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for A-stable linear multistep methods
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Abstract

Dahlquist’s second barrier limits the order of A-stable linear multistep
methods to at most two, posing significant challenges for achieving higher
accuracy in the numerical solution of stiff ordinary differential equations.
Leveraging various successful techniques, many efforts have been made to
develop efficient methods that overcome this fundamental obstacle through
different approaches. In this paper, we survey these techniques and ana-
lyze their impact on enhancing the stability and accuracy of the resulting
methods. A comprehensive understanding of these advances can assist re-
searchers in designing more effective algorithms for stiff problems.
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1 Introduction

Stiff ordinary differential equations (ODEs) in the form

y′(x) = f(x, y(x)), x ∈ [x0, X],

y(x0) = y0,
(1)

arise frequently in scientific and engineering applications where the solution
exhibits components with widely varying time scales. Numerical solution of
such systems requires methods that remain stable even when large step sizes
are used for the rapidly decaying components. Explicit methods generally fail
in this regard due to severe stability restrictions, making implicit methods
the preferred choice for stiff problems. Among implicit methods, A-stable
methods play a crucial role. A numerical method is said to be A-stable if its
region of absolute stability contains the entire left half of the complex plane.
This means that when applied to the standard test problem of Dahlquist [9]

y′ = λy, λ ∈ C,

with Re(λ) < 0, the numerical solution decays to zero for any stepsize h > 0,
mirroring the behavior of the exact solution. This property ensures numer-
ical stability for stiff problems without requiring small step sizes. To relax
the stringent requirement of A-stability, the concept of A(α)-stability is in-
troduced. A method is A(α)-stable if its region of absolute stability contains
a sector of the left half-plane bounded by two rays forming an angle 2α with
the negative real axis. While not fully A-stable, such methods maintain
strong stability properties for many stiff problems and can achieve higher
order accuracy.
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3 On overcoming Dahlquist’s second barrier for A-stable linear multistep methods

Implicit Runge–Kutta (IRK) methods can be constructed without theo-
retical limitations on order while preserving A-stability. For example, IRKs,
such as those based on Gauss, Radau, and Lobatto quadratures, can attain
arbitrarily high order while preserving A-stability [14, 20, 7]. However, these
methods require solving nonlinear systems of equations involving multiple
implicit stages at each time step which leads to significantly higher compu-
tational cost.

Linear multistep methods (LMMs) as a class of multivalue and one-stage
methods, by incorporating past solution values and their derivatives, con-
struct higher-order polynomial approximations that increase the order of
accuracy without requiring additional function evaluations at intermediate
stages within each step. A classical k-step LMM for solving (1) is given by

k∑
j=0

αjyn+j = h

k∑
j=0

βjfn+j ,

where αj and βj are parameters to be determined, yn+j ≈ y(xn+j), h is the
stepsize, and fn+j = f(xn+j , yn+j). LMMs despite generally having lower
computational cost than Runge–Kutta methods, suffer severe degradation of
stability as their order increases. In particular, the requirement of A-stability
puts a severe limitation on LMMs, which limits their applicability to stiff
problems when high order accuracy is required. This pessimistic restriction
is known as Dahlquist’s second barrier.

Theorem 1 (Dahlquist’s second barrier [9]). The maximal order of an A-
stable LMM is two, and the trapezoidal rule is the unique method achieving
this order with the minimal error constant.

Circumventing Dahlquist’s second barrier poses challenges for designing
efficient A- or A(α)-stable methods of high orders for stiff ODEs within the
multistep framework. Developing such methods has been carried out by
equipping traditional LMMs with various advanced techniques. A compre-
hensive understanding of the strategies involved in developing techniques to
circumvent Dahlquist’s second barrier is essential, as it enables researchers
to design more effective and stable numerical algorithms tailored for stiff dif-
ferential equations. Drawing on the authors’ experience with methods over-
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coming Dahlquist’s second barrier, this paper surveys the successful research
directions. This survey fills an existing gap in the literature by providing
a unified overview of methods that overcome Dahlquist’s second barrier. It
highlights and compares various advanced techniques and their combinations
that have been proposed to enhance the stability and accuracy of LMMs for
stiff ODEs. By doing so, it offers researchers a comprehensive understanding
of the strengths and limitations of each approach and fosters the generation
of novel ideas for further advancements.

