(x) =

{
0 if gj(x) ≤ 0,

|gj(x)| otherwise.

and

Pj(x) =

{
0 if − ϵ ≤ gj(x) ≤ ϵ,

|gj(x)| else.

Here, pj changes with generation number in the following way, and β is a
constant that is selected as either β = 1 or β = 2:

pj(gen) =

 10θ1 .(1 + e(
θ2(

Gmax
2

−gen)

Gmax ), if vj > ϵ,

0, otherwise,
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where the tolerance for the constraint violation is ϵ, the maximum iteration
number is Gmax, and the jth constraint violation is vj . They made the as-
sumptions that gen = 500, θ1 = 3, and θ2 = 2, 4, and 6, respectively, in
their study. They demonstrated that the value of pj rose exponentially with
generation and that it could be used for optimization purposes, both for
exploration and exploitation.

(b) Subsequently, in 2016, Liu et al. [34] changed their suggested dynamic
penalty function (a) and reformulated the penalized function as follows:

F (x) = f(x) +H(β, x), (5)

where

p(gen) = 10

θ2−θ1

1+e

20(−gen+G
4

)

G

+θ1

.

Depending on the generation number, the dynamic penalty factor (S-type
function) changes. The restricted range for this component is [10θ1 , 10θ2 ],
where the penalty parameter’s scope is indirectly defined by θ1 and θ2. A
smaller p will diverge in the search space early in the algorithm generation,
increasing the variety of the population. With rise in generation, a more
substantial p will boost the algorithm’s convergence to the global optimum.
They made the assumptions θ1 = 2 and θ1 = 6 in their work.

(c) Liu et al. [31] have further revised the penalty approach specified in
(b). The penalized functions were expressed as follows:

F (x) = f(x) + P (x), (6)

where
P (x) =

∑q
j=1 µjHj(gj(x)).gj(x) +

∑m
j=q+1 γjHj(hj(x))|hj(x)|

Hj(gj(x)) and Hj(hj(x)) are denoted as

Hj(gj(x)) =

{
1, if gj(x) > 0,

0 otherwise,

Hj(hj(x)) =

{
1, if |hj(x)| > 0,

0 otherwise.
Liu et al. also modified the dynamic penalty factor (S-type function) as

µ(g) = 10

θ2−θ1

1+e

20(−g+MCN
4

)

MCN

+θ1

,
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where g is the iteration number and µ is constrained to lie in [10θ1 , 10θ2 ] by
penalty parameters θ1 and θ2. Similar to the penalty technique mentioned
above, the search space will diverge at the beginning of algorithm develop-
ment for a smaller µ, increasing population diversity. A larger µ will improve
the algorithm’s convergence to the global optimum as generation increases.
They have assumed θ1 = 4 and θ2 = 6 in this function.

5.2 Proposed dynamic penalty method

(d) It is generally known that the control parameters β, θ1, and θ2 have been
the primary basis for the construction of all the aforementioned penalty tech-
niques. The penalized objective function is greatly impacted by the values of
these parameters, which must be adjusted suitably based on the algorithm’s
initial testing. It shows trouble biasing the search towards the viable region
if these parameter values are not adequate. Unlike the previously stated
penalty function approach, we present a novel dynamic penalty method in
this work that has a straightforward form and does not require any addi-
tional parameters or punishment factors. Therefore, in order to increase the
optimization efficiency, the burden of fine-tuning the penalty factors/param-
eters has been avoided here. In order to penalize the infeasible solutions
and favor feasible solutions, we include in our penalty formula the maximum
iteration (MaxIt), the current generation number (it), and the number of
constrained violations (nconv(it, i)). This allows us to quickly and easily
guide the population to the feasible region. The information of the objective
function and restrictions violation that is clubbed by the penalized function
has been specified as follows:

F (x) = f(x) + P̂

p+q∑
l=1

Gl(x), (7)
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where

P̂ =

 0, if Gl(x) ≤ 0,

10{e
2∗(ncov(it,i)∗

(MaxIt
4

−it)

(MaxIt)4
)
}, if Gl(x) > 0.

Our suggested dynamic penalty differs significantly in another way: It
gradually reduces as solutions go towards the feasible solution area, and it
increases for nonfeasible solutions the further they are from the viable zone.
At each algorithm iteration, we illustrate in Figure 3 the fluctuation in the
arbitrary nonfeasible solution’s penalty coefficient (P̂ ) when the population
approaches the feasible solution space.

Figure 3: Variation in P̂ of arbitrary nonfeasible solution in terms of iteration number

6 Proposed hybrid SDDS-SABC algorithm

In order to create an improved algorithm that could effectively solve the
COP with higher reliability, two techniques SDDS and SABC have been
combined to create a novel hybrid optimization algorithm (SDDS-SABC).
Through recursive decomposition, the SDDS approach reduces the size of
the entire search region and concentrates computing effort on the subregion
that has viable answers for additional decomposition. Comparatively, SABC
is essential in identifying the most promising subregion by removing the best
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solution to date from the subregion it is being implemented over. These
procedures are carried out one after the other until the region shrinks to
a nominal width. Below is a detailed discussion of these approaches’ most
notable feature.

6.1 Method of split-detect-discard-shrink (SDDS)

The basic motivation behind the SDDS is to initially split at the midpoint
of the axis of the first variable of n-dimensional Euclidean space to partition
the entire Euclidean space into two subregions of a particular shape. In the
proposed SDDS approach, a series of stages involving SDDS is systemati-
cally undertaken to sequentially partition the Euclidean space where COP is
defined into smaller and smaller subregions then solved recursively until no
further division is conceivable. The following is how these steps are handled:
(1) Using recursive splitting, we divided the search space D into two discrete
subspaces, D1 and D2, along the xj , (j = 1, 2, . . . , n) axis, one variable at
a time. (2) Determine which subspaces correspond to a better solution that
represents a promising area in the search space by evaluating the function
value at every feasible point in the two subspaces, D1 and D2. (3) Discard
any subspace without a promising solution, based on the matching solutions
of D1 and D2. (4) Reduce the initial search space D to the appropriate
subspace of D1 or D2, depending on which one contains the most promising
solutions. Now either D1 or D2 becomes D. Until the search space D is
limited to an area of nominal width containing the global optimal solution,
all of these steps are repeatedly performed.

