- Adedeji, O.H. (2019). Geospatial information as a tool for soil resource information, management and decision support in Nigeria. Journal of Applied Sciences and Environmental Management, 23(12), 2107-2116. https://doi.org/4314/ jasem.v23i12.5
- Adeniyi, O.D., Brenning, A., & Maerker, M. (2024). Spatial prediction of soil organic carbon: Combining machine learning with residual kriging in an agricultural lowland area (Lombardy region, Italy). Geoderma, 448, 116953. https://doi.org/10.1016/j.geoderma.2024.116953
- Afshar, F.A., Ayoubi, S., & Jafari, A. (2018). The extrapolation of soil great groups using multinomial logistic regression at regional scale in arid regions of Iran. Geoderma, 315, 36-48. https://doi.org/10.1016/j.geoderma. 2017.11.030
- Behrens, T., Zhu, A.X., Schmidt, K., & Scholten, T. (2010). Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, 155(3-4), 175-185. https://doi.org/10.1016/j.geoderma.2009.07.010
- Ben Brahim, A., & Limam, M. (2018). Ensemble feature selection for high dimensional data: a new method and a comparative study. Advances in Data Analysis and Classification, 12(4), 937-952. https://doi.org/10.1007/s11634-017-0285-y
- Benslama, A., Lucas, I.G., Jordan Vidal, M.M., Almendro-Candel, M.B., & Navarro-Pedreño, J. (2024). Carbon and nitrogen stocks in topsoil under different land use/land cover types in the southeast of Spain. AgriEngineering, 6(1), 396-408. https://doi.org/10.3390/agriengineering6010024
- Canero, F.M., Rodriguez-Galiano, V., & Aragones, D. (2024). Machine learning and feature selection for soil spectroscopy. An evaluation of random forest wrappers to predict soil organic matter, clay, and carbonates. Heliyon, 10(9). https://doi.org/10.1016/j.heliyon.2024.e30228
- Charman, P.E.V., & Roper, M.M. (2007). Soil organic matter. In: Charman, P.E.V. and Murphy, B.W., Eds., Soils—Their Properties and Management, 3rd Edition, Oxford University Press, Melbourne, 276-285.
- Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). https://doi.org/10.1145/ 2939672.2939785
- Fathizad, H., Ardakani, M.A.H., Heung, B., Sodaiezadeh, H., Rahmani, A., Fathabadi, A., & Taghizadeh-Mehrjardi, R. (2020). Spatio-temporal dynamic of soil quality in the central Iranian desert modeled with machine learning and digital soil assessment techniques. Ecological Indicators, 118, 106736. https://doi.org/10.1016/j.ecolind.2020. 106736
- Fathizad, H., Taghizadeh-Mehrjardi, R., Hakimzadeh Ardakani, M.A., Zeraatpisheh, M., Heung, B., & Scholten, T. (2022). Spatiotemporal assessment of soil organic carbon change using machine-learning in arid regions. Agronomy, 12(3), 628. https://doi.org/10.3390/agronomy12030628
- Fathy, H., Heydari, M., Fathizad, H., Hosseinzadeh, J., Najafifar, A., Mousavi, S.R., & Heung, B. (2025). From forest to farmland: Tracking time series variations in soil quality in semiarid oak forest. Geoderma Regional, 42, e00974. https://doi.org/10.1016/j.geodrs.2025.e00974
- Garosi, Y., Ayoubi, S., Nussbaum, M., & Sheklabadi, M. (2022). Effects of different sources and spatial resolutions of environmental covariates on predicting soil organic carbon using machine learning in a semi-arid region of Iran. Geoderma Regional, 29, https://doi.org/10.1016/j.geodrs.2022.e00513
- Hoyle, F.C., O’Leary, R.A., & Murphy, D.V. (2016). Spatially governed climate factors dominate management in determining the quantity and distribution of soil organic carbon in dryland agricultural systems. Scientific Reports, 6(1), 31468. https://doi.org/10.1038/srep31468
- Hamzehpour, N., Shafizadeh-Moghadam, H., & Valavi, R. (2019). Exploring the driving forces and digital mapping of soil organic carbon using remote sensing and soil texture. Catena, 182, https://doi.org/10.1016/j. catena.2019.104141
- Kasraei, B., Schmidt, M.G., Zhang, J., Bulmer, C.E., Filatow, D.S., Pennell, T., & Heung, B. (2024). A framework for optimizing environmental covariates to support model interpretability in digital soil mapping. Geoderma, 445, 116873. https://doi.org/10.1016/j.geoderma.2024.116873
- Kulikova, A.I., Chechenkov, P.D., Osipova, M.S., Shopina, O.V., & Semenkov, I.N. (2023). Comparative analysis of the results of traditional and digital large-scale soil mapping on the example of a key site in the Smolenskoe Poozerye National Park. Eurasian Soil Science, 56(3), 271-277. https://doi.org/10.1134/s1064229322602281