The paper is organized along the following lines. Section 2 introduces
the advanced step-point strategy, reviewing several efficient methods based
on backward differentiation formulas (BDF) that utilize this technique. In
section 3, adaptive methods are discussed with a presentation of methods that
incorporate adaptivity to enhance stability and accuracy. Section 4 focuses
on second derivative methods as a successful strategy for improving both
accuracy and stability. It demonstrates how LMMs have been enhanced using
this approach and surveys several proposed methods that surpass Dahlquist’s
second barrier. Finally, section 5 concludes the paper with a summary of the
main findings and remarks on future research directions.

2 Advanced step-point strategy

BDF methods constitute a widely used family of implicit LMMs for the nu-
merical solution of ODEs, particularly effective for stiff problems. Initially
developed by Curtiss and Hirschfelder [8] and later formalized by Gear [13],
the k-step BDF method is given by

k∑
j=0

αjyn+j = hβkfn+k. (2)

Here, αk = 1 and the other coefficients are chosen so that the method has
order p = k. A k-step BDF is A-stable for k = p = 2 and A(α)-stable for
k = p = 3, 4, 5, 6; orders beyond six lose zero-stability and are generally not
used in practice. Due to their favorable balance of stability and accuracy,
BDF methods serve as the foundation for many robust stiff ODE solvers
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5 On overcoming Dahlquist’s second barrier for A-stable linear multistep methods

such as LSODE and VODE [24, 19]. However, as a subclass of LMMs, they
inherit the drawback that they cannot be A-stable for orders greater than
two. Using the advanced step-point technique is one of the efficient strategies
to overcome this drawback. In this way, some implicit advanced step-point
(IAS) methods based on BDF methods have been introduced.

2.1 EBDF methods

Cash [4] enhanced BDF methods by incorporating the advanced step-point
strategy, leading to the development of extended BDF (EBDF). The k-step
EBDF method takes the form [4]

yn+k +

k−1∑
j=0

αjyn+j = h
(
βkfn+k + βk+1fn+k+1

)
, (3)

where the coefficients are chosen to achieve order p = k + 1. Knowing the
solutions yn+j at the past nodes xn+j , for j = 0, 1, . . . , k − 1, the EBDF
algorithm proceeds as follows:

• The k-step BDF method predicts yn+k using yn+j , j = 0, 1, . . . , k − 1.

• The k-step BDF method predicts yn+k+1 using yn+j , j = 1, 2, . . . , k−1

and the predicted yn+k.

• Finally, the solution yn+k is corrected using yn+j , j = 0, 1, . . . , k − 1,
and the predicted yn+k+1 from (3) written in the form

yn+k − hβkfn+k = −
k−1∑
j=0

αjyn+j + hβk+1fn+k+1,

where fn+k+1 = f(xn+k+1, yn+k+1).

The diagram of overall procedure of the EBDF methods has been plotted
in Figure 1.

The EBDF methods are A-stable up to order four and A(α)-stable up to
order nine, significantly improving the stability properties while achieving a
higher order of convergence compared to classical BDF methods.
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Figure 1: Diagram illustrating the k-step EBDF methods.

2.2 MEBDF methods

To avoid the need for computing and factorizing the two iteration matrices
arising in the application of a modified Newton iteration at each stage—which
leads to higher computational costs—EBDF approach was modified by Cash
[6]. This modified method, known as the modified EBDF (MEBDF), replaces
the corrector formula (3) with

yn+k +

k−1∑
j=0

αjyn+j = hvkfn+k + h(βk − vk)fn+k + hβk+1fn+k+1.