We perform the recursive splitting of D into D1 and D2 in the following
manner. The first variable’s range, x1 ∈ [x1, x1], should first be divided into
two equal and disjoint sub-intervals: [x1,m1] and [m1, x1]. Selected along the
x1-axis, the point m1 =

(x1+x1)
2 represents the first variable of n-dimensional

Euclidean space. The promising region among D1 and D2 is replaced by D.
Then, separating D into D1 and D2 is done by dividing the range of the
second variable x2 ∈ [x2, x2] into two equal and disjoint subintervals [x2,m2]

and [m2, x2] with a point m2 = (x2 + x2)/2. This point is located along the
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x2-axis at the center of the n-dimensional Euclidean space’s second variable.
Thus, dividing the whole Euclidean space into the two subregions, D1 and
D2, continues in this manner until the nth variable is reached. Actually,
to continue the splitting process, each axis of variable xj is taken in turn,
starting with j = 1, going up to j = n. The expression for splitting D into
two subregions of a certain form is as follows:

D1 = {x ∈ Rn : xi ≤ xi ≤ mi = (
xi+xi

2 ), xj ≤ xj ≤ xj , j = 1, 2, . . . , i− 1, i+

1, . . . , n},

D2 = {x ∈ Rn : mi = (
xi+xi

2 ) ≤ xi ≤ xi, xj ≤ xj ≤ xj , j = 1, 2, . . . , i− 1, i+

1, . . . , n}.

If D is not reduced to a region of nominal width after all the n-axis have been
progressively separated, then we repeat the full sequential partition process.

The stages involved in SDDS have been demonstrated in Figure 4 below
[56].

Figure 4: Displaying the SDDS strategy’s steps
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6.2 Using SABC to identify the promising subregion

View of both drawbacks and merits, we have been motivated to extend,
modify, or hybridize ABC with variants of population-based algorithms or
classical methods to boost its performance. The research did not just restrict
the development of hybrid ABC algorithms to numerical COPs but also op-
timized a wide range of application-based problems. SABC phase has been
applied to each subregion to detect and discard the subregion covering non-
promising solution. The interval arithmetic rule has been used to indicate the
subregions which can be discarded by comparing the two solutions, SABC
produced in the subregions, and choosing the subregion holding a promising
solution. This completes the first cycle of the hybrid algorithm. The method
proceeds to explore the search for the promising region by repeatedly alter-
nating the SDDS and SABC phases. Understanding if one subregion, repre-
sented by D1, covers a more promising solution(s) than the other subregion,
D2, and vice versa, and then choosing the most promising subregion based
on that understanding is a critical challenge in this black box optimization
process. In order to accomplish this, we have included the SABC algorithm
into the SDDS technique, which may be applied to optimization issues that
are specified in both D1 and D2. The subregion covering the nonpromising
solution(s) was then discarded using a ranking and selection rule, and the
subregion with the promising solution could be named the current shrink
region D for further splitting. This process was done from the perspective of
optimistic decision makers, who compared the best solutions obtained from
both regions. The ranking and selection rule utilized for the minimization
problem has been detailed below:

Let F1, Con1 ∈ D1 and F2, Con2 ∈ D2 be such that

F1 = f(x∗
1), Con1 =

∑p+q
1 Gl(x

∗
1); x∗

1=best solution obtained by SABC in
D1 and

F2 = f(x∗
2), Con2 =

∑p+q
1 Gl(x

∗
2); x∗

2=best solution obtained by SABC in
D2.

1. If Con1 = Con2 = 0 & F1 < F2, then choose D1 and discard D2
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2. If Con1 = Con2 = 0 & F2 < F1, then choose D2 and discard D1

3. If Con1 < Con2 & whether F1 < F2 or F1 > F2, then choose D1 and
discard D2

4. If Con2 < Con1 & whether F1 < F2 or F1 > F2, then choose D2 and
discard D1

5. If Con1 = 0, Con2 = γ( ̸= 0) & whether F1 < F2 or F1 > F2, then
choose D1 and discard D2

6. If Con1 = γ ( ̸= 0), Con2 = 0, & whether F1 < F2 or F1 > F2, then
choose D2 and discard D1

6.3 Computational Complexity

Using the fundamental ABC method, we can evaluate the computational
complexity of our proposed method. It should be noted that as it varies
depending on the problem, we disregard the time required to compute the
objective function here. We assume that TMaxIt is the maximum number
of iterations. For ABC, its computational complexity is O(TMaxIt × SN).
As for the proposed SDDS-SABC, the solutions need to be sorted at each
iteration, so the computational complexity of SDDS-SABC is O(TMaxIt ×
SN × log (SN)). Although, the computational complexity of SDDS-SABC
is higher than the basic ABC at the same maximum iteration, SDDS-SABC
can achieve much better results than ABC. In addition, the time complex-
ity of SDDS-SABC is similar to that of other ABC variants based on elite
populations, but SDDS-SABC performs better than them.

7 Numerical results and discussion

Here, we demonstrate the validity of our proposed SDDS-SABC method
through tests on well-known typical benchmark functions CEC 2006 [29]
and some engineering design problems (EDPs) (see [19]). These test func-
tions include diverse features like linear/nonlinear, low dimension/high di-
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mension, continuous/discrete, separable/nonseparable, convex/nonconvex,
unimodal/multi-modal varying feasible region (see Table 1). In this table,

Table 1: Test functions

Benchmark functions

Problem n Type of function ρ LI NI LE NE a
g01 13 quadratic 0.0111% 9 0 0 0 6
g02 20 nonlinear 99.99971% 0 2 0 0 1
g03 10 polynomial 0.0000% 0 0 0 1 1
g04 5 quadratic 52.1230% 0 6 0 0 2
g05 4 cubic 0.0000 % 2 0 0 3 3
g06 2 cubic 0.0066% 0 2 0 0 2
g07 10 quadratic 0.0003% 3 5 0 0 6
g08 2 nonlinear 0.8560 % 0 2 0 0 0
g09 7 polynomial 0.5121% 0 4 0 0 2
g10 8 linear 0.0010% 3 3 0 0 6
g11 2 quadratic 0.0000% 0 0 0 1 1
g12 3 quadratic 4.7713% 0 1 0 0 0
g13 5 nonlinear 0.0000% 0 0 0 3 3
g14 10 nonlinear 0.0000% 0 0 3 0 3
g15 3 quadratic 0.0000% 0 0 1 1 2
g16 5 nonlinear 0.0204% 4 34 0 0 4
g17 6 nonlinear 0.0000% 0 0 0 4 4
g18 9 quadratic 0.0000% 0 13 0 0 6
g19 15 nonlinear 33.4761% 0 5 0 0 0
g20 24 linear 0.0000% 0 6 2 12 16
g21 7 linear 0.0000% 0 1 0 5 6
g22 22 linear 0.0000% 0 1 8 11 19
g23 9 linear 0.0000% 0 2 3 1 6
g24 2 linear 79.6556 % 0 2 0 0 2

