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Nonlinear optimization of revenue per
unit of time in discrete Dutch auctions

with risk-aware bidders
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Abstract

This study develops a computational framework to optimize the auction-
eer’s revenue per unit of time in modified discrete Dutch auction by in-
corporating bidders’ risk preferences through the constant absolute risk
aversion utility function. Bidders are categorized into three distinct risk
profiles—risk-loving, risk-neutral, and risk-averse—allowing for a compre-
hensive analysis of how risk attitudes influence auction outcomes. A non-
linear programming methodology is utilized to ascertain the optimal rev-
enue per unit time while incorporating discrete bid levels. The findings
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demonstrate that, at the outset, an increase in the number of bidders sub-
stantially boosts the revenue per unit time; nevertheless, after reaching
a specific point, the incremental benefits decrease, resulting in a plateau.
Additionally, the analysis suggests that, in auctions featuring larger pools
of bidders, achieving maximum revenue per unit time necessitates fewer
bid levels, as surplus bid levels do not yield further revenue improvements.
Bidders exhibiting risk-averse tendencies tend to generate lower returns
due to their cautious bidding patterns, whereas risk-seeking participants
contribute to higher revenue per unit time by engaging in more assertive
bidding. Collectively, these results highlight the significant influence of
bidders’ risk preferences on auction design and establish a comprehensive
mathematical framework that can be readily adapted to various algorith-
mic auction mechanisms. Behavioral interpretation via the prospect theory
and alignment with published field evidence support the model’s external
validity.

AMS subject classifications (2020): Primary 90C30; Secondary 91B26.

Keywords: Auctions; Constant absolute risk aversion; Discrete Dutch auc-
tion; Nonlinear programming; Revenue per unit of time.

1 Introduction

An auction constitutes a competitive bidding mechanism wherein an item
of uncertain value is awarded to the participant prepared to offer the high-
est price. Auctions represent one of the three primary methods of trade,
alongside fixed-price sales and negotiation-based transactions [39]. They hold
significant importance in the contemporary global economy, enabling the ex-
change of assets ranging from real estate and agricultural commodities to
mineral rights and spectrum licenses [22, 56, 29, 12]. Among the diverse auc-
tion types, the Dutch auction (DA), also referred to as the descending-price
or clock auction, stands out for its swift transaction process and particular
suitability for the sale of perishable goods and time-sensitive assets [20, 48].

In a DA, the auctioneer initiates the process by setting an initially high
asking price, which is then systematically reduced following a specified sched-
ule until a participant agrees to the prevailing price [48]. Unlike ascending-
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3 Nonlinear optimization of revenue per unit of time in discrete Dutch ...

price English auctions that favor unique items, such as antiques, DAs excel
in markets for goods with diminishing value over time, such as fresh produce,
concert tickets, and container space [1, 32]. Practical applications extend to
cash management [2], stock repurchases [6], and airline overbooking [23].

Traditional auction models often assume continuous bidding and risk-
neutral bidders, which may not align with real-world dynamics [43, 46, 40].
The introduction of discrete Dutch auction (DDA) has addressed practical
constraints by limiting bid levels to a discrete set of values. Early studies by
Li and Kuo [32, 33] explored revenue maximization of DDA through opti-
mal bid level design, demonstrating that revenue increases with the number
of bid levels and bidders. However, these models ignored the variability in
bidder risk preferences and emotional attachments. Li, Yue, and Kuo [34]
extended DDA models by incorporating time as a critical parameter, ex-
amining trade-offs between auction duration and revenue. Their findings
revealed that optimizing revenue per unit of time could significantly enhance
auctioneer profitability, particularly in high-frequency auction environments.
Despite these advancements, their models also remained limited to emotional
attachment of the bidders with the item to be sold and bidders’ risk prefer-
ences. Addressing some of these limitations, Shamim and Ali [48] integrated
bidders’ emotional attachments using the log-normal valuation distribution
along with the consideration of time in DDA frameworks. By accounting
for the emotional attachments, their research demonstrated the significant
impact of emotions on auction outcomes and bidding strategies. However,
they did not discuss the impact of bidders’ risk preferences on the auction
outcomes.

This study builds upon the aforementioned foundational works by exam-
ining the influence of bidders’ risk preferences through the constant absolute
risk aversion (CARA) utility function while incorporating the critical role of
time in auction profitability. Recognizing that an auctioneer seeks to max-
imize revenue not only per auction but also per unit of time, this research
integrates risk-sensitive bidder behavior with time-optimized revenue strate-
gies. By formulating a computational framework that captures the complex-
ities of real-world auctions, this study aims to enhance auction theory and
offer practical insights for designing more efficient DDAs.
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This study also extends the standard DDA model by explicitly addressing
bidder risk asymmetry, clarifying the behavioral interpretation of the CARA
parameter, and situating the framework alongside the prospect theory. While
this study relies on simulation-based analysis, it also demonstrates that our
results are consistent with published empirical studies of fish and flower mar-
kets, thereby reinforcing the practical relevance of its findings even in the
absence of new transaction-level data.

The rest of this paper is structured as follows. Section 2 provides a
comprehensive review of existing literature, highlighting the research gap ad-
dressed in this study. In Section 3, a mathematical revenue model for DDAs
is developed, incorporating bidders’ risk preferences and time considerations.
Section 4 presents and analyzes the key results obtained by solving the pro-
posed model using the R software. Finally, Section 5 concludes the study by
summarizing the findings, discussing its limitations, and suggesting potential
directions for future research.

2 Literature review

Auction theory has been a central theme in economic research, with con-
siderable emphasis placed on analyzing the dynamics of different auction
formats, such as English auctions, sealed-bid auctions, and DAs. Notably,
DAs, distinguished by their descending-price structure, have become partic-
ularly valued for their effectiveness in facilitating the sale of perishable and
time-sensitive goods [20, 48]. Nevertheless, much of the existing scholarship
presumes continuous bidding and risk-neutral behavior among participants,
assumptions that often do not align with the practical realities of auction
environments [43, 46, 41]. This section provides an overview of the current
literature on DAs, focusing specifically on discrete bidding and strategies for
maximizing auctioneer revenue per unit of time, while also drawing attention
to the insufficient consideration of bidders’ risk preferences within the field.

Traditional auction models often assume that bid prices are continuous
variables, allowing bidders to outbid each other by infinitesimally small incre-
ments [43, 46, 40, 14, 47]. While this assumption is suitable for unique items
such as antiques, it is less applicable to fast DAs, where perishable goods
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5 Nonlinear optimization of revenue per unit of time in discrete Dutch ...

or services are sold rapidly. For instance, Royal Flora Holland auctions last
approximately four seconds per transaction [28], and fish markets in Italy
complete 15 transactions per minute using simultaneous clocks [17, 19]. The
inefficiency of continuous bidding in such contexts has led researchers to ex-
plore discrete bidding mechanisms, where bid levels are restricted to a finite
set of values.

Discrete bidding is not uncommon in English auctions [14, 47], sealed-
bid auctions [10, 37], and hybrid auctions [25]. However, its application in
DAs has received limited attention. Early work by Yu [54] demonstrated
the existence of a symmetric pure-strategy equilibrium in DAs with fixed bid
decrements but did not explore the optimization of bid levels or their im-
pact on closing prices. Yuen, Sung, and Wong [55] extended this research by
analyzing DAs conducted via wireless networks, introducing a communica-
tion cost factor. While their iterative numerical approach provided insights
into optimal bid decrements, their model was constrained by its focus on
communication costs and did not address revenue maximization directly.