Here, the order of MEBDF is independent of the choice of vk. Selecting
vk = βk−βk, ensures that the coefficient matrix used in the modified Newton
iteration scheme is the same for both the predictor and the corrector. This
choice not only improves computational efficiency by requiring only one LU
decomposition per step but also enlarges the A(α)-stability region compared
to the original EBDF methods. The coefficients of the methods can be found
in [4].

IAS methods have also been parallelized (so-called PIAS) aiming for sig-
nificant efficiency gains and speed-ups, as shown by Psihoyios [22].
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7 On overcoming Dahlquist’s second barrier for A-stable linear multistep methods

2.3 TIAS methods

The two implicit advanced step-point (TIAS) method, introduced by Psi-
hoyios [22], extends the BDF family by incorporating two future points to
improve accuracy and stability. The algorithm uses three predictor steps
based on BDF and a corrector defined by

yn+k +

k−1∑
j=0

α̂jyn+j = h
(
β̂kfn+k + β̂k+1fn+k+1 + β̂k+2fn+k+2

)
. (4)

Knowing the solutions yn+j at the past nodes xn+j , for j = 0, 1, . . . , k − 1,
the TIAS algorithm proceeds as follows:

• The k-step BDF method predicts yn+k using yn+j , j = 0, 1, . . . , k − 1.

• The k-step BDF method predicts yn+k+1 using yn+j , j = 1, 2, . . . , k−1

and the computed yn+k.

• The k-step BDF method predicts yn+k+2 using yn+j , j = 2, 3, . . . , k−1

and the computed yn+k and yn+k+1.

• Finally, the TIAS corrector (4) computes the corrected solution yn+k

using yn+j , j = 0, 1, . . . , k − 1, and the predicted solutions yn+k+1 and
yn+k+2 as

yn+k − hβ̂kfn+k = −
k−1∑
j=0

α̂jyn+j + hβ̂k+1fn+k+1 + hβ̂k+2fn+k+2.

The diagram of overall procedure of the TIAS methods has been plotted
in Figure 2.

Using this approach, A-stable methods have been developed up to order
six. However, this stability improvement was not achieved with the same
level of optimization as in the MEBDF methods.

Considering the stability results of the classical BDF method (without
advanced step-point) as well as those of methods with one and two advanced
step-points aligns with the conjecture that the maximal order p of A-stable
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Figure 2: Diagram illustrating the k-step TIAS methods.

methods increases with the number of advanced step-points, potentially fol-
lowing the relation:

p ≤ 2q + 2,

where q is the number of advanced step-points. Based on the complexity
involved in constructing A-stable methods of order six with q = 2, this con-
jecture has not yet been fully investigated [22].

A general formula was introduced in [23] that generates the stability func-
tions of the methods BDF, EBDF, MEBDF, IAS, TIAS, and PIAS. This for-
mula can substantially facilitate stability analysis and further computational
manipulation of these and analogous schemes.

The features of the advanced step-point strategy have led to its applica-
tion in the construction of other methods aimed at improving accuracy and
stability properties. For example, Fazeli, Hojjati, and Shahmorad [11] intro-
duced a class of multistep collocation methods for solving nonlinear Volterra
integral equations, in which collocation points in the future interval, as well
as in the current interval, are used. This technique results in high-order
methods with an extensive absolute stability region.
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9 On overcoming Dahlquist’s second barrier for A-stable linear multistep methods

3 Adaptive methods

Adaptive methods (also known as blended methods in some contexts) rep-
resent another effective technique for overcoming Dahlquist’s second barrier.
In this strategy, by incorporating adjustable parameters into the algorithms
and tuning these to optimal values, the stability properties of the numerical
methods can be significantly enhanced, enabling the construction of higher-
order methods with improved absolute stability regions. This flexibility, when
applied to LMMs, enables circumventing Dahlquist’s second barrier.