“n” is the dimension of the problem, ρ = |F |/|S| represents the proportion
between the feasible region and the search space. Also, LI, NI, LE, NE and
“a” represent the numbers of linear inequality constraints, nonlinear inequal-
ity constraints, linear equality constraints, nonlinear equality constraints,
and active constraints, respectively. We study the robustness of our pro-
posed dynamic penalty-based constraint handling techniques integrated into
the SDDS-SABC method on selected problems of CEC 2006 (see Table 2).
Furthermore, we compare these results with the present dynamic penalty
methods. The overall best-found results have been displayed in Table 2.
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Table 2: Comparative analysis between the proposed dynamic penalty and existing
penalty methods

Problems (a) (b) (c) (d)
g01 -15.9472628 -15.8610643 -15.6103179 -15.4618784
g05 5126.8837241 5125.046215 5124.1968423 5124.0049727
g15 952.8593772 951.9805434 951.6104782 951.5300084
g24 -6.239074165 -6.403721373 -6.53271104 -6.632598318

(a) [35]; (b): [34]; (c): [33] ; (d): Proposed

The results show that our proposed penalty method explores feasible solu-
tion space efficiently to provide promising results. We have coded the said
optimization method in MATLAB and executed it in an HP Pavilion Laptop
with Intel (R) 11th Gen Core i5-512GB SSD @ 2.40 GHz. The basic param-
eters used in the SDDS-SABC method include; colony size SN = 100 (equal
to the number of employed and onlooker bees), the Scout bee’s food source
abandonment parameter = round(SN×n×pval), where pval is a small prob-
ability value in the range (0.05 - 0.08). The maximum cycle number (MCN)
is 50, which serves as the termination criterion. The values of the control
parameters of the SABC algorithm used in our simulation studies and the
values assumed by the authors in their respective state-of-the-art algorithms,
which we have used for comparison purposes, have been displayed in Table 3.
Firstly, we study the robustness of SDDS-SABC method implemented over
our proposed dynamic penalty-based constraint handling techniques through
24 benchmark functions, and secondly, on the engineering design problems
comparing results obtained using different penalty methods. Using the fol-
lowing indices—exactness, consistency, efficacy, and statistical analysis—we
assess resilience in several ways. The following definitions apply to these: a)
Accuracy: the degree of the best-found solution’s quality and its separation
from the global solution. In a similar vein, the degree to which the worst-
found solution deviates from the global answer and its quality, tested on 25
independent runs of the best and worst identified solutions.
(b) Consistency: comprehend the resilience and stability of the optimization
technique on the problem that leads to the best possible solution. Test the
following: the average and standard deviation of the solutions from the 25
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Table 3: Control parameter values of different algorithms

(a) Based on ABC

Algorithms Popsize MaxIt Limit
I-ABC 20 6000 SN×n

CB-ABC 90 500 SN×n
IABC-MAL 30 500 0.5×SN×n
MG-ABC 50 1000 SN×n

SDDS-SABC 100 50 round(pval× n× SN)
(b) Based on nonABC

Algorithms Popsize MaxIt Limit
UFA 50 40 30

GLF-GWO 3×n 3000 104×n
GGA 50 50 25
JaQA 50 50 25

SDDS-SABC 100 50 round(pval×n×SN)

runs.
c) Statistical analysis: compare the significant difference in the performance
of our proposed SDDS-SABC method with other existing algorithms. Test
on algorithms through the Friedman test and Wilcoxon signed ranks test,
which are standard nonparametric statistical tests.

7.1 Sensitivity analysis of some key parameters in SABC
algorithm

In addition to improving algorithmic efficiency, appropriate input values for
the algorithm’s parameters are crucial for its robustness, stability, and best-
found objective value. Sensitivity analysis has therefore been performed to
examine the impact of the input values of the important SABC parameters,
such as MaxIt and SN, on the performance of our algorithm SDDS-SABC
towards achieving the optimal solution and its stability in each algorithm run.
We have set MaxIt to 50 and the algorithm’s iteration numbers range from 1
to MaxIt. Also, we have taken the population size SN is 100. We display this
study graphically on a specific benchmark test function, g07. The evolution
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of the best-found solutions at various iterations when MaxIt=50 is shown in
Figure 5(i). Additionally, it demonstrates that when SN=100, the algorithm
converges to the best-found value of 24.34849. The algorithm converges to
the best-found value of 24.34849 at MaxIt=50 for SN=100, as seen in Figure
5(ii). Once more, the stable solution 24.34849 is reached with values higher
than 50. For other test functions, we see a comparable effect. We cannot
obtain the best or nearly best solution to the problems if we set the value of
MaxIt and SN to be less than 50 and 100, respectively.

Figure 5: Evolution of best-found value with respect to iteration number and colony
size

7.2 Study on algorithm performance based on exactness,
consistency and effectiveness

We present in Table 4, the best-found, worst-found, mean and standard devia-
tion (std) of the result obtained from each benchmark function in 25 indepen-
dent runs of the SABC-SDDS algorithm. The results found are encouraging.
We also compare our results with other state-of-the-art hybrid algorithms

viz., I-ABC, CB-ABC, IABC-MAL and MG-ABC (see Table 5) in terms of
best-found, worst-found and mean values. These said hybrid algorithms had
been developed by combining other heuristics or traditional methods with
ABC. Table 5 shows that our SDDS-SABC algorithm outperforms other algo-
rithms in some problems and works equally well for other problems. However,
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Table 4: Statistical results of SDDS-SABC on benchmark functions, averaged over 25
independent runs

