Abidin, H. Z., Djaja, R., Darmawan, D., Hadi, S., Akbar, A., Rajiyowiryono, H., ... & Subarya, C. (2001). Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Natural Hazards, 23(2), 365-387. https://doi.org/10.1023/A:1011144602064
Al Heib, M., Hassoun, M., Emeriault, F., Villard, P., & Farhat, A. (2021). Predicting subsidence of cohesive and granular soil layers reinforced by geosynthetic. Environmental Earth Sciences, 80, 1-24. https://doi.org/10.1007/s12665-020-09350-3
Alani, A. M., Tosti, F., Ciampoli, L. B., Gagliardi, V., & Benedetto, A. (2020). An integrated investigative approach in health monitoring of masonry arch bridges using GPR and InSAR technologies. NDT & E International, 115, 102288. https://doi.org/10.1016/j.ndteint.2020.102288
Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., & Laczniak, R. J. (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27(6), 483-486. https://doi.org/10.1130/0091-7613
Babaee, S., Khalili, M. A., Chirico, R., Sorrentino, A., & Di Martire, D. (2024). Spatiotemporal characterization of the subsidence and change detection in Tehran plain (Iran) using InSAR observations and Landsat 8 satellite imagery. Remote Sensing Applications: Society and Environment, 36, 101290. https://doi.org/10.1016/j.rsase.2024.101290
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. https://doi.org/10.1109/TGRS.2002.803792
Castellazzi, P., Arroyo-Domínguez, N., Martel, R., Calderhead, A. I., Normand, J. C., Gárfias, J., & Rivera, A. (2016). Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. International Journal of Applied Earth Observation and Geoinformation, 47, 10. https://doi.org/10.1016/j.jag.2015.12.002
Colesanti, C., Ferretti, A., Prati, C., & Rocca, F. (2003). Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, 68(1-2), 3-14. https://doi.org/10.1016/S0013-7952(02)00195-3
Colesanti, C., Mouelic, S. L., Bennani, M., Raucoules, D., Carnec, C., & Ferretti, A. (2005). Detection of mining related ground instabilities using the Permanent Scatterers technique—a case study in the east of France. International Journal of Remote Sensing, 26(1), 201-207. https://doi.org/10.1080/0143116042000274069
Ferretti, A., Prati, C., & Rocca, F. (2002). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. https://doi.org/10.1109/IGARSS.1999.772008
Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (1999). Land subsidence in the United States (Vol. 1182). Geological Survey (USGS).
Giao, P. H., Saowiang, K., & Anh, N. T. H. (2019). The Role of Groundwater and Land Subsidence Analysis for Sustainable Development of Infrastructure in Some SE Asian Cities. In International Conference on Critical Thinking in Sustainable Rehabilitation and Risk Management of the Built Environment (pp. 90-100). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-61118-7_7
Haghighi, M. H., & Motagh, M. (2019). Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sensing of Environment, 221, 534-55. https://doi.org/10.1016/j.rse.2018.11.003
Hakało, J., & Wroński, J. (2003). Subsidence and its effects on the anterior plate stabilization in the course of cervical interbody spondylodesis. Part II. Clinical evaluation. Study design. Neurologia i Neurochirurgia Polska, 37(5), 1063-1072. https://europepmc.org/article/med/15174252
Hooper, A., Bekaert, D., Spaans, K., & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514, 1-13. https://doi.org/10.1016/j.tecto.2011.10.013
Hu, J. C., & Chiu, C. Y. (2023). Additional horizontal displacement across the transportation infrastructures induced by land subsidence revealed by SAR interferometry. EGU General Assembly Conference Abstracts. https://ui.adsabs.harvard.edu/link_gateway/2023EGUGA..25.5681H/doi:10.5194/egusphere-egu23-5681
Jones, C. E., Farr, T. G., Liu, Z., & Miller, M. M. (2020). Measuring Subsidence in California and Its Impact on Water Conveyance Infrastructure. In Advances in Remote Sensing for Infrastructure Monitoring (pp. 211-226). Springer. https://doi.org/10.1007/978-3-030-59109-0_9
Ma, P., Wu, Z., Zhang, Z., & Au, F. T. (2024). SAR-Transformer-based decomposition and geophysical interpretation of InSAR time-series deformations for the Hong Kong-Zhuhai-Macao Bridge. Remote Sensing of Environment, 302, 113962. https://doi.org/10.1016/j.rse.2023.113962
Maghsoudi, Y., Amani, R., & Ahmadi, H. (2019). A Study of land Subsidence in West of Tehran Using Sentinel-1 Images and Permanent Scatterers Interferometry. Iran-Water Resources Research, 15(1), 299-313 [In Persian] https://dor.isc.ac/dor/20.1001.1.17352347.1398.15.1.22.9
Poland, J. F. (1984). Guidebook to studies of land subsidence due to ground-water withdrawal . https://policycommons.net/artifacts/10710460/guidebook-to-studies-of-land-subsidence-due-to-ground-water-withdrawal/11617224/
Tolman, C. F., & Poland, J. F. (1940). Ground‐water, salt‐water infiltration, and ground‐surface recession in Santa Clara Valley, Santa Clara County, California. Eos, Transactions American Geophysical Union, 21(1), 23-35. https://doi.org/10.1029/TR021i001p00023