3.1 AMF-BDF method

This strategy was first introduced by Skeel and Kong [25] by blending the
k-step Adams–Moulton formula (AMFk) and the k-step BDF (BDFk) as

AMFk − t h J BDFk = 0,

in which J = ∂f
∂y is the Jacobian matrix of f with respect to y. This method

is of order p = k + 1 for all values of t. The optimum values of t are given
in [25]; see also [14], for which the method is A-stable up to order four and
A(α)-stable up to order twelve, with larger values of α compared to the BDF
method.

3.2 A-BDF method

The adaptive BDF (A-BDF), introduced by Fredebeul [12], generalizes the
classical BDF methods by incorporating a parameter that can be optimized
to improve stability properties. The k-step A-BDF method is a blended
method of implicit and explicit BDF that can be expressed as

A− BDFk(t) := BDF(i)
k − tBDF(e)

k = 0,
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in which BDF(i)
k is the classical implicit k-step BDF (2), and BDF(e)

k is an
explicit k-step BDF-type method defined by

k∑
j=0

α∗
jyn+j = hβ∗

k−1fn+k−1,

where α∗
k = 1 and the other coefficients are chosen so that BDF(e)

k has order
k. Therefore, a k-step A-BDF takes the form

k∑
j=0

(αj − tα∗
j )yn+j = hβkfn+k − tβ∗

k−1fn+k−1.

By finding the optimum values of the parameter t for each step number k,
the maximum values of the angle α in A(α)-stability of A-BDF methods are
achieved. The results reported in [12] show that the k-step A-BDF method
is A-stable up to order two and A(α)-stable up to order seven, with larger
values of α compared to the underlying classical k-step BDF.

3.3 A-EBDF method

The adaptive EBDF (A-EBDF), introduced by Hojjati, Rahimi Ardabili, and
Hosseini [16], extends the A-BDF method to improve the stability properties
of BDF, EBDF, and A-BDF. It combines two strategies—advanced step-
point and adaptive methods—applied to the BDF algorithm. Knowing the
solutions yn+j at the past nodes xn+j , j = 0, 1, . . . , k − 1, the A-EBDF
algorithm proceeds as follows:

• The k-step A-BDF method predicts yn+k using yn+j , j = 0, 1, . . . , k−1.

• The k-step A-BDF method predicts yn+k+1 using yn+j , j = 1, 2, . . . , k−
1 and the predicted yn+k.

• Finally, the k-step EBDF method (3) computes the solution yn+k using
yn+j , j = 0, 1, . . . , k − 1, and the predicted yn+k+1.

The diagram of overall procedure of the A-EBDF methods has been plot-
ted in Figure 3.
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Figure 3: Diagram illustrating the k-step A-EBDF methods.

It is proven that this scheme achieves order k + 1 for all values of the
parameters t ∈ R \ {1}. The optimum values of t resulting in the maximum
angle α of A(α)-stability in A-EBDF are given in [16]. Stability analysis
shows that the A-EBDF method is A-stable up to order four and A(α)-
stable up to order nine with a larger angle α compared to the BDF, EBDF,
and A-BDF methods. This improvement in stability properties results from
the combination of the two aforementioned strategies applied to the BDF
algorithm.

4 Second derivative methods

Incorporating the second derivative of the solution into numerical algorithms
is an effective strategy to enhance both the accuracy and stability of the
methods. Notably, in implicit methods, the use of the second derivative often
incurs no additional computational cost. Specifically, for an autonomous
problem of the form y′ = f(y), the second derivative can be expressed as
y′′ = g = ∂f

∂y f , where
∂f
∂y is the Jacobian matrix of f . Also, for the Jacobian

of g, a piecewise constant approximation of (∂f∂y )2 is typically used.

The LMMs have been extended using this technique in many particular
cases. A k-step second derivative linear multistep methods (SDMM) for the
solution of the initial value problem (1) takes the general form
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Hojjati, Fazeli and Moradi 12

k∑
j=0

αjyn+j = h

k∑
j=0

βjfn+j + h2
k∑

j=0

γjgn+j ,

where g := y′′ = ∂f
∂x + ∂f

∂y f and gn+j = g(xn+j , yn+j). In this section,
we survey some efficient SDMMs and those combined with other techniques
mentioned in previous sections.