Functions optimal value best-found worst-found mean std
g01 -15.0000000000 -15.4618784341837 -14.7361050072335 -15.071895226323 5.99789658392
g02 -0.8036191042 -0.875454224809 -0.77323254632 -0.741139419121 0.31517588432024
g03 -1.0005001000 -1.098598548944 -0.964899232223 -1.01285024552 0.041820449166
g04 -30665.5386717834 -30665.8337336955 -30698.7685959581 -30653.100331767 0.2687651065913
g05 5126.4967140071 5124.0049727086 5176.27733899147 5134.7200444372 0.4966102760171
g06 -6961.8138755802 -6983.37054536156 -6698.63125675940 -6946.0112672204 0.59174789701531
g07 24.302090681 24.348490589297 27.8909837113848 25.70325545062 1.051962320689
g08 -0.0958250415 -0.095722476579 -0.0813461879519 -0.0907741721133 0.0038036427493
g09 680.6300573745 684.560836511063 695.96431708531 689.024312257864 2.0631346433681
g10 7049.2480205286 7047.3431791133 7124.63089605634 7066.0444725057 19.190512293263
g11 0.749900000 0.7505189211405 0.76423525277597 0.7562800118598 0.00344183933935
g12 -1.00000000 -0.999954717347 -0.9398378640313 -0.990291881794 0.01317550762524
g13 0.0539415140 0.0505131549885 0.0560012746738 0.0549429543562 0.00109084362246
g14 -47.7648884595 - - - -
g15 961.7150222899 951.530008446544 960.601193735686 955.3401698407 2.3820716382008
g16 -1.9051552586 - - - -
g17 8853.5396748064 - - - -
g18 -0.8660254038 -0.942906584997 -0.87048513538499 -0.90112279347847 0.0179637098296
g19 32.6555929502 -22410.82795313840 6013.94217031911 -14859.743320706 4321.0628338304
g20 0.2049794002 - - - -
g21 193.7245100700 193.508264477410 194.783450798573 193.62084757633 0.0148378378312
g22 236.4309755040 - - - -
g23 -400.0551000000 -4156.949391713 -4087.08875546532 -4109.4664146789 11.035324578671
g24 -5.5080132716 -6.6325983187262 -5.34276622737366 -5.921377563442 0.38492496179489

one difficulty noted in our algorithm is that it could not reach a reasonably
good solution for problems g14, g16, g17, g20 and g22. Likewise, I-ABC,
CB-ABC, IABC-MAL too were unable to locate the optimal solution for the
problems g20 and g22. Also, MG-ABC could not solve problems g21, g22, g23
and g24, where our SDDS-SABC algorithm worked well except for g22. For
g21, SDDS-SABC produced a better best-found value than the I-ABC and
CB-ABC and equally well for IABC-MAL. In terms of mean, SDDS-SABC
provides a much better result than the I-ABC. We also noted that no hybrid
algorithms with ABC could find the reasonably good optimal/near to optimal
solution for the problems g14, g17, g20, and g22 because the ratio between
their feasible region and search space are minimal (ρ=0.0000%),. A similar
situation arises for problem g16 occupying ρ=0.0204%, which is very small
in percentage value (see Table 1). So, finding the global or near-to-global
solution for those problems is challenging. In addition, problems g14, g16,
and g17 have highly nonlinear type of functions. Although g20 and g22 are
linear, due to their high dimension, that is, n = 24 and n = 22, respectively,
their solutions could not be traced due to their small feasible space. Our
SDDS-SABC algorithm could find better results for the nonlinear type of
function (g02, g08 and g19) when the proportion between the feasible region
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and search space is either large, small or midway (99.99971%, 0.8560% and
33.4761%) even for high dimensions problems (n=20, n=2 and n=15). An
exciting observation noted through problem g13 is that for the low dimension
problem (n = 5), even though it is highly nonlinear, we could find a better
result from a tiny space of 0.0000% originating between the feasible region
and search space. So, performance of SDDS-SABC depends on the nature
of the function, the problem’s dimension, and the percentage between the
feasible region and search space.
We have also compared our SDDS-SABC results with the other popular non-
ABC based hybrid algorithms like; UFA, GLF-GWO, GGA, and JaQa [11].
We can see from Table 6 that our proposed SDDS-SABC performs better
than UFA, GLF-GWO, GGA, and JaQa algorithms in terms of best-found
value for problem g03. SDDS-SABC performs better than GGA in terms of
best-found value for problem g04. However, GLF-GWO could not find any
feasible solution for g05, whereas our SDDS-SABC could provide a better
result. For the problem g06, our proposed SDDS-SABC algorithm gives bet-
ter solution than UFA, GLF-GWO, GGA, and JaQa algorithms in terms of
best-found value. Similarly, for problem g15, SDDS-SABC works better than
UFA, GLF-GWO, GGA, and JaQA in terms of best-found, worst-found, and
mean values. In g21, SDDS-SABC outperforms UFA for best-found value and
gives better value than GGA and JaQa in term of mean value. Also, GLF-
GWO could not provide any feasible solution for the problem g21. In g24, we
can see that our SDDS-SABC and GGA give approximately equal best-found
values. Moreover, UFA and GLF-GWO could not find optimal solutions to
problems g20 and g22. Compared with the rest of the algorithms, only GGA
could solve problem g20 and find a better result. On the other hand, GGA
could not work much well for problems g14 and g22. Finally, except for test
problems g14, g16, g17, g20, and g22, our SDDS-SABC algorithm provides
significantly better results than other algorithms.
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Table 5: The comparison of best-found, worst-found and mean results with ABC based
algorithms

Functions I-ABC
(2015)

CB-ABC
(2015)

IABC-MAL
(2017)

MG-ABC
(2018) SDDS-SABC

g01 best-found -15.000 -15.000 -15.000000 -15.000000 -15.4618784341837
worst-found -15.000 -15.000 -15.000000 -9.000000 -14.7361050072335

mean -15.000 -15.000 -15.000000 -13.553540 -15.071895226323
g02 best-found -0.803619 -0.803619 -0.803619 -0.8036108 -0.875454224809

worst-found -0.778278 -0.777844 -0.785568 -0.7604863 -0.77323254632
mean -0.800094 -0.794522 -0.799460 -0.7890629 -0.741139419121

g03 best-found -1.000 -1.0005 -1.000500 -1.000400 -1.098598548944
worst-found -0.999 -1.0005 -1.000500 -1.000258 -0.964899232223

mean -1.0004 -1.0005 -1.000500 -1000383 -1.01285024552
g04 best-found -30665.539 -30665.539 -30665.539 -30665.540 -30665.8337336955

worst-found -30665.539 -30665.539 -30665.539 -30665.540 -30698.7685959581
mean -30665.539 -30665.539 -30665.539 -30665.540 -30653.100331767

g05 best-found 5126.498 5126.197 5126.498 5126.4970 5124.0049727086
worst-found 5126.944 5126.497 5126.498 6112.169 5176.27733899147

mean 5131.861 5126.497 5126.498 5467.7560 5134.7200444372
g06 best-found -6961.814 -6961.814 -6961.814 -6961.8030 -6983.37054536156

worst-found -6961.814 -6961.814 -6961.814 -6957.1230 -6698.63125675940
mean -6961.814 -6961.814 -6961.814 -6959.4890 -6946.0112672204

g07 best-found 24.311 24.3062 24.3064 24.326530 24.348490589297
worst-found 24.677 24.3062 24.3062 25.099270 27.8909837113848

mean 24.366 24.3062 24.3062 24.780640 25.70325545062
g08 best-found -0.095825 -0.095825 -0.095825 -0.095825 -0.095722476579