The optimization of auctioneer revenue has been a central theme in auc-
tion theory. Cramton et al. [13] and Sujarittanonta [49] examined DAs with
discrete bid levels, focusing on efficiency maximization rather than revenue
optimization. In contrast, Li and Kuo [32, 33] explored revenue-maximizing
DAs with unequal bid decrements, demonstrating that revenue increases with
the number of bid levels and bidders. The assumption of a deterministic
number of bidders was challenged by McAfee and McMillan [38], who in-
troduced probabilistic models to account for uncertain bidder participation.
This line of research gained traction with the rise of e-commerce, as online
auctions necessitated models that could accommodate fluctuating bidder ar-
rivals. Studies by Bajari and Hortaçsu [5], Etzion, Pinker, and Seidmann
[15], and Caldentey and Vulcano [9] approximated bidder arrivals using Pois-
son processes, a modeling approach validated by empirical studies [50, 24].
Despite these advancements, the focus remained on English and sealed-bid
auctions, leaving only a limited number of studies in DAs [48, 33, 34].

A significant limitation of traditional auction models is their neglect of
time as a critical factor in auction profitability. While increasing the num-
ber of bid levels can enhance revenue per auction, it also prolongs auction
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duration, potentially reducing the total number of transactions conducted
within a given timeframe. Li, Yue, and Kuo [34] and Shamim and Ali [48]
tackled this challenge by integrating time considerations into DDA models,
illustrating that maximizing revenue per unit of time can substantially im-
prove the auctioneer’s profitability. Their research highlighted the critical
need to balance the number of bid levels with the overall auction duration,
especially within high-frequency auction settings.

Although previous studies have advanced the optimization of auction de-
sign, they have largely neglected the influence of bidders’ risk preferences and
emotional attachments. Conventional models typically assume bidders to be
risk-neutral for the sake of analytical tractability; however, this assumption
does not necessarily reflect the diversity of risk attitudes observed in actual
auction settings. Shamim and Ali [48] contributed to this area by incorpo-
rating bidders’ emotional attachments into DDA frameworks through the use
of lognormal valuation distributions. Their work demonstrated the consid-
erable effect of emotions on both auction outcomes and bidding behavior.
Nevertheless, their approach did not consider the risk preferences of bidders,
thereby leaving a significant gap in the existing body of literature.

This research extends the foundational contributions of Li and Kuo [32,
33], Li, Yue, and Kuo [34], and Shamim and Ali [48] by addressing two
significant gaps identified in the current literature. First, it incorporates
bidders’ risk preferences-encompassing risk-neutral, risk-seeking, and risk-
averse behaviors-within the DDA framework through the application of the
CARA utility function. Second, it treats time as a pivotal parameter, with
the objective of maximizing the auctioneer’s revenue both per auction and
per unit of time. Through the development of a computational framework
that reflects the intricacies of real-world auction environments, this study
aims to advance auction theory and offer actionable guidance for the design
of more effective DAs. This article reports simulation-based evidence; due to
the unavailability of public transaction-level DA data, empirical alignment is
provided through published field studies.

In conclusion, although substantial advancements have been achieved in
the study of DDAs and revenue optimization, the incorporation of bidders’
risk preferences and strategies for maximizing time-sensitive revenue has not
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been thoroughly investigated. This research seeks to address these deficien-
cies by presenting a comprehensive framework designed to improve both the
efficiency and profitability of auctions.

3 Model development

This research investigates the impact of bidders’ risk preferences on the rev-
enue per unit of time in a DA featuring discrete bidding increments, within
an independent private value (IPV) framework characterized by symmetric
information. Under this setting, each bidder possesses knowledge solely of
their own valuation for the auctioned item, which is independently drawn
from a uniform distribution, and this information remains private and un-
influenced by the valuations of other participants [40, 34, 30]. The study
considers scenarios in which bidders exhibit risk aversion, risk neutrality, or
risk-loving behavior. In each case, a bidder is expected to place a bid when
the asking price first drops to or below their valuation.

The discrete bid levels taken in this setting are b1 < b2 < · · · < bm, where
m ≥ 1. Initially, the auctioneer opens the bidding process at a very high bid
level bm+1 where nobody is willing to bid, and then the price decreases to
bm, bm−1, . . . , b2, b1 after each preset interval of time until a bidder bids to
buy the item at bid level bi for any i ∈ {1, 2, . . . ,m}. In the DA setting, the
item is sold at a price bi if and only if there exist q number of bidders having
their valuations in the interval [bi, bi+1) and nobody is willing to buy it for
the price higher than bi+1. Also, the remaining n− q bidders’ valuations lie
below bi, i = 1, 2, . . . ,m. If only one bidder has the valuation in the interval
[bi, bi+1), then the object is sold to him/her and if there are two or more such
bidders, the one who stops the clock first or calls out “mine” first will get the
item.

If n ≥ 2 participants take part in the auction, then the probability that
the item is sold at the price level bi, i = 1, 2, . . . ,m is P (bi), which is given
by [32, 34]:
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P (bi) =

n∑
q=1

(
n

q

)
F (bi)

n−q [F (bi+1)− F (bi)]
q
,

= F (bi+1)
n − F (bi)

n.

(1)

To account for the risk preferences of the bidders, whether they are risk-
loving, risk-neutral, or risk-averse, their utility of accepting a bid at the price
level bi is represented using the CARA utility function U (bi) = 1−e−αbi

α ,
where α is the constant of absolute risk aversion [30, 3, 42, 35, 8]. Therefore,
the expected revenue per unit of time by the auctioneer in a DDA considering
the risk preferences is given by

Z =

m∑
i=1

U (bi)P (bi)

D
, (2)

where D is the auction duration given as follows:

D = sE(m),

= s

[
m∑
i=1

(m+ 2− i)P (bi) + (m+ 1)

(
1−

m∑
i=1

P (bi)

)]
,

= s

[
m∑
i=1

(m+ 2− i) [F (bi+1)
n − F (bi)

n] + (m+ 1)

(
1−

m∑
i=1

[F (bi+1)
n − F (bi)

n]

)]
,

= s

[
(1 +m) (1 + F (b1)

n − F (bm+1)
n) +

m∑
i=1

(2− i+m) (F (bi+1)
n − F (bi)

n)

]
.

(3)

In light of (1) and (3), (2) becomes

Z =

m∑
i=1

1−e−αbi

α

[
F (bi+1)

n − F (bi)
n
]

s

[
(1 +m) (1 + F (b1)n − F (bm+1)n) +

∑m
i=1(2− i+m) (F (bi+1)n − F (bi)n)

] ,
(4)

where α is the coefficient of constant absolute risk aversion, determining
each bidder’s risk attitude.

Here, a symmetric IPV setting is assumed; that is, the valuation of
each bidder j is vj , j = 1, 2, . . . , n, which is drawn from a uniform distri-
bution defined on [0, v] with cumulative distribution function (c.d.f.) F (·)
and probability distribution function (p.d.f) f(·). In other words, all bid-
ders share the same valuation distribution and private information. We also
consider a DDA with a fixed number of price drop levels. The bid levels
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9 Nonlinear optimization of revenue per unit of time in discrete Dutch ...

b1 < b2 < . . . < bm span from a minimum price b1 = 0 (no reserve price) to a
maximum bm+1 = v (starting price) partitioning the [0, v] valuation range. It
follows that F (b1) = 0, F (bm+1) = v and F (bi) =

bi
v , i = 1, 2, . . . ,m without

any loss of generality. These modeling assumptions, consistent with prior
literature [33, 36, 44], provide a tractable framework for our analysis. Hence,
the seller’s expected revenue per unit of time Z can be expressed as follows:

Z =

m∑
i=1

1−e−αbi

α

[(
bi+1

v

)n
−
(

bi
v

)n]

s

[
(1 +m)

(
1 +

(
b1
v

)n
−
(

bm+1

v

)n)
+

m∑
i=1

(2− i+m)

((
bi+1

v

)n
−
(

bi
v

)n)] ,

=

m∑
i=1

(
1− e−αbi

)(
bni+1 − bni

)
αs

[
(1 +m)(vn + bn1 − bnm+1) +

m∑
i=1

(2− i+m)(bni+1 − bni )

] .
(5)

Therefore, the formulated model as a nonlinear program (NLP) in decision
variables b1, b2, . . . , bm and the parameters α, m, n, s, and v is given below:

Maximize

Z =

m∑
i=1

(
1− e−αbi

)(
bni+1 − bni

)
αs

[
(1 +m)(vn + bn1 − bnm+1) +

m∑
i=1

(2− i+m)(bni+1 − bni )

] ,

subject to:
bi+1 ≥ bi, i = 1, 2, . . . ,m,

b1 ≥ 0,

bm+1 = v.