4.1 SDBDF methods

Second derivative BDF (SDBDF) methods extend the classical BDF methods
by incorporating the second derivative of the solution to improve accuracy
and stability, particularly for stiff problems [14]. A k-step SDBDF method
takes the form

k∑
j=0

αjyn+j = hβkfn+k + h2γkgn+k, (5)

where αk = 1 and the other coefficients are chosen so that the method has
order p = k + 1.

The inclusion of the second derivative term h2γkgn+k enhances the sta-
bility region of the method beyond that of classical BDF schemes. Notably,
SDBDF methods are A-stable up to order four and A(α)-stable up to or-
der eleven thereby surpassing Dahlquist’s second barrier. Beyond serving
as efficient solvers in their own right, SDBDF schemes play a foundational
role —analogous to classical BDF methods— in the development of advanced
numerical methods discussed later in this section.

4.2 Enright methods

These methods were introduced by Enright [10] by enhancing the Adams
methods through incorporating the second derivative of the solution into the
algorithm. The general form of a k-step Enright method is
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13 On overcoming Dahlquist’s second barrier for A-stable linear multistep methods

yn+k − yn+k−1 = h

k∑
j=0

βjfn+j + h2γkgn+k, (6)

where the coefficients are chosen so that the method has order p = k + 2.

Inheriting from Adams’ methods, the zero-stability of these methods is
guaranteed for all values of the step number k. The methods are A-stable
up to order four (k = 2) and A(α)-stable up to order nine (k = 7), while for
k = 8 the stability region becomes disconnected. It is worth noting that the
underlying Adams–Moulton methods are A-stable only up to order two for
k = 0, 1, and for other k ≥ 2 the stability region is bounded.

4.3 E2BD methods

The second derivative extended backward differentiation formulas (E2BD)
were introduced by Cash [5] as an enhancement of Adams-type methods by
incorporating two key techniques: The use of an advanced step-point and
the inclusion of the second derivative of the solution. These methods are
typically implemented in a predictor-corrector mode and are classified into
two main classes:

E2BD methods – Class 1

Predictor: The Enright method (6).

Corrector: yn+k − yn+k−1 = h

k+1∑
j=0

βjfn+j + h2
(
γkgn+k + γk+1gn+k+1

)
.

(7)

In this class, the corrector extends the Enright method (6) by incorporating
the first and second derivatives of the solution at the future point xn+k+1.
The coefficients in (7) are chosen to achieve order p = k + 4. A k-step
E2BD method of Class 1, considering the predictor’s order, attains overall
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order p = k + 3. These methods exhibit superior stability properties, being
A-stable up to order eight.

E2BD methods – Class 2

Predictor: The Enright method (6).

Corrector: yn+k − yn+k−1 = h

k+1∑
j=0

βjfn+j + h2γkgn+k. (8)

In this class, only the second derivative of the solution at the future point
xn+k+1 is incorporated in the corrector. The coefficients in (8) are chosen so
that the method has order p = k+3. Considering the predictor’s order, a k-
step E2BD method of Class 2 also has order p = k+3. While these methods
are computationally more efficient than those of Class 1, they exhibit slightly
weaker stability properties, being A-stable up to order six.

Class 1 methods for k ≥ 6 and Class 2 methods for k ≥ 4, are A(α)-stable
with large stability angles α. For example, the 6-step E2BD method of Class
1 has α > 89◦. This makes these methods well-suited for integrating stiff
differential systems whose Jacobians have eigenvalues with large imaginary
components close to the imaginary axis.