- Laban, P., Metternicht, G., & Davies, J. (2018). Soil biodiversity and soil organic carbon: keeping drylands alive. Gland, Switzerland: IUCN, 10. https://doi.org/10.2305/IUCN.CH.2018.03.en
- Lamichhane, S., Kumar, L., & Wilson, B. (2019). Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma, 352, 395-413. https://doi.org/10.1016/j.geoderma. 2019.05.031
- Lotfollahi, L., Delavar, M.A., Biswas, A., Fatehi, S., & Scholten, T. (2023). Spectral prediction of soil salinity and alkalinity indicators using visible, near-, and mid-infrared spectroscopy. Journal of Environmental Management, 345, 118854. https://doi.org/10.1016/j.jenvman.2023.118854
- Ma, Z., Shi, Z., Zhou, Y., Xu, J., Yu, W., & Yang, Y. (2017). A spatial data mining algorithm for downscaling TMPA 3B43 V7 data over the Qinghai–Tibet Plateau with the effects of systematic anomalies removed. Remote Sensing of Environment, 200, 378-395. https://doi.org/10.1016/j.rse.2017.08.023
- Madani, K. (2007, May). Water Transfer and watershed development: A system dynamics approach. In World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat (pp. 1-15). https://doi.org/ 1061/40927(243)551
- Mantero, P., Moser, G., & Serpico, S.B. (2005). Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Transactions on Geoscience and Remote Sensing, 43(3), 559-570. http://doi.org/1109/TGRS.2004.842022
- Mallah, S., Delsouz Khaki, B., Davatgar, N., Poppiel, R.R., & Demattê, J.A. (2022). Digital mapping of topsoil texture classes using a hybridized classical statistics–artificial neural networks approach and relief data. AgriEngineering, 5(1), 40-64. https://doi.org/10.3390/agriengineering5010004
- Masoudi, R., Mousavi, S.R., Rahimabadi, P.D., Panahi, M., & Rahmani, A. (2023). Assessing data mining algorithms to predict the quality of groundwater resources for determining irrigation hazard. Environmental Monitoring and Assessment, 195(2), 319. https://doi.org/ 10.1007/s10661-022-10909-9
- Matinfar, H.R., Maghsodi, Z., Mousavi, S.R., & Rahmani, A. (2021). Evaluation and prediction of topsoil organic carbon using machine learning and hybrid models at a Field-scale. Catena, 202, https://doi.org/10.1016/ j.catena.2021.105258
- Mousavi, S.R., Sarmadian, F., Angelini, M.E., Bogaert, P., & Omid, M. (2023). Cause-effect relationships using structural equation modeling for soil properties in arid and semi-arid regions. Catena, 232, https://doi.org/ 10.1016/j.catena.2023.107392
- Mousavi,R., Sarmadian, F., Omid, M., & Bogaert, P. (2022). Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement, 201, 111706. https://doi.org/10.1016/j.measurement.2022.111706
- Mousavi, S.R., Jahandideh Mahjenabadi, V.A., Khoshru, B., & Rezaei, M. (2024). Spatial prediction of winter wheat yield gap: agro-climatic model and machine learning approaches. Frontiers in Plant Science, 14, https://doi.org/10.3389/fpls.2023.1309171
- Muslim, W.A., Albayati, T.M., & Al-Nasri, S.K. (2022). Decontamination of actual radioactive wastewater containing 137Cs using bentonite as a natural adsorbent: equilibrium, kinetics, and thermodynamic studies. Scientific Reports, 12(1), 13837. https://doi.org/10.1038/s41598-022-18202-y
- Nelson, M.A., Bishop, T.F.A., Triantafilis, J., & Odeh, I.O.A. (2011). An error budget for different sources of error in digital soil mapping. European Journal of Soil Science, 62(3), 417-430. https://doi.org/10.1111/j.13652389.2011. 01365.x
- Parras‐Alcántara, L., Díaz‐Jaimes, L., & Lozano‐García, B. (2015). Management effects on soil organic carbon stock in Mediterranean open rangelands—treeless grasslands. Land Degradation & Development, 26(1), 22-34. https://doi.org/10.1002/ldr.2269
- Rabbi, S.M.F., Roy, B.R., Miah, M.M., Amin, M.S., & Khandakar, T. (2014). Spatial variability of physical soil quality index of an agricultural field. Applied and Environmental Soil Science, 2014(1), 379012. https://doi.org/ 10.1155/2014/379012
- Rahmani, A., Sarmadian, F., & Arefi, H. (2022). Digital mapping of top-soil thickness and associated uncertainty using machine learning approach in some part of arid and semi-arid lands of Qazvin plain. Iranian Journal of Soil and Water Research, 53(3), 585-602. https://doi.org/10.47176/jwss.24.2.32993