(6)

In the above NLP (6), it is crucial to recognize that as α approaches 0, it
signifies the risk-neutral case. This is due to the fact that limα→0

1−e−αbi

α =

bi, which leads to the reduction of our NLP (6) to the model described by
Li and Kuo [32], which does not account for the risk preferences of the bid-
ders despite their claim, as that model lacks any parameters to define risk
behaviors. Moreover, positive α indicates risk-averse bidders and negative α

indicates risk-seeking behavior of the bidders [30, 3, 8].

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Shamim and Majahar Ali 10

This paper focuses on solving the optimization model (6) to find the
revenue-maximizing set of bid levels and optimal revenue per unit of time
under the given constraints. In mathematical terms, we tackle an NLP
with m decision variables b1, b2, . . . , bm (the bid levels). The objective func-
tion Z (b1, . . . , bm) is continuously differentiable but nonlinear and generally
nonconvex, due to the combination of exponential utility terms and polyno-
mial probability terms in (6). However, the structure of the problem offers
some advantages: The feasible region is defined by simple linear inequali-
ties 0 ≤ b1 ≤ b2 ≤ . . . ≤ bm ≤ v, and we observed that increasing a bid
level beyond its optimal point yields diminishing returns (suggesting a sin-
gle prominent optimum in practice). This NLP is solved using a numerical
optimization approach. Specifically, a program in R (using the nloptr pack-
age) is implemented to maximize (6) subject to the constraints. This solver
employs an augmented Lagrangian method to handle the monotonicity con-
straints effectively, ensuring that the solution respects b1 ≤ . . . ≤ bm. Each
function evaluation of Z involves summing over m terms and computing
probabilities raised to the power n, which is an O(m) computation. Thus,
the computational complexity scales primarily with the number of bid levels
m. In our study, we considered m up to 7, for which the solver finds solutions
within a few hours on a standard PC. The number of bidders n influences the
shape of the objective (larger n makes the revenue curve steeper) but does
not increase the number of decision variables, so it has a minor impact on
computation time. We also note that our model reduces to the known risk-
neutral case when α → 0, for which analytical solution methods exist (see
Li and Kuo [32]); but for arbitrary α, an analytical solution is intractable,
validating our choice of a numerical solver. The use of a modern NLP solver
is sufficient and efficient for the problem sizes in this study.
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11 Nonlinear optimization of revenue per unit of time in discrete Dutch ...

3.1 Risk preference asymmetry and utility curvature

We now formalize the distinction between risk-averse and risk-seeking bid-
ders in our model. In the CARA utility framework U(bi) =

1−e−αbi

α , the sign
of α governs the utility function’s curvature and thereby the bidder’s risk
attitude. If α > 0, then the second derivative U ′′(bi) < 0, meaning U(bi) is
concave, that is, the hallmark of risk aversion. The bidder derives diminish-
ing marginal utility from monetary gains, preferring certain outcomes over
gambles with the same expectation. Conversely, if α < 0, then U ′′(bi) > 0,
making the utility convex. This corresponds to risk-seeking (risk-loving) be-
havior, where the bidder is inclined to gamble for higher returns, as the
marginal utility of payoff increases with bi. The boundary case α → 0 yields
U(bi) = bi (by L’Hopital’s rule), a linear utility indicating risk neutrality.
Thus, α → 0 is the cutoff point between two qualitatively different regimes
of bidder behavior. We emphasize that positive α and negative α are not
symmetric cases, rather they produce fundamentally different bidding incen-
tives. A risk-averse bidder (positive α) is primarily concerned with avoiding
high payments (losses), whereas a risk-loving bidder (negative α) focuses on
the potential for paying very low prices (gains), even at the risk of possibly
leaving empty-handed.

This asymmetry manifests in bidding strategies. A risk-averse bidder will
tend to bid (stop the clock) earlier, at a higher price, to secure the item
before the price falls too low and uncertainty increases. Their concave utility
implies a high disutility for the “loss” incurred if the auction is lost or if the
price drops further and someone else wins, hence they exit the auction sooner
to minimize regret. In contrast, a risk-loving bidder gains extra utility from
pushing their luck; the convex utility means the incremental utility of a lower
price is high. Such a bidder is more willing to wait until the price has dropped
significantly before bidding, even though waiting carries the risk of losing to
a competitor. They effectively treat the prospect of getting a very cheap
price as a gamble worth taking. Our model captures these tendencies via
the parameter α. For example, in our simulations, a moderately risk-averse
bidder (α = 0.2) might stop the auction at a price around 80% of their
private value, whereas a similarly strong risk-seeker (α = −0.2) might hold
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out until the price is 50−60% of their value, dramatically increasing variance
in outcomes. Indeed, our computational results confirm this: Holding other
parameters fixed, higher α leads to earlier bids and lower revenue, while
more negative α leads to prolonged bidding and can raise revenue (see Tables
2 and 3). Formally, for any given number of bidders n and bid levels m, we
find Zrl > Zrn > Zra, where Zrl, Zrn, and Zra represent the auctioneer’s
expected revenue per unit of time for risk-loving, risk-neutral, and risk-averse
bidders, respectively, underscoring how the auctioneer’s expected revenue per
unit time improves as bidders become more risk-seeking (refer to Tables 1–3).
This is intuitive from the model: cautious bidders “quit” early, yielding higher
prices but fewer active bidders at low price levels, whereas risk-seeking bidders
stay longer in the game, driving the price lower and intensifying competition,
which paradoxically can increase the auctioneer’s time-adjusted revenue by
shortening auction duration. The key point is that risk aversion versus risk
seeking are asymmetrical in effect, they do not simply cancel out or mirror
each other. The analysis and results of this study reflect the asymmetry
clearly.

4 Results and discussion

In this section, a series of problem instances is examined to analyze the
behavior of the proposed model under varying parameter configurations. The
number of bid levels is represented asm ∈ {2, 3, . . . , 7}, the number of bidders
as n ∈ {2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100}, and the risk parameter as α ∈
{−0.5,−0.4, . . . , 0.5} with v = 1 and s = 1 based on [34]. Using (6), NLPs are
formulated and solved for different combinations of m, n, and α for v = 1 and
s = 1 by implementing a program in RStudio. In the subsequent discussion,
Z ∗

m=γ is used to denote the auctioneer’s maximum expected revenue per unit
of time when the number of bid levels is γ.

To facilitate further discussion, Table 1 provides a summary of the auc-
tioneer’s expected revenues per unit of time for all values of m specified
above, under the assumption of risk-neutral bidders (α → 0). When bidders
exhibit risk-neutral behavior (α → 0), the proposed model (6) reduces to the
revenue model outlined by Li, Yue, and Kuo [34] for cases with zero salvage
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13 Nonlinear optimization of revenue per unit of time in discrete Dutch ...

value. The results presented in Table 1 align with those reported by Li, Yue,
and Kuo [34] when identical parameter values are used.

Table 1: Auctioneer’s maximum expected revenue per unit of time for risk-neutral
bidders (i.e., α → 0) for v = 1, s = 1, n ∈ {2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100} and
m ∈ {2, 3, . . . , 7}.

