ابراهیمی، میلاد، رضاوردینژاد، وحید، بشارت، سینا، و عبدی، مریم. (1397). تعیین تبخیر-تعرق و ضریب گیاهی مراحل رشد گیاه دارویی ریحان در کشت گلخانهای. مدیریت آب و آبیاری، 8(1)، 1-13.
doi: 10.22059/jwim.2018.244085.573
اکبری فرد، سعید، بختیاری، بهرام، محمد میرحبیبی، محمد، و رضایی استخروئیه، عباس. (1394). مقایسه تبخیر و تعرق مرجع روزانه محاسبه شده و واقعی در شرایط گلخانهای در اقلیم نیمهخشک. نشریه آبیاری و زهکشی ایران، (6)9، 937-947.
جوزی، مهدی، ابراهیمی پاک، نیاز علی، و تافته، آرش. (1402). برآورد تبخیر تعرق گیاه مرجع با روشهایهارگریوز سامانی وهارگریوز سامانی اصلاح شده و ارزیابی آنها با استفاده از سامانه نیاز آبی گیاهان در استان کرمانشاه. هیدروژئولوژی، 8(1)، 1-16.
doi: 10.22034/hydro.2023.53196.1271
رضوانی، سید معین الدین، زارعی، قاسم، و سالمی، حمیدرضا. (1401). تبخیر- تعرق و ضریب گیاهی خیار گلخانهای در منطقه همدان. نشریه آبیاری و زهکشی ایران، (5)16، 904-916.
doi: 20.1001.1.20087942.1401.16.5.2.7
رفیعی، محمد رفیع، معاضد،هادی، قائمی، علی اصغر، و برومند نسب، سعید. (1395). ارزیابی روش FAO-56 در برآورد تبخیر-تعرق و ضرایب گیاهی بادنجان در شرایط گلخانه و مزرعه. علوم و مهندسی آبیاری، (2)39، 59-77.
doi: 10.22055/jise.2016.12112
کیخایی، فاطمه، زارعی، قاسم، گنجی خرم دل، ناصر، و صادقی، صادق. (1399). تعیین نیاز آبی ارقام گل رز در گلخانه هیدروپونیک. پژوهش آب در کشاورزی، (4)34، 531-542.
doi: 10.22092/jwra.2021.123622
موذنزاده، روزبه. (1394). اندازهگیری و مدلسازی تبخیر- تعرق خیار در شرایط درون گلخانه. آب و خاک، (5)29، 1247-1261.
doi: 10.22067/jsw.v29i5.38053
Acquah, S.J., Yan, H., Zhang, C., Wang, G., Zhao, B., Wu, H., & Zhang, H. (2018). Application and evaluation of Stanghellini model in the determination of crop evapotranspiration in a naturally ventilated greenhouse. International Journal of Agricultural and Biological Engineering, 11(6), 95-103.
Allen, R. G., Smith, M., Pereira, L.S., & Pruitt, W.O. (1997). Proposed Revision to the FAO Procedure for Estimating Crop Water Requirements. Acta Horticulturae, 449, 17–34. https://doi.org/10.17660/actahortic.1997.449.2
Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. )1998(. Crop Evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, 300(9), D05109. Rome, Italy.
Altenhofen, J. )1985(. A modified atmometer for on-farm ET determination. In National conference on advances in evapotranspiration, Hyatt Regency Chicago, Ill. (USA), 16-17 Dec 1985. American Society of Agricultural Engineers. USA.
Aslan, G.E., Bastug, R., Karaca, C., Kurunc, A., Buyuktas, D., & Navarro, A. (2024). Effects of Saline Irrigation Water Applications on Evapotranspiration Partitioning and Crop Coefficient of Tomato Grown in Mediterranean-Type Greenhouses. Agronomy, 14(8), 1771.
https://doi.org/10.3390/agronomy14081771
Baille, A. (1992). Water Status Monitoring in Greenhouse Crops. Acta Horticulturae, 304, 15–28.
https://doi.org/10.17660/actahortic.1992.304.1
Baille, M., Baille, A., & Laury, J.C. (1994). A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Scientia Horticulturae, 59(3–4), 217–232.
https://doi.org/10.1016/0304-4238(94)90015-9.
Bastug, R., Büyüktas, D., Büyüktas, K., Aydinsakir, K., Onus, A.N., & Karaca, C. (2024). Evapotranspiration and crop coefficients of some vegetable crops grown under greenhouse conditions. Journal of Water and Climate Change, 15(7), 3236–3259.
https://doi.org/10.2166/wcc.2024.093
Blanco, F.F., & Folegatti, M.V. (2003). Evapotranspiration and crop coefficient of cucumber in greenhouse. Revista Brasileira de Engenharia Agrícola e Ambiental, 7(2), 285–291.
https://doi.org/10.1590/s1415-43662003000200017
Blanco, F.F., & Folegatti, M.V. (2004). Evaluation of evaporation-measuring equipments for estimating evapotranspiration within a greenhouse. Revista Brasileira de Engenharia Agrícola e Ambiental, 8(2–3), 184–188.
https://doi.org/10.1590/s1415-43662004000200004
Bonachela, S., Fernández, M.D., Hernández, J., & Karaca, C. (2024). Computing air temperature and humidity for reference crop evapotranspiration calculation in passive Mediterranean greenhouses. Agricultural Water Management, 302, 108991.
https://doi.org/10.1016/j.agwat.2024.108991
Bot, G.P. (1983). Greenhouse Climate: from Physical Processes to A Dynamic Model. Doctoral dissertation, Bot, Landbouwhogeschool Wageningen. Promotor (en): J. Schenk. - Wageningen: Landbouwhogeschool – 240,
Netherlands.