worst-found -0.095825 -0.095825 -0.095825 -0.095825 -0.0813461879519
mean -0.095825 -0.095825 -0.095825 -0.095825 -0.0907741721133

g09 best-found 680.631 680.630 680.630 680.6302 684.560836511063
worst-found 680.637 680.630 680.630 680.6322 695.96431708531

mean 680.633 680.630 680.630 680.6309 689.024312257864
g10 best-found 7049.321 7049.248 7049.248 7104.006 7047.3431791133

worst-found 7049.343 7049.248 7049.248 7504.944 7124.63089605634
mean 7124.042 7049.248 7049.248 7357.461 7066.0444725057

g11 best-found 0.7499 0.7499 0.749900 0.749995 0.7505189211405
worst-found 0.7499 0.7499 0.749900 0.750127 0.76423525277597

mean 0.7499 0.7499 0.749900 0.750025 0.7562800118598
g12 best-found -1.000 -1.000 -1.000000 -1.000000 -0.999954717347

worst-found -1.000 -1.000 -1.000000 -1.000000 -0.9398378640313
mean -1.000 -1.000 -1.000000 -1.000000 -0.990291881794

g13 best-found 0.053958 0.053942 0.0539498 0.05394861 0.0505131549885
worst-found 0.055130 0.43880 0.0539498 0.4377867 0.0560012746738

mean 0.054144 0.066770 0.0539498 0.171074 0.0549429543562
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Table 5: (continued)

g14 best-found -47.665 -47.765 -47.765 -47.675860 -
worst-found -47.830 -47.765 -47.765 -46.465260 -

mean -47.201 -47.765 -47.765 -47.246220 -
g15 best-found 961.715 961.715 961.715 961.715100 951.530008446544

worst-found 961.720 961.715 961.715 965.208600 960.601193735686
mean 961.716 961.715 961.715 962.173700 955.34016984070

g16 best-found -1.905 -1.905 -1.905 -1.905155 -
worst-found -1.905 -1.905 -1.905 -1.905155 -

mean -1.905 -1.905 -1.905 -1.905155 -
g17 best-found 8860.864 8853.533875 8853.533875 8853.53 -

worst-found 8983.359 8941.940741 8927.597785 9241.820 -
mean 8909.994 8902.869928 8883.163028 8915.998 -

g18 best-found -0.866025 -0.672216 -0.866025 -0.8660253 -0.94290658499
worst-found -0.856622 -0.866025 -0.866025 -0.8648695 -0.87048513538499

mean -0.865310 -0.866025 -0.866025 -0.8657735 -0.90112279347847
g19 best-found 32.784 35.746 32.6556 -5.508013 -22410.82795313840

worst-found 34.856 32.6557 32.6556 -5.508013 6013.94217031911
mean 33.344 32.6556 32.6556 -5.508013 -14859.743320706

g20 best-found - - - 1.393571 -
worst-found - - - 1.399163 -

mean - - - 1.394359 -
g21 best-found 193.725 257.156 193.725 - 193.725

worst-found 964.030 193.725 193.725 - 194.783450798573
mean 622.678 193.725 193.725 - 193.62084757633

g22 best-found - - - - -
worst-found - - - - -

mean - - - - -
g23 best-found -358.183 -400.055 -400.055 - -4156.94939171

worst-found 899.881 -400.055 -400.055 - -4087.08875546532
mean 169.021 -400.055 -400.055 - -4109.4664146789

g24 best-found -5.508 -5.508 -5.508 - -6.6325983187262
worst-found -5.508 -5.508 -5.508 - -5.34276622737366

mean -5.508 -5.508 -5.508 - -5.921377563442
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Table 6: The comparison of best-found, worst-found and mean results with different
nonABC algorithms

Functions UFA
(2019)

GLF-GWO
(2020)

GGA
(2021)

JaQA
(2022) SDDS-SABC

g01 best-found -15.000000 15.00000 -15.0000000000 -15.00000 -15.4618784341837
worst-found -15.000000 -14.9999 -15.0000000000 -15.00000 -14.7361050072335

mean -15.000000 -15.000000 -15.0000000000 -15.00000 -15.071895226323
g02 best-found -0.8033 -0.803619 -0.8030191042 -0.803605 -0.875454224809

worst-found -0.5205742 -0.6275 -0.8010191042 -0.800272 -0.77323254632
mean -0.7458475 -0.7249 -0.8020191042 -0.80111 -0.741139419121

g03 best-found -1.0005 -1.0005 -1.0004181146 -1.0005 -1.098598548944
worst-found -1.0005 -0.0006 -0.9993067321 -0.9987 -0.964899232223

mean -1.0005 -0.7386 -1.0000114315 -1.00031 -1.01285024552
g04 best-found -30665.5203 -30665.539 -30678.4386717834 -30665.5387 -30665.8337336955

worst-found -30665.539 -30665.0825 -30667.0386717834 -30665.5387 -30698.7685959581
mean -30665.539 -30665.3389 -30667.6386717834 -30665.5387 -30653.100331767

g05 best-found 5126.49671 - 5126.4967135571 5126.484 5124.0049727086
worst-found 5126.49671 - 5126.4967135601 5126.611 5176.27733899147

mean 5126.49671 - 5126.4967135581 5126.504 5134.7200444372
g06 best-found -6961.83884 -6961.4784 -6961.8130705802 -6961.814 -6983.37054536156

worst-found -6961.81388 -6961.4886 -6961.8130665802 -6961.814 -6698.63125675940
mean -6961.81388 -6961.7341 -6961.8130685802 -6961.814 -6946.0112672204

g07 best-found 24.306209 24.3851 24.3934806327 24.0012 24.348490589297
worst-found 24.306209 25.6385 27.7034023081 24.6781 27.8909837113848

mean 24.306209 24.7221 26.5452127381 24.2121 25.70325545062
g08 best-found -0.09582504 -0.0958 -0.0958233590 -0.095825 -0.095722476579

worst-found -0.09582504 -0.0958 -0.0951989658 -0.095825 -0.0813461879519
mean -0.09582504 -0.0958 -0.0955852752 -0.095825 -0.0907741721133

g09 best-found 680.630057 680.6538 680.6301199745 680.631 684.560836511063
worst-found 680.630057 680.3862 680.6313973745 680.631 695.96431708531

mean 680.630057 681.0990 680.6306403745 680.631 689.024312257864
g10 best-found 7049.24802 7729.9603 7049.2479999286 7006.52 7047.3431791133

worst-found 7049.24802 8554.3989 7049.2480002286 7121.83 7124.63089605634
mean 7049.24802 8276.2365 7049.2480000286 7086.136 7066.0444725057