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1671 0.1900 0.1932 0.1934 0.1934 0.1934
5 0.2717 0.2983 0.3016 0.3019 0.3019 0.3019
10 0.3445 0.3671 0.3691 0.3693 0.3693 0.3693
15 0.3798 0.3986 0.3999 0.4000 0.4000 0.4000
20 0.4011 0.4170 0.4180 0.4180 0.4180 0.4180
25 0.4155 0.4293 0.4301 0.4301 0.4301 0.4301
30 0.4259 0.4382 0.4387 0.4387 0.4387 0.4387
40 0.4402 0.4501 0.4505 0.4505 0.4505 0.4505
60 0.4562 0.4634 0.4636 0.4636 0.4636 0.4636
80 0.4651 0.4708 0.4709 0.4709 0.4709 0.4709
100 0.4708 0.4755 0.4756 0.4756 0.4756 0.4756

As shown in Table 1, the expected revenue per unit of time consistently
increases with the number of bidders n for each value of bid levels m ranging
from 2 to 7. Similarly, for any given n, the expected revenue per unit of time
rises with an increasing number of bid levels m. However, this growth halts
when m reaches 4 for n ≥ 20 or 5 for n < 20. The highest optimal values for
expected revenue per unit of time for each n are highlighted in bold in Table
1. This finding aligns with previously established results in the literature
[32, 33, 34, 55]. For instance, Figure 1 illustrates the case where n = 40,
showing that the optimum revenue per unit of time Z ∗ increases with m and
reaches a peak value of 0.4505 when m is 4. These results suggest that the
auctioneer can achieve maximum expected revenue per unit of time with no
more than 5 bid levels, regardless of the value of n, consistent with the trends
reported by Li, Yue, and Kuo [34].

It is important to note that this plateauing behavior occurs under our
model’s assumptions of symmetric bidders and uniform valuations. Intu-
itively, an auction’s revenue per unit time cannot increase indefinitely with
more competition, there is an upper limit. As n becomes very large, the
highest bidder’s valuation will likely be very close to the maximum value v.
(For instance, with valuations Uniform [0, v], the expected highest valuation
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among n bidders is n
n+1v, which approaches v as n → ∞.) This means adding

more bidders beyond a certain point yields diminishing returns in expected
revenue, causing the revenue curve to flatten out. Similarly, increasing the
number of bid levels beyond about four or five yields negligible benefit be-
cause the auction outcome is then approaching that of a continuous DA.
Additional intermediate price drops (bid levels) past this threshold do not
significantly raise the winning price or reduce the selling time. Therefore, our
model indicates that under standard conditions (uniform i.i.d. values and no
reserve price) the optimal auction design need not exceed five price levels, a
result that aligns with economic intuition and prior findings in the literature.

Figure 1: The auctioneer’s maximum expected revenue per unit of time (Z ∗) versus
number of bid levels m for n = 40 and risk-neutral bidders, that is, (α → 0).

Table 2 outlines the auctioneer’s maximum expected revenue per unit of
time across various bid levels (m) and numbers of bidders (n) under the
condition of risk-averse bidders, characterized by α ∈ {0.1, 0.2, . . . , 0.5}. A
higher value of α indicates greater risk aversion [45, 11, 4]. The results
demonstrate that as α increases, reflecting heightened risk aversion, the ex-
pected revenue per unit of time declines for every combination of m and n.
This occurs because higher risk aversion leads bidders to adopt less aggres-
sive bidding strategies, opting to wait for lower prices to mitigate potential
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losses. Consequently, the auctioneer’s maximum expected revenue decreases
with increasing α.

When comparing the results from Table 1 (risk-neutral bidders) and Table
2 (risk-averse bidders), it is evident that optimal expected revenue is higher
under risk-neutral conditions. Risk-averse bidders, prioritizing loss minimiza-
tion over potential gains, tend to bid conservatively, which negatively impacts
the auctioneer’s revenue [45, 53]. This strategic shift underscores how risk
preferences influence auction dynamics, leading to lower bids and reduced
revenue for the auctioneer [52, 7].

Furthermore, Tables 2a–2e highlight that for larger bidder groups, fewer
bid levels are required to maximize the auctioneer’s expected revenue per
unit of time. Specifically, the optimal number of bid levels is typically fewer
than five, dropping to four or even three in certain cases when the number of
bidders is sufficiently high. For instance, in the scenario where n = 100 and
α = 0.1, four bid levels are sufficient to achieve maximum expected revenue.
However, for the same bidding population and α = 0.5, only three bid levels
are required.

Table 3 highlights the auctioneer’s maximum expected revenue per unit
of time across various bid levels (m) and numbers of bidders (n) under the
influence of risk-loving (or risk-seeking) bidders. Specifically, this analysis
considers α ∈ {−0.1,−0.2, . . . ,−0.5}, where more negative values of α in-
dicate stronger risk-seeking behavior [45, 11, 4]. The table reveals that as
α decreases (becomes more negative), reflecting heightened risk-seeking ten-
dencies, the expected revenue per unit of time for the auctioneer increases
consistently for all values of m and n. This behavior stems from the aggres-
sive bidding strategies of risk-loving participants, who avoid delaying their
bids for potential price drops, driven by their preference for higher risks. As a
result, the auctioneer’s maximum expected revenue increases as risk-seeking
behavior intensifies.

A comparison between Table 1 (risk-neutral bidders) and Table 3 (risk-
loving bidders) shows that the optimal revenue per unit of time generated
from risk-neutral bidders is lower than that from risk-loving bidders. The
propensity of risk-loving bidders to take bold risks results in more aggressive
bidding behavior, which translates to higher maximum expected revenue per
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Table 2: Auctioneer’s maximum expected revenue per unit of time for risk-averse bidders
(i.e., α ∈ {0.1, 0.2, . . . , 0.5}) for v = 1, s = 1, n ∈ {2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100}
and m ∈ {2, 3, . . . , 7}.

(a) For α = 0.1

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1628 0.1848 0.1879 0.1881 0.1881 0.1881
5 0.2629 0.2882 0.2912 0.2915 0.2916 0.2916
10 0.3318 0.3529 0.3548 0.3549 0.3549 0.3549
15 0.3648 0.3823 0.3835 0.3836 0.3836 0.3836
20 0.3846 0.3994 0.4003 0.4004 0.4004 0.4004
25 0.398 0.4108 0.4115 0.4115 0.4115 0.4115
30 0.4077 0.4190 0.4195 0.4195 0.4195 0.4195
40 0.4209 0.4300 0.4304 0.4304 0.4304 0.4304
60 0.4357 0.4423 0.4425 0.4425 0.4425 0.4425
80 0.4439 0.4491 0.4492 0.4492 0.4492 0.4492
100 0.4491 0.4534 0.4535 0.4535 0.4535 0.4535

(b) For α = 0.2

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1587 0.1799 0.1828 0.1830 0.1830 0.1830
5 0.2546 0.2786 0.2814 0.2817 0.2817 0.2817
10 0.3197 0.3395 0.3412 0.3413 0.3413 0.3413
15 0.3507 0.3669 0.3680 0.3681 0.3681 0.3681
20 0.3691 0.3829 0.3836 0.3837 0.3837 0.3837
25 0.3816 0.3934 0.3940 0.3940 0.3940 0.3940
30 0.3906 0.4010 0.4014 0.4014 0.4014 0.4014
40 0.4028 0.4112 0.4115 0.4115 0.4115 0.4115
60 0.4164 0.4225 0.4226 0.4226 0.4226 0.4226
80 0.4239 0.4287 0.4288 0.4288 0.4288 0.4288
100 0.4288 0.4327 0.4327 0.4327 0.4327 0.4327