- Rossel, R.V., & McBratney, A.B. (2008). Diffuse reflectance spectroscopy as a tool for digital soil mapping. In Digital soil mapping with limited data (pp. 165-172). Dordrecht: Springer Netherlands. https://doi.org/10.1007/ 978-1-4020-8592-5_13
- Rostaminia, M., Rahmani, A., Mousavi, S.R., Taghizadeh-Mehrjardi, R., & Maghsodi, Z. (2021). Spatial prediction of soil organic carbon stocks in an arid rangeland using machine learning algorithms. Environmental Monitoring and Assessment, 193, 1-17. https://doi.org/10.1007/s10661-021-09543-8
- Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappie, M., Märker, M., & Saia, S. (2017). Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Science of the Total Environment, 601, 821-832. https://doi.org/10.1016/j.scitotenv.2017.05.239
- Song XiaoDong, S.X., Liu Feng, L.F., Zhang GanLin, Z.G., Li DeCheng, L.D., Zhao YuGuo, Z.Y., & Yang JinLing, Y.J. (2017). Mapping soil organic carbon using local terrain attributes: a comparison of different polynomial models. https://doi.org/10.1016/S1002-0160(17)60445-4
- Su, L., Heydari, M., Jaafarzadeh, M.S., Mousavi, S.R., Rezaei, M., Fathizad, H., & Heung, B. (2024). Incorporating forest canopy openness and environmental covariates in predicting soil organic carbon in oak forest. Soil and Tillage Research, 244, https://doi.org/10.1016/j.still.2024.106220
- Taghizadeh-Mehrjardi, R., Neupane, R., Sood, K., & Kumar, S. (2017). Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA. Carbon Management, 8(3), 277-291. https://doi.org/10.1080/17583004.2017.1330593
- Tibshirani, R.J., & Efron, B. (1993). An introduction to the bootstrap. Monographs on Statistics and Applied Probability, 57(1), 1-436.
- Van Wambeke, A.R. (2000). The Newhall simulation model for estimating soil moisture and temperature regimes. Department of Crop and Soil Sciences. Cornell University, Ithaca, NY.
- Vanwinckelen, G., & Blockeel, H. (2012). On estimating model accuracy with repeated cross-validation. In BeneLearn 2012: Proceedings of the 21st Belgian-Dutch conference on machine learning (pp. 39-44).
- Vasiliniuc, I., Patriche, C.V., Pîrnău, R., & Roşca, B. (2013). Statistical spatial models of soil parameters. An approach using different methods at different scales. Environmental Engineering and Management Journal, 12(3), 457-464. https://doi.org/10.30638/eemj.2013.057
- Voltz, M., Arrouays, D., Bispo, A., Lagacherie, P., Laroche, B., Lemercier, B., & Schnebelen, N. (2020). Possible futures of soil-mapping in France. Geoderma Regional, 23, https://doi.org/10.1016/j.geodrs.2020.e00334
- Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. https://doi.org/10.1097/ 00010694-193401000-00003
- Yang, L., Jia, W., Shi, Y., Zhang, Z., Xiong, H., & Zhu, G. (2020). Spatiotemporal differentiation of soil organic carbon of grassland and its relationship with soil physicochemical properties on the northern slope of Qilian mountains, China. Sustainability, 12(22), 9396. https://doi.org/10.3390/su12229396
- Zaheri Abdehvand, Z., Karimi, D., Rangzan, K., & Mousavi, S.R. (2024). Assessment of soil fertility and nutrient management strategies in calcareous soils of Khuzestan province: a case study using the Nutrient Index Value method. Environmental Monitoring and Assessment, 196(6), 503. https://doi.org/10.1007/s10661-024-12665-4
- Zeraatpisheh, M., Jafari, A., Bodaghabadi, M.B., Ayoubi, S., Taghizadeh-Mehrjardi, R., Toomanian, N., & Xu, M. (2020). Conventional and digital soil mapping in Iran: Past, present, and future. Catena, 188, https://doi.org/10.1016/j.catena.2019.104424
- Zhao, S., Ayoubi, S., Mousavi, S.R., Mireei, S.A., Shahpouri, F., Wu, S.X., & Tian, C.Y. (2024). Integrating proximal soil sensing data and environmental variables to enhance the prediction accuracy for soil salinity and sodicity in a region of Xinjiang Province, China. Journal of Environmental Management, 364, 121311. https://doi.org/10.1016/j.jenvman.2024.121311
- Zhou, T., Geng, Y., Chen, J., Liu, M., Haase, D., & Lausch, A. (2020). Mapping soil organic carbon content using multi-source remote sensing variables in the Heihe River Basin in China. Ecological Indicators, 114, 106288. https://doi.org/10.1016/j.ecolind.2020.106288
|