g11 best-found 0.7499 0.7499 0.7493788256 0.7499 0.7505189211405
worst-found 0.7499 0.9998 0.7498827597 0.7499 0.76423525277597

mean 0.7499 0.7669 0.7496174447 0.7499 0.7562800118598
g12 best-found -1.000000 -1.000 -1.000000000 -1.00 -0.999954717347

worst-found -1.000000 -1.000 -1.000000000 -1.00 -0.9398378640313
mean -1.000000 -1.000 -1.000000000 -1.00 -0.990291881794

g13 best-found 0.0539415 0.9527 0.0539181140 0.00174 0.0505131549885
worst-found 0.0539415 2.3466 0.0539417680 0.00174 0.0560012746738

mean 0.0539415 1.1903 0.0539299140 0.00174 0.0549429543562
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Table 6: (continued)

g14 best-found -47.764879 -46.7926 1172.2351115405 -48.0111 -
worst-found -47.764879 -38.1941 1312.2351115405 -46.1022 -

mean -47.764879 -41.8264 1252.2351115405 -46.8843 -
g15 best-found 961.7150223 961.7157 952.4957146499 961.6758 951.530008446544

worst-found 961.7150223 971.8903 960.1071304699 961.6758 960.601193735686
mean 961.7150223 965.7727 955.0510816799 961.6758 955.34016984070

g16 best-found -1.90515526 -1.9045 -1.9051549586 -1.9052 -
worst-found -1.90515526 -1.6776 -1.9051543336 -1.9052 -

mean -1.90515526 -1.8346 -1.9051546316 -1.9052 -
g17 best-found 8853.533875 - 8892.5396953064 8853.5396 -

worst-found 8853.533875 - 8962.5396748064 8902.223 -
mean 8853.533875 - 8918.3396748064 8872.5142 -

g18 best-found -0.8660254 -0.8660 -0.8619563027 -0.86603 -0.94290658499
worst-found -0.8660254 -0.6569 -0.8461369131 -0.86601 -0.87048513538499

mean -0.8660254 -0.8233 -0.8541324790 -0.86602 -0.90112279347847
g19 best-found 32.655593 32.2874 -66409.2048070498 - 32.6699 -22410.82795313840

worst-found 32.655593 82.7696 -364.8315650498 - 32.7872 6013.94217031911
mean 32.655593 43.0767 30.3617957802 - 32.6551 -14859.743320706

g20 best-found - - 0.3929794002 0.24072 -
worst-found - - 0.5209794002 0.24794 -

mean - - 0.4389794002 0.24381 -
g21 best-found 193.724520 - 193.7245100700 193.4011 193.7245100700

worst-found 520.165650 - 193.7245100700 203.9120 194.783450798573
mean 255.559033 - 193.7245100700 193.7302 193.62084757633

g22 best-found - - - 5.08E+02 -
worst-found - - - 3.03E+07 -

mean - - - 2.14E+03 -
g23 best-found -400.0551 -0.0651 -397.7451000000 -412.520 -4156.94939171

worst-found -400.0551 809.3461 -392.4451000000 -388.2426 -4087.08875546532
mean -400.0551 269.7458 -395.8651000000 -399.3486 -4109.4664146789

g24 best-found -5.50801327 -5.5080 -6.7054079016 -5.5094 -6.6325983187262
worst-found -5.50801327 -3.0000 -6.0978333186 -5.5094 -5.34276622737366

mean -5.50801327 -5.2834 -6.3582253626 -5.5094 -5.921377563442

7.3 Study on algorithm performance using statistical
analysis

On benchmark functions, nonparametric statistical tests on the best-found
values have been carried out in order to rank the performance of the suggested
and current algorithms. To determine whether there is a difference between
the estimated outcomes produced by different algorithms, the nonparamet-
ric Friedmans test is employed. Furthermore, at a significance level of 5%,
Wilcoxon’s signed rank test has been applied independently to two groups
of algorithms as a nonparametric test. It is expected that all algorithms
function similarly under the null hypothesis. Reject the null hypothesis if
the provided p-value is less than 0.05. The null hypothesis is rejected, in-
dicating that all of the algorithms under investigation perform significantly

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1538–1588



Sharma and Jabeen 1574

differently. From Table 7 of the Friedmans mean rank test, we see that the
mean rank of SDDS-SABC attains the lowest value 2.26 and hence ranked 1.
It means that our SDDS-SABC is better than the other hybrid ABC-based
algorithms CBABC with rank 2, IABC-MAL with rank 3, SACABC with
rank 4 and the last rank is 5 of IABC.

In Wilcoxon signed rank test results (see Table 8) comparing pairwise
SDDS-SABC with IABC, CB-ABC, IABC-MAL and MG-ABC respectively,
the results show that in every pairwise comparison, the sum of SDDS-SABC’s
positive ranks is significantly greater than the sum of its negative ranks.
Furthermore, their p-value is less than 0.05, as can be shown. This suggests
that SDDS-SABC performs better than other available methods.

Table 7: On ABC based hybrid algorithms, the mean ranking attained by Friedman’s
mean rank test at a significance level of 5%.

Algorithms Mean rank Rank
IABC(Liang et al., 2015) 3.66 5
CBABC (Brajevic, 2015) 2.75 2

IABC-MAL (Long et al., 2017) 3.00 3
MGABC (Bansal, 2018) 3.34 4

SDDS-SABC 2.25 1

Table 8: Results of the Wilcoxon signed rank test on hybrid algorithms that are ABC
based, with a significance threshold of 5%.

Comparison Observations No. of test
functions

Sum of
positive rank

Sum of
negative rank p-value

SDDS-SABC with I-ABC SDDS-SABC<I-ABC 14 165.00 25.00 0.005
SDDS-SABC>I-ABC 5

SDDS-SABC with CB-ABC SDDS-SABC<CB-ABC 14 164.00 26.00 0.005
SDDS-SABC>CB-ABC 5

SDDS-SABC with IABC-MAL SDDS-SABC<IAB-CMAL 14 164.00 26.00 0.005
SDDS-SABC>IABC-MAL 5

SDDS-SABC with MG-ABC SDDS-SABC<MG-ABC 11 113.00 23.00 0.020
SDDS-SABC>MG-ABC 5

Again, comparing the result of SDDS-SABC with the different types of
nonABC hybrid algorithms (see Table 9) using Friedman’s mean rank test,
we can see that the mean rank of SDDS-SABC is lowest with a value of 1.88
and therefore ranked as 1. The other lowest values are 2.37, 2.41, 2.53, and
3.18 for JaQA, GGA, UFA, and GLF-GFO, respectively, giving ranks 2, 3,
4, and 5 per their performance. The first rank of SDDS-SABC indicates
that this works better than the other algorithms. For the same hybrid algo-
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rithms, the Wilcoxon signed rank test results have been displayed in Table
10. The pairwise comparison of SDDS-SABC with UFA, GLF-GWO, GGA,
and JaQa, respectively, demonstrates that for every pairwise comparison,
the total of the positive rank of SDDS-SABC is significantly larger than the
negative rank. Furthermore, the p-values of SDDS-SABC are less than 0.05,
indicating that it performs better than the other algorithms in the compar-
ison. IBM SPSS statistics has been used to conduct these Friedman and
Wilcoxon tests.