(c) For α = 0.3

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1548 0.1752 0.1780 0.1782 0.1782 0.1782
5 0.2467 0.2694 0.2721 0.2724 0.2724 0.2724
10 0.3082 0.3268 0.3284 0.3285 0.3285 0.3285
15 0.3373 0.3524 0.3534 0.3535 0.3535 0.3535
20 0.3545 0.3672 0.3679 0.3680 0.3680 0.3680
25 0.3661 0.3770 0.3775 0.3775 0.3775 0.3775
30 0.3744 0.3840 0.3844 0.3844 0.3844 0.3844
40 0.3857 0.3934 0.3937 0.3937 0.3937 0.3937
60 0.3983 0.4038 0.4040 0.4040 0.4040 0.4040
80 0.4052 0.4096 0.4096 0.4096 0.4096 0.4096
100 0.4097 0.4132 0.4133 0.4133 0.4133 0.4133

(d) For α = 0.4

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1511 0.1706 0.1733 0.1735 0.1735 0.1735
5 0.2392 0.2607 0.2632 0.2635 0.2635 0.2635
10 0.2974 0.3147 0.3162 0.3163 0.3163 0.3163
15 0.3246 0.3387 0.3396 0.3396 0.3397 0.3397
20 0.3407 0.3525 0.3531 0.3531 0.3531 0.3531
25 0.3514 0.3615 0.3620 0.3620 0.3620 0.3620
30 0.3591 0.3680 0.3684 0.3684 0.3684 0.3684
40 0.3696 0.3767 0.3769 0.3769 0.3769 0.3769
60 0.3812 0.3863 0.3864 0.3864 0.3864 0.3864
80 0.3876 0.3916 0.3916 0.3916 0.3916 0.3916
100 0.3917 0.3949 0.3950 0.3950 0.3950 0.3950

(e) For α = 0.5

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1475 0.1663 0.1689 0.1691 0.1691 0.1691
5 0.232 0.2524 0.2548 0.2550 0.2550 0.2550
10 0.2871 0.3034 0.3047 0.3048 0.3048 0.3048
15 0.3126 0.3257 0.3265 0.3266 0.3266 0.3266
20 0.3276 0.3385 0.3391 0.3391 0.3391 0.3391
25 0.3376 0.3469 0.3474 0.3474 0.3474 0.3474
30 0.3448 0.3529 0.3533 0.3533 0.3533 0.3533
40 0.3544 0.3610 0.3612 0.3612 0.3612 0.3612
60 0.3652 0.3698 0.3699 0.3699 0.3699 0.3699
80 0.371 0.3747 0.3747 0.3747 0.3747 0.3747
100 0.3748 0.3778 0.3778 0.3778 0.3778 0.3778

unit of time for the auctioneer compared to their risk-neutral counterparts
[45, 53]. In essence, risk-loving bidders focus on maximizing potential gains
rather than minimizing losses. This leads to higher bids, directly enhancing
the auctioneer’s expected revenue per unit of time [52, 7].

Furthermore, Tables 3a–3e emphasize that as the number of bidders (n)
increases, the number of bid levels required to maximize the auctioneer’s
expected revenue per unit of time generally decreases. The maximum number
of bid levels required remains five or fewer in most cases, although it can reach
six bid levels when n is relatively small. For instance, when n = 100, only
four bid levels are sufficient to maximize expected revenue per unit of time,
irrespective of the value of α.
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Table 3: Auctioneer’s maximum expected revenue per unit of time for risk-
loving bidders (i.e., α ∈ {−0.1,−0.2, . . . ,−0.5}) for v = 1, s = 1, n ∈
{2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100} and m ∈ {2, 3, . . . , 7}.

(a) For α = 0.1

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1716 0.1954 0.1987 0.1990 0.1990 0.1990
5 0.2808 0.309 0.3124 0.3128 0.3128 0.3128
10 0.358 0.3820 0.3843 0.3844 0.3844 0.3844
15 0.3956 0.4158 0.4173 0.4174 0.4174 0.4174
20 0.4185 0.4357 0.4368 0.4368 0.4368 0.4368
25 0.434 0.4490 0.4498 0.4498 0.4498 0.4498
30 0.4452 0.4585 0.4591 0.4592 0.4592 0.4592
40 0.4606 0.4715 0.4719 0.4719 0.4719 0.4719
60 0.478 0.4859 0.4861 0.4861 0.4861 0.4861
80 0.4877 0.4939 0.4941 0.4941 0.4941 0.4941
100 0.4939 0.4991 0.4992 0.4992 0.4992 0.4992

(b) For α = 0.2

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1763 0.201 0.2045 0.2048 0.2048 0.2048
5 0.2905 0.3202 0.3239 0.3242 0.3243 0.3243
10 0.3722 0.3979 0.4003 0.4005 0.4005 0.4005
15 0.4124 0.4341 0.4357 0.4358 0.4359 0.4359
20 0.4369 0.4555 0.4567 0.4568 0.4568 0.4568
25 0.4536 0.4699 0.4707 0.4708 0.4708 0.4708
30 0.4658 0.4802 0.4809 0.4809 0.4809 0.4809
40 0.4824 0.4942 0.4947 0.4947 0.4947 0.4947
60 0.5013 0.5099 0.5102 0.5102 0.5102 0.5102
80 0.5118 0.5186 0.5188 0.5188 0.5188 0.5188
100 0.5186 0.5243 0.5244 0.5244 0.5244 0.5244

(c) For α = 0.3

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1812 0.2070 0.2106 0.2109 0.2109 0.2109
5 0.3007 0.3320 0.3359 0.3363 0.3364 0.3364
10 0.3872 0.4147 0.4173 0.4175 0.4175 0.4175
15 0.4302 0.4535 0.4553 0.4554 0.4554 0.4554
20 0.4565 0.4766 0.4779 0.4780 0.4780 0.4780
25 0.4745 0.4921 0.4930 0.4931 0.4931 0.4931
30 0.4876 0.5032 0.5040 0.5041 0.5041 0.5041
40 0.5056 0.5185 0.5190 0.5190 0.5190 0.5190
60 0.5261 0.5355 0.5358 0.5358 0.5358 0.5358
80 0.5375 0.5450 0.5452 0.5452 0.5452 0.5452
100 0.5449 0.5511 0.5512 0.5512 0.5512 0.5512

(d) For α = 0.4

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1864 0.2132 0.2170 0.2173 0.2173 0.2173
5 0.3113 0.3445 0.3487 0.3491 0.3491 0.3491
10 0.4031 0.4324 0.4353 0.4355 0.4355 0.4355
15 0.4491 0.4741 0.4761 0.4762 0.4762 0.4762
20 0.4773 0.499 0.5004 0.5005 0.5005 0.5005
25 0.4966 0.5157 0.5168 0.5168 0.5168 0.5168
30 0.5108 0.5278 0.5287 0.5287 0.5287 0.5287
40 0.5303 0.5443 0.5449 0.5449 0.5449 0.5449
60 0.5525 0.5628 0.5631 0.5631 0.5631 0.5631
80 0.565 0.5731 0.5733 0.5733 0.5733 0.5733
100 0.573 0.5798 0.5799 0.5799 0.5799 0.5799

(e) For α = 0.5

n Z ∗
m=2 Z ∗

m=3 Z ∗
m=4 Z ∗

m=5 Z ∗
m=6 Z ∗

m=7

2 0.1918 0.2197 0.2237 0.2240 0.2240 0.2240
5 0.3226 0.3576 0.3621 0.3625 0.3626 0.3626
10 0.4199 0.4513 0.4543 0.4546 0.4546 0.4546
15 0.4691 0.496 0.4981 0.4983 0.4983 0.4983
20 0.4994 0.5228 0.5244 0.5245 0.5245 0.5245
25 0.5202 0.5408 0.5421 0.5421 0.5421 0.5421
30 0.5355 0.5539 0.5549 0.5550 0.5550 0.5550
40 0.5566 0.5718 0.5725 0.5725 0.5725 0.5725
60 0.5807 0.5920 0.5923 0.5923 0.5923 0.5923
80 0.5942 0.6032 0.6034 0.6034 0.6034 0.6034
100 0.603 0.6105 0.6106 0.6106 0.6106 0.6106

From Tables 1–3, it is evident that the inequality Zrl > Zrn > Zra

consistently holds for all values ofm and n. Here, Zrl, Zrn, and Zra represent
the auctioneer’s expected revenue per unit of time for risk-loving, risk-neutral,
and risk-averse bidders, respectively. This relationship is further illustrated
for m = 5 in Figure 2, which shows that the expected revenue per unit of
time Z ∗

m=5 increases steadily as α decreases, thereby corroborating the stated
inequality.