4.4 ESDMMs

The extended SDMMs (ESDMMs) were introduced by Hojjati, Rahimi Ard-
abili, and Hossein [17] as an enhancement of the SDBDF methods by incor-
porating the second derivative of the solution at the future point into the
algorithm. These methods can be also considered as an extension of BDF
schemes employing two key strategies: The use of an advanced step-point
and the inclusion of the second derivative of the solution. A k-step ESDMM
has the general form
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15 On overcoming Dahlquist’s second barrier for A-stable linear multistep methods

k∑
j=0

α̂jyn+j = hβ̂kfn+k + h2(γ̂kgn+k − γ̂k+1gn+k+1), (9)

where α̂k = 1 and the remaining coefficients are chosen to ensure the method
attains order p = k + 2. Given the known solutions yn+j at previous nodes
xn+j for j = 0, 1, . . . , k − 1, the ESDMM algorithm proceeds as follows:

• The k-step SDBDF (5) predicts yn+k using yn+j , j = 0, 1, . . . , k − 1.

• The k-step SDBDF (5) predicts yn+k+1 using yn+j , j = 1, 2, . . . , k − 1

and the predicted yn+k.

• Finally, the k-step ESDMM (9) computes the solution yn+k using yn+j ,
j = 0, 1, . . . , k − 1, and the predicted yn+k+1 as

yn+k − hβ̂kfn+k − h2γ̂kgn+k = −
k−1∑
j=0

α̂jyn+j − h2γ̂k+1gn+k+1.

The diagram of overall procedure of the ESDMMs has been plotted in
Figure 4.
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Figure 4: Diagram illustrating the k-step ESDMM methods.

ESDMMs exhibit A-stability up to order six and A(α)-stability up to
order fourteen, with larger stability angles α compared to those of BDF and
SDBDF methods.

In analogy with the motivation behind MEBDF methods, ESDMMs have
been further refined into modified ESDMMs (MESDMMs) by replacing the
corrector (9) with the following form [17]:
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k∑
j=0

α̂jyn+j = h(β̂k − βk)fn+k + hβkfn+k + h2(γ̂k − γk)gn+k

− h2γ̂k+1gn+k+1 + h2γkgn+k.

This modification not only reduces the computational cost associated with
ESDMMs but also increases the stability angle α in the A(α)-stability prop-
erty. MESDMMs have also been parallelized–referred to as PMESDMMs–to
enable their efficient implementation on parallel computers [15].

A general formula introduced in [18] generates the stability functions for
the SDBDF, ESDMMs, MESDMMs, and PMESDMMs. This formula helps
to understand how modifying the structure of a method can effectively en-
hance its stability properties.

5 Conclusion

LMMs, as an efficient and flexible class of numerical methods for solving
ODEs, face a significant challenge known as Dahlquist’s second barrier, which
limits their ability to solve stiff systems with high accuracy. This paper has
investigated three effective strategies that overcome this barrier: Advanced
step-point methods, adaptive methods and second derivative methods. These
strategies can be applied individually or in combination to enhance LMMs.
By analyzing their formulation and impact on stability, this study provides
valuable insights for future research aimed at designing new and more robust
algorithms. It is worth noting that other techniques, such as hybrid meth-
ods employing off-step points, also exist; however, the strategies discussed
here represent general frameworks that generate entire classes of methods.
Moreover, the first derivative methods, including LMMs, and second deriva-
tive methods, including SDMMs (and their modifications), are formulated
within the general linear methods (GLMs) [3, 21] and second derivative GLMs
(SGLMs) [1, 2] frameworks, respectively. Therefore, the strategies presented
in this paper can be naturally extended to these more general frameworks.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



17 On overcoming Dahlquist’s second barrier for A-stable linear multistep methods

References

[1] Abdi, A. and Hojjati, G. An extension of general linear methods, Numer.
Algorithms, 57 (2011), 149–167.

[2] Butcher, J.C., and Hojjati, G. Second derivative methods with RK sta-
bility, Numer. Algorithms, 40 (2005), 415–429.

[3] Butcher, J.C. Numerical methods for ordinary differential equations,
Wiley, Chichester, 2016.