Table 9: On nonABC based hybrid algorithms, the mean ranking attained by Friedman’s
mean rank test at a significance level of 5%.

Algorithms Mean rank Rank
UFA (Brajevic et al., 2019) 2.53 4

GLF-GFO (Gupta et al., 2020) 3.18 5
GGA (D’Angelo et al., 2021) 2.41 3

JaQA (Das et al., 2022) 2.37 2
SDDS-SABC 1.88 1

Table 10: Results of the Wilcoxon signed rank test on hybrid algorithms that are non-
ABC based, with a significance threshold of 5%.

Comparison Observations No. of test
functions

Sum of
positive rank

Sum of
negative rank p-value

SDDS-SABC with UFA SDDS-SABC<UFA 14 165.00 25.00 0.005
SDDS-SABC>UFA 5

SDDS-SABC with GLF-GWO SDDS-SABC<GLF-GWO 13 136.00 17.00 0.005
SDDS-SABC>GLF-GWO 4

SDDS-SABC with GGA SDDS-SABC<GGA 13 144.00 46.00 0.049
SDDSSABC>GGA 6

SDDS-SABC with JaQA SDDS-SABC<JaQA 13 146.00 47.00 0.051
SDDSSABC>JaQA 6

8 Applications of algorithm on real-life engineering
design problems:

In this section, we present the challenging five real-life engineering design
problems; see Table 11. These problems have been solved by our proposed
SDDS-SABC algorithm and further compared with state-of-art hybrid algo-
rithms (see Table 12).

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1538–1588



Sharma and Jabeen 1576

Table 11: Engineering design problems

Sr. no. Problem n LI NI LE NE
EDP1 Three-bar truss design 2 0 3 0 0
EDP2 Compression spring design 3 0 4 0 0
EDP3 Cantilever beam design 5 0 1 0 0
EDP4 Pressure vessel design 4 2 2 0 0
EDP5 Heat exchanger design 8 3 3 0 0

8.1 Three-bar truss design problem

A three-bar planar truss structure (see [19]) has been taken into account
in this case study. Initially, Nowacki developed this problem to reduce the
volume of a statically loaded three-bar truss. Each truss element’s stress
is subject to limitations. The problem has been defined mathematically as
follows:

Min f1(x1, x2) = L ∗ (2
√

(2x1) + x2),

s.t. g1(x1, x2) =

√
(2x1) + x2√

(2x2
1) + 2x1x2

R ≤ σ,

g2(x1, x2) =
x2√

(2x2
1) + 2x1x2

R ≤ σ,

g3(x1, x2) =
1

x1 +
√
(2)x2

R ≤ σ,

0 ≤ x1, x2 ≤ 1,

where L = 100 c.m., R = 2 KN/cm2 and σ = 2KN/cm2.

Numerous studies have been published in the literature in an effort to solve
this real-life problem. The results of this problem using SDDS-SABC have
been compared with other algorithms including SC-GWO, PSO, wPSO, CS,
Ray & Saini, Tsai, mGWO, wGWO, m-SCA, OBSCA, SSA, MFO, WOA,
ISCA, Chaotic SSA and shown in Table 12.
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8.2 Compression spring design problem

To get a minimum weight for a compression spring (see [19]), one needs to
find the best values for the variables representing wire diameter (d), mean
coil diameter (D), and the number of active coils (N). The following is the
mathematical formulation of the problem where the limitations imposed on
the objective function are stress, spike frequency, and defection.

Min f2(x) = (x3 + 2)x2x
2
1,

s.t. g1(x) = 1− x3
2x3

71785x4
1

≤ 0,

g2(x) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1

5108x2
1

− 1 ≤ 0,

g3(x) = 1− 140.45x1

x2
2x3

≤ 0,

g4(x) =
x1 + x2

1.5
− 1 ≤ 0,

0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.30, 2 ≤ x3 ≤ 15.

This problem has been solved by several authors using their proposed algo-
rithms such as; SC-GWO, GWO, PSO, PSO (He & Wang), GSA, SCA, GA,
mGWO, wGWO, mSCA, OBSCA, MFO, WOA, SSA, ISCA, and Chaotic
SSA. We compare their results with ones obtained by our SDDS-SABC al-
gorithm in Table 12. The results are self-explanatory.

8.3 Cantilever beam design problem

This problem aims to reduce the cantilever beam’s overall weight by opti-
mizing the five hollow square cross-section specifications. The thickness of
all the cross-sections is the same but has a different length. The problem
includes five estimated parameters. One side of the liver is connected to a
rigid body, and a load is attached to the other end. The formulation of this
has been mathematically expressed as follows:
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Min f3(x) = 0.6224(x1 + x2 + x3 + x4 + x5),

s.t. g(x) =
60

x3
1

+
27

x3
2

+
19

x3
3

+
7

x3
4

+
1

x3
5

− 1 ≤ 0,

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100.

The solution to this problem using our proposed SDDS-SABC algorithm has
been displayed in Table 12. The results obtained by other algorithms such as
BASZNN, BAS, BAS-WPT, BSAS, ZNN, ALO, GCA I, GCA II, CS, SOS,
and EPO ,have been shown in the same table for better comparison.

8.4 Pressure vessel design problem

The objective of this problem is to minimize the overall cost of the cylindrical
pressure vessel in terms of material, forming, and welding under the nonlinear
constraints of stresses and yield criteria. The decision parameters involve the
thickness of the shell (TSH), the thickness of the head (THD), inner radius
(R), and the length of the cylindrical shell (L). Mathematically the problem
has been expressed as follows: (see [19])

Min f4(x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 19.84x2

1x3 + 3.1661x2
1x4,

x = (x1, x2, x3, x4) = (TSH , THD, R, L),

s.t. g1(x) = 0.0193x3 − x1 ≤ 0,

g2(x) = 0.00954x3 − x1 ≤ 0,

g3(x) = 1296000− 4

3
πx3

3 − πx2
3x4 ≤ 0,

g4(x) = x4 − 240 ≤ 0,

1× 0.0625 ≤ x1, x2 ≤ 99× 0.0625,

10 ≤ x3, x4 ≤ 200.