Moreover, Figure 2 reveals that as the number of bidders n increases,
the revenue initially grows rapidly, but the rate of growth gradually slows
down beyond a certain point for higher values of n. A similar trend can
be observed for other values of m, indicating a consistent pattern across the
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auction’s various configurations. The findings indicate that an increase in the
number of bidders leads to a higher revenue per unit of time, as expected.
However, beyond a certain threshold, adding more bidders has a diminishing
impact on auction outcomes. This is due to the fact that while additional bid-
ders contribute to increased competition, the marginal revenue gains become
negligible. Moreover, excessively increasing the number of bidders results in
significantly higher operational costs, including administrative expenses and
auction management overhead, which may offset the benefits of increased
participation.

Figure 2: The auctioneer’s maximum expected revenue per unit of time (Z ∗
m=5) versus

number of bidders (n) where m = 5, s = 1, v = 1 and α ∈ {−0.5, 0.4, . . . , 0.5}.

Tables 4, 5, and 6 present the optimal bid levels for m = 6 with v = 1,
considering risk-neutral (α → 0), risk-averse (α > 0), and risk-loving (α < 0)
bidders, respectively. In all cases, b1 = 0 implies that the lowest bid level
is zero, meaning that the item is given away for free if unsold by that point
(as in [32]), an assumption in our developed model. Additionally, bm+1 = 1

represents the highest asking price, with all intermediate bid levels optimized
using the NLP (6).

Figure 3 illustrates the relationship between the constant of absolute risk
aversion α and the optimal bid levels bi from Tables 4–6. Specifically, Figures
3a and 3b represent n = 10 and n = 30, showing that for a smaller number
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of bidders, the auctioneer must set distinct bid levels to maximize expected
revenue per unit of time for each value of α. Conversely, Figures 3c and 3d
demonstrate that as the number of bidders increases, the gap between the bid
level curves b∗i decreases, allowing the auctioneer to skip several intermediate
bid levels while still maximizing the expected revenue per unit of time. These
graphs confirm that fewer bid levels suffice to maximize expected revenue per
unit of time as the number of bidders grows significantly.

Although the optimal solutions of the NLP (6) for Li and Kuo’s param-
eters [32] are not explicitly presented here, replicating their conditions with
α → 0 validates our model against their findings. This validation under-
scores the robustness of our approach, which extends the existing literature
by incorporating the impact of bidders’ risk preferences on the auctioneer’s
expected revenue per unit of time in DDAs—a previously unexplored aspect.

Table 4: Risk-neutral (i.e., α → 0) optimal bid levels for m = 6, v = 1, s = 1 and
n ∈ {2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100}.

n b1 b2 b3 b4 b5 b6
2 0 0.00637 0.05086 0.16367 0.3564 0.63423
5 0 0.12656 0.22543 0.35649 0.52718 0.74089
10 0 0.29469 0.40417 0.52172 0.65895 0.81797
15 0 0.4047 0.50874 0.61167 0.72696 0.85617
20 0 0.43077 0.5754 0.66937 0.76961 0.87961
25 0 0.13506 0.61354 0.70967 0.79927 0.89571
30 0 0.03807 0.65014 0.74045 0.82134 0.90756
40 0 0.0032 0.4345 0.77603 0.85195 0.92399
60 0 0.00037 0.08696 0.82408 0.88799 0.94292
80 0 0.01177 0.0637 0.8562 0.90889 0.95373
100 0 0.02018 0.03763 0.87752 0.92267 0.96081

Beyond the numerical results, bidders’ risk attitudes are shaped by be-
havioral factors. To capture this dimension, we complement the quantitative
analysis with insights from the prospect theory (Section 4.1) and further
relate our findings to published field evidence (Section 4.2).
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Table 5: Risk-averse (i.e., α ∈ {0.1, 0.2, . . . , 0.5}) optimal bid levels for m = 6, v = 1,
s = 1, n ∈ {2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100}.

(a) For α = 0.1

n b1 b2 b3 b4 b5 b6
2 0 0.006369 0.05019 0.160943 0.351108 0.628404
5 0 0.125464 0.223157 0.352824 0.522604 0.736984
10 0 0.292227 0.401038 0.518059 0.655308 0.815349
15 0 0.401718 0.505522 0.608329 0.723948 0.854164
20 0 0.217861 0.562987 0.665763 0.766988 0.87798
25 0 0.089728 0.609424 0.706885 0.79701 0.894332
30 0 0.031427 0.647208 0.737953 0.819334 0.906362
40 0 0.007614 0.457394 0.774618 0.850336 0.923038
60 0 0.041936 0.125849 0.822922 0.886796 0.942243
80 0 0.007262 0.062786 0.854846 0.90793 0.953198
100 0 0.006374 0.053867 0.87651 0.921869 0.960376

(b) For α = 0.2

n b1 b2 b3 b4 b5 b6
2 0 0.006361 0.049527 0.15829 0.34593 0.622612
5 0 0.124371 0.220902 0.349199 0.518056 0.733072
10 0 0.289806 0.397913 0.5144 0.651656 0.812708
15 0 0.398847 0.502304 0.604973 0.720908 0.852139
20 0 0.242129 0.560997 0.662805 0.764391 0.876328
25 0 0.110955 0.607069 0.704176 0.794732 0.892931
30 0 0.049844 0.644846 0.735459 0.817304 0.905144
40 0 0.008437 0.478437 0.773193 0.848701 0.92207
60 0 0.013095 0.100278 0.820966 0.88556 0.941551
80 0 0.000198 0.020311 0.853103 0.906942 0.952658
100 0 0.002268 0.037323 0.875249 0.921051 0.959933

(c) For α = 0.3

n b1 b2 b3 b4 b5 b6
2 0 0.006352 0.048875 0.155706 0.340861 0.61686
5 0 0.123276 0.218666 0.34561 0.513537 0.72915
10 0 0.287384 0.394792 0.510742 0.647993 0.810045
15 0 0.395954 0.499075 0.601603 0.717848 0.850091
20 0 0.249816 0.558328 0.659782 0.761765 0.874654
25 0 0.094469 0.603605 0.701375 0.792425 0.89151
30 0 0.054418 0.642144 0.732927 0.815248 0.903908
40 0 0.058763 0.5332 0.772527 0.847074 0.921089
60 0 0.009706 0.11239 0.819471 0.884319 0.940849
80 0 0.001578 0.03352 0.851851 0.90595 0.95211
100 0 0.023409 0.043642 0.874137 0.920222 0.959483

