Alaei, N., Mohammadzadeh, F., Mostafazadeh, R., & Talebi Khiavi, H. (2024). Assessing spatiotemporal urban green space per capita and its connectivity in a small size city in Northwest Iran. GeoJournal, 89(4), 148. https://doi.org/10.1007/s10708-024-11159-7
Arsalan, M., Chamani, A., & Zamani-Ahmadmahmoodi, R. (2024). Sustaining tranquility in small urban green parks: A modeling approach to identify noise pollution contributors. Sustainable Cities and Society, 113, 105655. https://doi.org/10.1016/j.scs.2024.105655
Chen, S., He, P., Yu, B., Wei, D., & Chen, Y. (2024). The challenge of noise pollution in high-density urban areas: Relationship between 2D/3D urban morphology and noise perception. Building and Environment, 253, 111313. https://doi.org/10.1016/j.buildenv.2024.111313
Fallah-Shorshani, M., Yin, X., McConnell, R., Fruin, S., & Franklin, M. (2022). Estimating traffic noise over a large urban area: An evaluation of methods. Environment International, 170, 107583. https://doi.org/10.1016/j.envint.2022.107583
Ganjirad, M., Delavar, M. R., Bagheri, H., & Azizi, M. M. (2025). Optimizing urban critical green space development using machine learning. Sustainable Cities and Society, 120, 106158. https://doi.org/10.1016/j.scs.2025.106158
GR, A. N., & Adarsh, S. (2025). Innovative knowledge-based system for streamflow hindcasting: A comparative assessment of Gaussian Process-Integrated Neural Network with LSTM and GRU models. Environmental Modelling & Software, 188, 106433. https://doi.org/10.1016/j.envsoft.2025.106433
Guo, Z., & Feng, L. (2024). Multi-step prediction of greenhouse temperature and humidity based on temporal position attention LSTM. Stochastic Environmental Research and Risk Assessment, 38(12), 4907-4934. https://doi.org/10.1007/s00477-024-02840-x
Gupta, B. B., Gaurav, A., Attar, R. W., Arya, V., Bansal, S., Alhomoud, A., & Chui, K. T. (2024). Advance drought prediction through rainfall forecasting with hybrid deep learning model. Scientific Reports, 14(1), 30459. https://doi.org/10.1038/s41598-024-80099-6
Helbich, M., Hagenauer, J., Burov, A., & Dzhambov, A. M. (2025). Traffic noise assessment in urban Bulgaria using explainable machine learning. Sustainable Cities and Society, 120, 106169. https://doi.org/10.1016/j.scs.2025.106169
Iran Meteorological Organization (IRIMO). (2020). Climatological Yearbook of Synoptic Stations of Iran (1988–2018). Tehran: Research and Technology Deputy, IRIMO.
Li, J., & Heap, A. D. (2008). A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience Australia, 137.
Madhavi, M., Kolikipogu, R., Prabakar, S., Banerjee, S., Maguluri, L. P., Raj, G. B., & Balaram, A. (2024). Experimental evaluation of remote sensing–based climate change prediction using enhanced deep learning strategy. Remote Sensing in Earth Systems Sciences, 7(4), 642-656. https://doi.org/10.1007/s41976-024-00152-w
Mahmoudzadeh, H., Abedini, A., Aram, F., & Mosavi, A. (2024). Evaluating urban environmental quality using multi criteria decision making. Heliyon, 10(3), e24921. https://doi.org/10.1016/j.heliyon.2024.e24921
Maleki, K., & Hosseini, S. M. (2011). Investigation of the effect of leaves, branches and canopies of trees on noise pollution reduction. Annals of Environmental Science, 5(1), 3. https://openjournals.library.northeastern.edu/aes/journal/article/view/v5art3
Mostafazadeh, R., Alaei, N., Mirchooli, F., & Hussain, S. (2024). Changes in urban green space configuration and connectivity using spatial graph-based metrics in Ardabil developing city, Iran. Environmental Monitoring and Assessment, 196(9), 778. https://doi.org/10.1007/s10661-024-12922-6
Munandar, T. A., & Surbakti, H. (2025). Hybrid deep learning for climate prediction with Temporal, Spatial, and environmental data. International Journal of Information Technology, 1-14. https://doi.org/10.1007/s41870-025-02509-w
Naseri, N., & Mostafazadeh, R. (2023). Spatial relationship of Remote Sensing Ecological Indicator (RSEI) and landscape metrics under urban development intensification. Earth Science Informatics, 16(4), 3797-3810. https://doi.org/10.1007/s12145-023-01119-z
Nias, M. (2021). Assessment and modeling of the relationship between land use and noise pollution in Shiraz city. (Master’s thesis). Environmental Science and Engineering (Land use Planning), Isfahan University of Technology, Faculty of Natural Resources. [In Persian]
Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Yao, X. A., Naqvi, R. A., & Choi, S. (2024). Assessment of noise pollution-prone areas using an explainable geospatial artificial intelligence approach. Journal of Environmental Management, 370, 122361. https://doi.org/10.1016/j.jenvman.2024.122361
Reyes-Avila, A. D., & Baxter, R. A. (2024). Assessment of urbanization impacts in Tegucigalpa urban greenness via normalized difference vegetation index. Trees, Forests and People, 18, 100680. https://doi.org/10.1016/j.tfp.2024.100680
Sayadi, M. H., & Movafagh, A. (2014). Assessment of noise pollution in Birjand using statistical techniques and GIS. Environmental Studies Quarterly, 40(3), 693–710. [In Persian] https://doi.org/10.22059/jes.2014.52214
Sharafatmandrad, M., & Khosravi Mashizi, A. (2025). Plant species selection for urban green spaces in arid lands: a new approach using ecosystem services and disservices. Landscape and Ecological Engineering, 21(1), 47-64. https://doi.org/10.1007/s11355-024-00624-7
Shobanke, M., Bhatt, M., & Shittu, E. (2025). Advancements and future outlook of Artificial Intelligence in energy and climate change modeling. Advances in Applied Energy, 17, 100211. https://doi.org/10.1016/j.adapen.2025.100211
Statistical Center of Iran. (2020). Statistical Yearbook of South Khorasan Province. Birjand: Management and Planning Organization of South Khorasan.
Vo, T. Q., Kim, S. H., Nguyen, D. H., & Bae, D. H. (2023). LSTM-CM: a hybrid approach for natural drought prediction based on deep learning and climate models. Stochastic Environmental Research and Risk Assessment, 37(6), 2035-2051. https://doi.org/10.1007/s00477-022-02378-w
Yang, Z., Kwan, M., Liu, D., & Huang, J. (2025). How objective and subjective greenspace, combined with air and noise pollution, impacts mental health through the mediation of physical activity. Urban Forestry & Urban Greening, 105, 128683. https://doi.org/10.1016/j.ufug.2025.128683