The solution to this problem by our proposed SDDS-SABC algorithm has
been shown in Table 12. We compare our results with state-of-the-art algo-
rithms such as SC-GWO, GWO, PSO, SCA, GASA, GA, DE, Branch and
Bound, Lagrangian Multiplier, ACO, ES, mGWO, wGWO, mSCA, OBSCA,
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MFO, WOA, SSA, ISCA and Chaotic SSA (see Table 12). It has been ob-
served that the proposed SDDS-SABC algorithm outperforms others.

8.5 Heat exchanger design problem

This is a challenging benchmark minimization problem because all the con-
straints are strictly enforced (Xin-She Yang and Amir H. Gandomi, 2012).
It has eight design variables and six inequality restrictions, three linear and
three nonlinear. The problem has been stated as follows:

Min f5(x) = x1 + x2 + x3,

s.t. g1(x) = 0.0025(x1 + x6)− 1 ≤ 0,

g2(x) = 0.0025(x5 + x7 − x4)− 1 ≤ 0,

g3(x) = 0.01(x8 − x5)− 1 ≤ 0,

g4(x) = 833.33252x4 + 100x1 − x1x6 − 8333.333 ≤ 0,

g5(x) = 1250x5 + x2x4 − x2x7 − 125x4 ≤ 0,

g6(x) = x3x5 − 2500x5 − x3x8 + 125× 104 ≤ 0.

As this is a challenging problem, several authors have not considered it under
test except for the BAT algorithm. However, our proposed SDDS-SABC al-
gorithm could solve this tough problem. The results of this problem obtained
by both BAT and SDDS-SABC have been presented in Table 12.
Therefore, the results show that SDDS-SABC algorithm is efficient enough
to extract the optimal values.
We study the robustness of our proposed dynamic penalty-based constraint
handling techniques integrated into the SDDS-SABC method on EDPs (see
Table 13).

9 Conclusion

A new and effective hybrid SDDS-SABC method for handling challenging
restricted optimization issues was presented in this paper. As far as we are

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1538–1588



Sharma and Jabeen 1580

Table
12:

R
esult’s

com
parison

obtained
from

various
algorithm

s
for

engineering
design

problem
s

ED
P1

ED
P2

ED
P3

ED
P4

ED
P5

A
lgorithm

best-found
A
lgorithm

best-found
A
lgorithm

best-found
A
lgorithm

best-found
A
lgorithm

best-found

SC
-G

W
O

263.8963
SC

-G
W

O
0.012672

SC
-G

W
O

6059.7179
BA

SZN
N

1.3301
BA

SZN
N

-
SC

A
263.9506

G
W

O
0.012675

G
W

O
6136.6600

BA
S

1.3331
BA

S
-

PSO
263.8986

PSO
0.012675

PSO
6061.0777

BA
S-W

PT
1.3011

BA
S-W

PT
-

w
PSO

263.8994
SC

A
0.012678

SC
A

6076.3651
BSA

S
1.3000

BSA
S

-
G
W

O
263.9497

G
SA

0.012702
G
SA

8538.8360
ZN

N
1.3400

ZN
N

-
C
S

263.9716
RW

-G
W

O
0.012674

PSO
6061.0780

A
LO

1.3300
A
LO

-
R
ay

&
Saini

264.3000
G
A

0.012705
G
A

6288.7450
G
C
A

I
1.3400

G
C
A

I
-

Tsai
263.68

PSO
(H

e
&

W
ang)

0.012675
G
A

6410.3810
G
C
A

II
1.3400

G
C
A

II
-

m
G
W

O
263.8967(IF)

ES
0.012681

D
E

6059.7340
C
S

1.3399
C
S

-
w
G
W

O
263.8964

R
O

0.0126788
A
C
O

6059.0888
SO

S
1.3300

SO
S

-
m
-SC

A
263.9481

C
C

0.012833
ES

6059.7456
EPO

1.1900
EPO

-

O
BSC

A
263.9463

M
O

0.012730
BB

8129.1040
SD

D
S-

SA
BC

1.1383
BAT

7049.2480

SSA
263.8958

m
G
W

O
0.012676

LM
7198.043

SD
D
S-

SA
BC

6948.2644

M
FO

267.1922
w
G
W

O
0.012672

m
G
W

O
6059.7359

W
O
A

263.9858
m
-SC

A
0.012725

w
G
W

O
6059.7207

ISC
A

263.9002
O
BSC

A
0.012874

m
-SC

A
0.012725

C
haotic

SSA
267.192

M
FO

0.012758
O
BSC

A
0.012874

SD
D
S-

SA
BC

263.605322
W

O
A

0.012676
M
FO

6059.7143

SSA
0.012676

W
O
A

6059.7410
ISC

A
0.01270

SSA
6059.7254

C
haotic

SSA
0.012668

ISC
A

0.01270
SD

D
S-

SA
BC

0.018326
C
haotic

SSA
0.012668

SD
D
S-

SA
BC

6031.8439

C
C

-C
onstraint

C
orrection;

M
O

-M
athem

aticalO
ptim

ization;
BB

-Branch
and

Bound;
LM

-Lagrangian
M
ultiplier

Iran. J. Numer. Anal. Optim., Vol. 15, No. 4, 2025, pp 1538–1588



1581 Combining an interval approach with a heuristic to solve constrained ...

Table 13: Result’s comparison on performance of different penalty methods

Problems (a) (b) (c) (d)
EDP1 263.6083840317 263.7490760091 263.6152947853 263.6053225360152
EDP2 Infeasible Infeasible Infeasible 0.018326244566
EDP3 5.906791130523017 3.46209183752 2.880236483910 1.138339974684857
EDP4 6095.623409850 6113.738986468 6032.2416268761 6031.843954691072
EDP5 7913.60005519897 8613.847481208 8527.930681880 6948.26443981868

(a) [35]; (b): [34]; (c): [33] ; (d): Proposed

aware, the ABC algorithm performed better at exploration than exploitation
due to an imbalance between its exploration and exploitation capabilities.
We have modified the ABC algorithm’s startup step to maximize exploita-
tion by producing the initial solution using a quasi-random sequence based
on the Halton set. Additionally, we have enhanced the scout bee’s phase
using the sigmoid function and implemented a new search strategy scheme
for the bees in use. To meet the constraints, we have designed a new penalty
function that is something akin to dynamic penalty logic. The performance
of our suggested SDDS-SABC approach is confirmed by the numerical results
shown here. Our technique can be applied to other real-life restricted opti-
mization problems in engineering and management, as demonstrated by the
exciting experimental findings of real-life engineering design problems.
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