(d) For α = 0.4

n b1 b2 b3 b4 b5 b6
2 0 0.00634 0.048234 0.153189 0.335902 0.611153
5 0 0.122181 0.216451 0.342061 0.50905 0.725222
10 0 0.284961 0.391676 0.507087 0.644322 0.807361
15 0 0.39306 0.49584 0.598221 0.714767 0.848021
20 0 0.21983 0.554073 0.656643 0.759109 0.872959
25 0 0.074269 0.599807 0.698539 0.790095 0.890071
30 0 0.087762 0.64014 0.730399 0.81317 0.902654
40 0 0.032483 0.505141 0.769579 0.845334 0.920089
60 0 0.012192 0.134555 0.818088 0.883061 0.940135
80 0 0.006956 0.025687 0.850382 0.904939 0.951553
100 0 0.031534 0.037506 0.872913 0.91938 0.959026

(e) For α = 0.5

n b1 b2 b3 b4 b5 b6
2 0 0.006326 0.047604 0.150739 0.33105 0.605494
5 0 0.121087 0.214256 0.33855 0.504596 0.721288
10 0 0.282548 0.388568 0.503437 0.640644 0.804655
15 0 0.390155 0.492596 0.594826 0.711667 0.845929
20 0 0.235182 0.551674 0.653599 0.756438 0.871244
25 0 0.145968 0.599328 0.695842 0.787747 0.888613
30 0 0.033733 0.635972 0.727758 0.811065 0.901384
40 0 0.005836 0.490001 0.767377 0.843606 0.919077
60 0 0.003413 0.122017 0.816238 0.881776 0.939411
80 0 0.016607 0.03418 0.849054 0.903916 0.950987
100 0 0.0000002 0.000859 0.871422 0.918521 0.958561

4.1 Behavioral perspective: Prospect theory and risk
behavior

Growing research in behavioral economics shows that individuals’ risk pref-
erences are reference-dependent. In particular, Kahneman and Tversky’s
prospect theory posits that people evaluate outcomes relative to a reference
point (status quo) and exhibit risk aversion for gains and risk seeking for
losses, rather than a uniform risk attitude [27]. This behavior is captured
by an S-shaped value function (refer to Figure 4): Concave in the gains re-
gion (implying diminishing sensitivity and risk-averse behavior) but convex
in the losses region, reflecting risk-seeking tendencies to avoid sure losses.
In the context of auctions, this means a bidder’s inclination to take risks
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Table 6: Risk-loving (i.e., α ∈ {−0.1,−0.2, . . . ,−0.5}) optimal bid levels for m = 6,
v = 1, s = 1, n ∈ {2, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100}.

(a) For α = 0.1

n b1 b2 b3 b4 b5 b6
2 0 0.006375 0.051546 0.166462 0.361795 0.640093
5 0 0.127647 0.227719 0.360184 0.531781 0.744772
10 0 0.29708 0.407293 0.525376 0.662573 0.820556
15 0 0.407425 0.511922 0.614991 0.729956 0.858142
20 0 0.482237 0.581117 0.672531 0.772176 0.881224
25 0 0.088777 0.615174 0.712301 0.801493 0.897075
30 0 0.063925 0.653424 0.742928 0.823323 0.908745
40 0 0.038886 0.554843 0.781179 0.853688 0.924935
60 0 0.012076 0.124245 0.826104 0.889195 0.943592
80 0 4.26E-05 0.026447 0.85719 0.909836 0.95425
100 0 0.030176 0.089937 0.878983 0.923466 0.96124

(b) For α = 0.2

n b1 b2 b3 b4 b5 b6
2 0 0.006373 0.052238 0.169329 0.367303 0.64598
5 0 0.128736 0.230026 0.363916 0.536405 0.748642
10 0 0.299522 0.410421 0.52903 0.666183 0.823122
15 0 0.410409 0.515113 0.618296 0.732924 0.860094
20 0 0.444641 0.581898 0.675348 0.77469 0.88281
25 0 0.105909 0.618475 0.714982 0.803695 0.898416
30 0 0.036579 0.655578 0.745332 0.825277 0.90991
40 0 0.000879 0.438112 0.77999 0.855147 0.925853
60 0 0.010616 0.098259 0.827382 0.890358 0.94425
80 0 0.00337 0.054132 0.85871 0.910774 0.954763
100 0 0.004399 0.005239 0.879533 0.924233 0.961661

(c) For α = 0.3

n b1 b2 b3 b4 b5 b6
2 0 0.006368 0.052938 0.172269 0.37292 0.651889
5 0 0.129817 0.232346 0.36768 0.541051 0.752494
10 0 0.301964 0.413547 0.532678 0.669776 0.82566
15 0 0.413297 0.518282 0.621579 0.735865 0.862021
20 0 0.437732 0.58437 0.678252 0.777185 0.884374
25 0 0.104765 0.621276 0.717632 0.80587 0.899737
30 0 0.082239 0.659187 0.747779 0.827208 0.911056
40 0 0.014346 0.477744 0.782869 0.856752 0.926763
60 0 0.013075 0.107012 0.829033 0.891514 0.944897
80 0 0.000748 0.034652 0.859841 0.911689 0.955267
100 0 0.001334 0.004129 0.880615 0.924997 0.962075

(d) For α = 0.4

n b1 b2 b3 b4 b5 b6
2 0 0.006358 0.053645 0.175284 0.378645 0.657814
5 0 0.130889 0.234679 0.371476 0.545715 0.756325
10 0 0.304386 0.416668 0.536319 0.673349 0.82817
15 0 0.416156 0.521432 0.624841 0.738779 0.863921
20 0 0.411012 0.585903 0.681063 0.779646 0.885914
25 0 0.094328 0.623848 0.720226 0.808014 0.901037
30 0 0.041685 0.66105 0.750112 0.829108 0.912183
40 0 0.001515 0.477023 0.784702 0.85829 0.927656
60 0 0.023113 0.116925 0.830673 0.892651 0.945533
80 0 0.018905 0.072682 0.861382 0.912598 0.955763
100 0 0.020446 0.04199 0.881898 0.925752 0.962482

(e) For α = 0.5

n b1 b2 b3 b4 b5 b6
2 0 0.006345 0.054358 0.178373 0.384477 0.66375
5 0 0.131952 0.237024 0.375302 0.550396 0.760132
10 0 0.306795 0.419782 0.539951 0.676902 0.830652
15 0 0.419002 0.524563 0.62808 0.741664 0.865796
20 0 0.421518 0.589118 0.683961 0.782086 0.887431
25 0 0.128293 0.627457 0.722856 0.810134 0.902317
30 0 0.048893 0.663809 0.75246 0.830983 0.913292
40 0 0.001763 0.495012 0.787023 0.859826 0.928535
60 0 0.000512 0.087395 0.831879 0.893756 0.946157
80 0 0.005219 0.029883 0.862319 0.913477 0.956249
100 0 0.011548 0.026896 0.882862 0.926487 0.962881

may increase if they perceive themselves as “in the losses”—for example, if
the current auction price exceeds their internal reference point (perhaps the
price they initially hoped to pay). Conversely, if a bidder stands to obtain a
item at a price well below their value (a perceived gain), then the prospect
theory predicts more risk-averse behavior, that is, locking in the win rather
than gambling further [31].

The Dutch auction format may interact with these behavioral tendencies.
Bidders often set a mental reference price; dropping below it turns the poten-
tial purchase into a “gain” scenario, where they might become cautious and
clinch the deal. If the price stays above that reference (a potential loss rela-
tive to their target), bidders might hold off (risk-seek) longer than standard
risk-neutral models predict, hoping the price drops further. Empirical evi-
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(a) For n = 10. (b) For n = 30.

(c) For n = 60. (d) For n = 100.

Figure 3: Constant of absolute risk aversion (α) versus optimal bid levels (b∗i ) when
m = 5.

