[1] Abdi, A., Arnold, M. and Podhaisky, H. The barycentric rational numerical differentiation formulas for stiff ODEs and DAEs, Numer. Alorithms 97 (2024), 431–451.
[2] Abdi, A., Berrut, J.-P. and Podhaisky, H. The barycentric rational predictor–corrector schemes for Volterra integral equations, J. Comput.
[3] Abdi, A. and Hosseini, S.A. The barycentric rational difference–quadrature scheme for systems of Volterra integro–differential equations, SIAM J. Sci. Comput. 40 (2018), A1936–A1960.
[4] Abdi, A., Hosseini, S.A. and Podhaisky, H. The linear barycentric rational backward differentiation formulae for stiff ODEs on nonuniform grids, Numer. Algorithms 98 (2025), 877–902.
[5] Berrut, J.-P. Rational functions for guaranteed and experimentally well-conditioned global interpolation, Comput. Math. Appl. 15 (1998), 1–16.
[6] Berrut, J.-P., Hosseini, S.A. and Klein, G. The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput. 36 (2014), A105–A123.
[7] Bos, L., De Marchi, S. and Hormann, K. On the Lebesgue constant of Berrut’s rational interpolant at equidistant nodes, J. Comput. Appl. Math. 236 (2011), 504–510.
[8] Bos, L., De Marchi, S., Hormann, K. and Klein, G. On the Lebesgue constant of barycentric rational interpolation at equidistant nodes, Numer. Math. 121 (2012), 461–471.
[9] Brunner, H. Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press, Cambridge, 2004.
[10] Brunner, H. and van der Houwen, P.J. The Numerical Solution of Volterra Equations, in: CWI Monogr., North-Holland, Amsterdam, 1986.
[11] Floater, M.S. and Hormann, K. Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math. 107 (2007), 315–331.
[12] Fornberg, B. and Reeger, J.A. An improved Gregory-like method for 1-D quadrature, Numer. Math. 141 (2019), 1–19.
[13] Gladwin, C.J. Quadrature rule methods for Volterra integral equations of the first kind, Math. Comput. 33 (1979), 705–716.
[14] Hale, N. and Townsend, A. Fast and accurate computation of Gauss–Legendre and Gauss–Jacobi quadrature nodes and weights, SIAM J. Sci. Comput. 35 (2013), A652–A674.
[15] Holyhead, P.A.W., McKee, S. and Taylor, P.J. Multistep methods for solving linear Volterra integral equations of the first kind, SIAM J. Numer. Anal. 12 (1975), 698–711.
[16] Kauthen, J.-P. and Brunner, H. Continuous collocation approximations to solution of first kind Volterra equations, Math. Comput. 66 (1997), 1441–1459.
[17] Klein, G. and Berrut, J.-P. Linear barycentric rational quadrature, BIT 52 (2012), 407–424.
[18] Li, J. and Cheng, Y. Linear barycentric rational collocation method for solving heat conduction equation, Numer. Methods Partial Differ. Equ. 37 (2021), 533–545.
[19] Li, J. and Cheng, Y. Barycentric rational method for solving biharmonic equation by depression of order, Numer. Methods Partial Differ. Equ. 37 (2021), 1993–2007.
[20] Li, M. and Huang, C. The linear barycentric rational quadrature method for auto-convolution Volterra integral equations, J. Sci. Comput. 78 (2019), 549–564.
[21] Linz, P. Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985.
[22] Liu, H., Huang J. and He, X. Bivariate barycentric rational interpolation method for two dimensional fractional Volterra integral equations, J. Comput. Appl. Math. 389 (2021), 113339.
[23] Luo, W.-H., Huang, T.-Z., Gu, X.-M. and Liu, Y. Barycentric rational collocation methods for a class of nonlinear parabolic partial differential equations, Appl. Math. Lett. 68 (2017), 13–19.
[24] Trefethen, L.N., et al. Chebfun Version 5.6.0, The Chebfun Development Team, http://www.chebfun.org (2016)
[25] Trefethen, L.N. Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50 (2008), 67–87.
[26] Zhang, T. and Liang, H. Multistep collocation approximations to solutions of first-kind Volterra integral equations, Appl. Numer. Math. 130 (2018), 171–183.