[4] Cash, J.R. On the integration of stiff systems of ODEs using extended
backward differentiation formulas, Numer. Math. 34(2) (1980), 235–246.

[5] Cash, J.R. Second derivative extended backward differentiation formulas
for the numerical integration of stiff systems, SIAM J. Numer. Anal.
18(2) (1981), 21–36.

[6] Cash, J.R. The integration of stiff initial value problems in ODEs using
modiffied extended backward differentiation formulae, Comput. Math.
Appl. 9 (1983), 645–660.

[7] Cong, N.H. and Thuy, N.T. Stability of Two-Step-by-Two-Step IRK
Methods Based on Gauss-Legendre Collocation Points and an Appli-
cation, Vietnam J. Math. 40(1) (2012), 115–126.

[8] Curtiss, C.F. and Hirschfelder, J.O. Integration of stiff equations, Pro-
ceedings of the National Academy of Sciences, 38 (1952), 235–243.

[9] Dahlquist, G. A special stability problem for linear multistep methods,
BIT Numer. Math. 3 (1963) 27–43.

[10] Enright, W.H. Second derivative multistep methods for stiff ordinary
differential equations, SIAM J. Numer. Anal. 11 (1974), 321–331.

[11] Fazeli, S., Hojjati, G., and Shahmorad, S. Super implicit multistep collo-
cation methods for nonlinear Volterra integral equations, Math. Comput.
Model. 55 (2012) 590–607.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



Hojjati, Fazeli and Moradi 18

[12] Fredebeul, C. A-BDF: A generalization of the backward differentiation
formulae, SIAM J. Numer. Anal. 35(5) (1998), 1917–1938.

[13] Gear, C.W. Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, 1967.

[14] Hairer, E. and Wanner, G. Solving ordinary differential equations II:
Stiff and differential–algebraic problems, Springer, Berlin, 2010.

[15] Hojjati, G. A class of parallel methods with superfuture points technique
for the numerical solution of stiff systems, J. Mod. Meth. Numer. Math.
6 (2015), 57–63.

[16] Hojjati, G., Rahimi Ardabili, M.Y., and Hosseini, S.M. A-EBDF: an
adaptive method for numerical solution of stiff systems of ODEs, Math.
Comput. Simul. 66 (2004), 33–41.

[17] Hojjati, G., Rahimi Ardabili, M.Y. and Hosseini, S.M. New second
derivative multistep methods for stiff systems, Appl. Math. Model. 30
(2006), 466–476.

[18] Hojjati, G. and Taheri Koltape, L. On the stability functions of sec-
ond derivative implicit advanced-step point methods, J. Math. Model. 10
(2022), 203–212.

[19] Hindmarsh, A.C. ODEPACK, a systematized collection of ODE solvers,
Scientific Computing, (1983), 55–64.

[20] Iserles, A. A first course in the numerical analysis of differential equa-
tions, Cambridge University Press, 1996.

[21] Jackiewicz, Z. General Linear Methods for Ordinary Differential Equa-
tions, Wiley, New Jersey, 2009.

[22] Psihoyios, G. Advanced step-point methods for the solution of initial
value problems, Ph.D. Thesis, University of London, Imperial College,
1995.

[23] Psihoyios, G. A general formula for the stability functions of a group of
implicit advanced step-point (IAS) methods, Math. Comput. Model. 46
(2007), 214–224.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??



19 On overcoming Dahlquist’s second barrier for A-stable linear multistep methods

[24] Shampine, L.F. and Reichelt, M.W. The MATLAB ODE suite, SIAM J.
Sci. Comput. 18(1) (1997), 1–22.

[25] Skeel, R.D., Kong, A.K. Blended linear multistep methods, ACM TOMS
3 (1977), 326–343.

Iran. J. Numer. Anal. Optim., Vol. ??, No. ??, ??, pp ??


	On overcoming Dahlquist's second barrier for A-stable linear multistep methods 
	G. Hojjati, S. Fazeli and A. Moradi