Figure 4: Value function (as in [31]).

dence of such behavior is noted in auction experiments and field data [18, 27].
For instance, experienced bidders sometimes “ride the clock”” longer when
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they feel they are “behind” (a form of loss-chasing), a behavior consistent
with the prospect theory’s loss-domain risk seeking. This subsection bridges
our model with real-world behavior: While our optimization assumes consis-
tent risk preferences via CARA utilities, in practice a bidder’s risk posture
might dynamically shift from conservative to bold depending on whether the
current price is viewed as a gain or a loss. Incorporating such reference-
dependent preferences formally is an interesting avenue for future extensions
of our model.

4.2 Validation through published empirical evidence

Although this study is based on simulation results, it is important to con-
sider whether the findings are consistent with empirical evidence. Access
to detailed, transaction-level Dutch auction data remains highly restricted,
since most fish and flower auction houses do not make such records publicly
available. As a result, we validate our framework by drawing on published
studies that have analyzed real auction data.

Fluvià et al. [16], using approximately 179,000 transactions from the
Ancona fish market, reported the patterns that resonate strongly with our
model: Prices decline substantially over the course of an auction, and auc-
tioneer revenue per unit time reaches a plateau once bidder participation
exceeds a certain threshold. Both results mirror the dynamics predicted in
our simulations. Likewise, empirical evidence from the Dutch flower auctions
(Royal FloraHolland) shows that transactions are typically concluded within
seconds [51, 34], meaning that only a small number of bid decrements are
actually employed. This observation supports our result that, beyond an op-
timal number of bid levels, additional increments contribute little to revenue
performance. Taken together, these studies confirm that the main dynamics
captured by our simulations are also observed in practice: (i) revenue per
unit time increases with more bidders but eventually exhibits diminishing
returns, and (ii) auction efficiency is achieved with only a limited number of
bid decrements. While no new empirical dataset is introduced here, the con-
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sistency between the findings of the study and published evidence provides
external validation of this research.

Another central contribution of this work is the explicit integration of
bidders’ risk preferences, modeled with the CARA utility function, into a
framework for revenue per unit of time optimization. The simulations clearly
indicate that risk-seeking behavior enhances auctioneer revenue, whereas risk
aversion reduces it. This asymmetry follows from the curvature of the utility
function: concavity (risk aversion) leads to cautious bidding, while convexity
(risk seeking) encourages prolonged participation and more aggressive bids.
These insights are consistent with prior laboratory and field studies. Kagel
and Levin [26] demonstrated experimentally that risk-averse bidders shade
their bids, lowering seller revenue. Hu, Matthews, and Zou [21] showed
both analytically and experimentally that risk-averse participants produce
lower expected revenues in Dutch auctions, while risk-loving bidders gener-
ate more aggressive competition and higher revenues. Evidence from fish
auctions aligns with this as well: Fluvià et al. [16] found that cautious buyer
strategies depressed prices, whereas aggressive bidding accelerated sales at
higher prices, reflecting the same outcomes as our risk-seeking simulations.

By aligning these CARA-based results with established experimental and
field evidence, this study demonstrates that bidder risk attitudes are not only
theoretically significant but also observable in real markets. This strengthens
the external validity of the proposed framework, even in the absence of new
transaction-level data.

5 Conclusion

This study introduced a novel framework for modeling the DDA using a non-
linear programming approach to maximize the auctioneer’s expected revenue
per unit of time while explicitly accounting for bidders’ risk preferences. By
integrating the CARA utility function, the model extended existing research
by incorporating α as a measure of bidders’ risk attitudes. Results derived
from extensive numerical experiments revealed several significant insights
that enhance understanding of optimal auction design.
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The findings demonstrated that the auctioneer’s expected revenue per
unit of time increases as the number of bidders n grows. Initially, the rev-
enue per unit of time experiences a sharp rise with an increasing number of
participants; however, as the number of bidders becomes sufficiently large,
the rate of growth slows. This suggested diminishing returns in terms of
revenue gains with further increases in bidder population. For auctions with
smaller numbers of bidders, the auctioneer must set each bid level distinctly
to achieve maximum revenue per unit of time. However, as the number
of bidders increases, some bid levels can be omitted without affecting the
optimal outcome. This observation implied that the auction design can be
simplified for larger bidder populations without compromising efficiency of
revenue per unit of time.

Furthermore, this study emphasized the influence of the number of bid lev-
els (m) on the optimization of revenue per unit of time. The results indicated
that, although an increase in bid levels initially enhances the auctioneer’s
maximum expected revenue per unit of time, this improvement eventually
plateaus, suggesting that additional bid levels beyond a certain threshold do
not yield further benefits. These observations substantiated that employing
five or fewer bid levels is sufficient for optimizing revenue per unit of time,
regardless of the risk preferences of the bidders.

The implications of these findings are significant for auctioneers seeking
to forecast potential revenues per unit of time and enhance the efficiency of
their auction operations. By taking into account both the number of partic-
ipants and the optimal structuring of bid levels, auctioneers can effectively
balance operational complexity with the goal of maximizing revenue per unit
of time. This research not only corroborates previous studies but also deepens
the understanding of the role that risk preferences play in shaping auction
outcomes, thereby providing valuable, practical recommendations for the im-
plementation of auctions in real-world settings.

As the risk aversion coefficient (α) increases, there is a corresponding de-
crease in the auctioneer’s expected revenue per unit of time. This reduction is
primarily due to the conservative bidding behavior exhibited by risk-averse
participants, who prioritize minimizing potential losses over seeking addi-
tional gains. In contrast, when α assumes more negative values, reflecting
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stronger risk-loving tendencies, the auctioneer’s expected revenue per unit
of time rises. This outcome is attributable to the assertive bidding strate-
gies adopted by risk-loving bidders, who focus on maximizing potential gains
rather than limiting losses. Throughout this study, it is consistently ob-
served that Zrl > Zrn > Zra, where Zrl, Zrn, and Zra denote the auction-
eer’s expected revenue for risk-loving, risk-neutral, and risk-averse bidders,
respectively. These findings underscored the significant impact of bidders’
risk preferences on auction outcomes.

Although the model developed in this study advanced prior research by
explicitly integrating risk preferences, it also demonstrated the capacity to
reproduce earlier results when α → 0, thus affirming its validity and wider
applicability. This dual functionality highlighted the model’s robustness and
adaptability, establishing it as a noteworthy contribution to the literature on
DDA.

Beyond the numerical optimization results, this work underscored the
fundamental role of risk attitudes in shaping auctioneer revenue per unit
time. The consistent ordering of revenues across risk profiles, the behavioral
justification provided by the prospect theory, and the alignment with em-
pirical patterns reported in the literature together validated the robustness
of the proposed CARA-based approach. While direct access to proprietary
datasets remains limited, the convergence of our simulation outcomes with
documented field evidence ensured that the framework not only advances
theoretical auction design but also offers insights that are credible and trans-
ferable to real-world market settings.

The results of this study contributed to a deeper understanding of DDA
and provided valuable guidance for enhancing auction design. Neverthe-
less, several limitations should be recognized. This research does not utilize
real-world data for empirical validation, presumes a zero minimum selling
price, and relies exclusively on the CARA utility function in conjunction
with uniformly distributed bidder valuations. These simplifying assumptions
suggested avenues for future inquiry. Subsequent studies could address these
constraints by investigating the impact of nonzero minimum selling prices,
employing alternative probability distributions for bidder valuations, and ex-
ploring different utility functions to model risk preferences. Furthermore,
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empirical validation of the model, where feasible, would strengthen its prac-
tical significance and applicability.

In summary, this study enhances the comprehension of DDA by incorpo-
rating bidders’ risk preferences into a computational optimization framework.
Through the application of nonlinear programming methods to examine the
effects of these preferences, the research advanced auction theory and illus-
trated the utility of mathematical computing in the formulation of effective
auction mechanisms. The findings presented herein established a basis for the
development of more efficient and practical auction models, with relevance
extending across a variety of economic and computational contexts.
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