Bot, G.P.A. (1989). Greenhouse Simulation Models. Acta Horticulturae, 245, 315–325.
https://doi.org/10.17660/actahortic.1989.245.42
Boulard, T. (2007). Evapotranspiration. Encyclopedia of Water Science, Second Edition (Print Version), 337–342. CRC Press. Boca Raton, US state.
https://doi.org/10.1201/noe0849396274.ch84
Casanova, P.M., Messing, I., Joel, A., & Cañete, M.A. (2009). Methods to Estimate Lettuce Evapotranspiration in Greenhouse Conditions in the Central Zone of Chile. Chilean Journal of Agricultural Research, 69(1).
https://doi.org/10.4067/s0718-58392009000100008
Clothier, B., Al Tamimi, M., Green, S., Hammami, Z., Ammar, K., Al Ketbi, M., Al-Shrouf, A. M., Dawoud, M., & Kennedy, L. (2022). Evapotranspiration and Crop Coefficients Using Lysimeter Measurements for Food Crops in the Hyper-Arid United Arab Emirates. SSRN Electronic Journal, 1-36.
https://doi.org/10.2139/ssrn.4092705
Doorenboss, J., & Pruitt, W. (1975). Guidelines for predicting crop water requirement. FAO Irrigation and Drainage. Paper No. 24. 179. Rome, Italy.
Doorenbos, J., & Pruitt, W.O. (1977). Guidelines for predicting crop water requirements. FAO Irrigation and Drainage. Paper No. 1. Rome, Italy.
Fernandes, C., Corá, J.E., & Araújo, J.A.C.de. (2003). Reference evapotranspiration estimation inside greenhouses. Scientia Agricola, 60(3), 591–594.
https://doi.org/10.1590/s0103-90162003000300027
Fernández, M.D., Baeza, E., Céspedes, A., Pérez-Parra, J., & Gázquez, J.C. (2009). Validation of on-farm crop water requirements (PrHo) model for horticultural crops in an unheated plastic greenhouse. Acta Horticulturae, 807, 295–300.
https://doi.org/10.17660/actahortic.2009.807.40
Fernández, M.D., Bonachela, S., Orgaz, F., Thompson, R., López, J. C., Granados, M. R., Gallardo, M., & Fereres, E. (2010). Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrigation Science, 28(6), 497–509.
https://doi.org/10.1007/s00271-010-0210-z
Food and Agriculture Organization of the United Nations (FAO). (2013). Good agricultural practices for greenhouse vegetable crops: Principles for Mediterranean climate areas. Plant Production and Protection Division, Paper 217. 640 pp. Rome, Italy.
Fynn, R.P., Al-Shooshan, A., Short, T.H., & McMahon, R.W. (1993). Evapotranspiration measurement and modeling for a potted chrysanthemum crop. Transactions of the ASAE, 36(6), 1907-1913.
https://doi.org/10.13031/2013.28541
Ghiat, I., Govindan, R., & Al-Ansari, T. (2023). Evaluation of evapotranspiration models for cucumbers grown under CO2 enriched and HVAC driven greenhouses: A step towards precision irrigation in hyper-arid regions. Frontiers in Sustainable Food Systems, 7.
https://doi.org/10.3389/fsufs.2023.1155443
Ghiat, I., Mackey, H.R., & Al-Ansari, T. (2021). A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications. Water, 13(18), 2523.
https://doi.org/10.3390/w13182523
Gong, X., Liu, H., Sun, J., Gao, Y., & Zhang, H. (2019). Comparison of Shuttleworth-Wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse. Agricultural Water Management, 217, 141–153.
https://doi.org/10.1016/j.agwat.2019.02.012
Gong, X., Qiu, R., Sun, J., Ge, J., Li, Y., & Wang, S. (2020a). Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation. Agricultural Water Management, 235, 106154.
https://doi.org/10.1016/j.agwat.2020.106154
Gong, X., Wang, S., Xu, C., Zhang, H., & Ge, J. (2020b). Evaluation of Several Reference Evapotranspiration Models and Determination of Crop Water Requirement for Tomato in a Solar Greenhouse. HortScience, 55(2), 244–250. https://doi.org/10.21273/hortsci14514-19
Gong, X., Qiu, R., Ge, J., Bo, G., Ping, Y., Xin, Q., & Wang, S. (2021). Evapotranspiration partitioning of greenhouse grown tomato using a modified Priestley–Taylor model. Agricultural Water Management, 247, 106709.
https://doi.org/10.1016/j.agwat.2020.106709
Graaf, R.d. (1988). Automation of the Water Supply of Glasshouse Crops by Means of Calculation the Transpiration and Measuring the Amount of Drainage Water. Scientia Horticulturae (ISHS) 229, 219-232.
https://doi.org/10.17660/actahortic.1988.229.21
Guo, D., Chen, Z., Huang, D., & Zhang, J. (2021). Evapotranspiration Model-based Scheduling Strategy for Baby Pakchoi Irrigation in Greenhouse. HortScience, 56(2), 204–209. https://doi.org/10.21273/hortsci15513-20
Hamer, P.J.C. (1998). Validation of A Model Used for Irrigation Control of a Greenhouse Crop. Acta Horticulturae, 458, 75–82.
https://doi.org/10.17660/actahortic.1998.458.8
Haofang, D. (2023). Advances in Modelling Techniques for Greenhouse Microclimate and Evapotranspiration: An Overview. American Journal of Biomedical Science and Pharmaceutical Innovation, 3(07), 1–4.
https://doi.org/10.37547/ajbspi/Volume03Issue07-01
Hargreaves, G.L., Hargreaves, G.H., & Riley, J.P. 1985. Agricultural Benefits for Senegal River Basin. Journal of Irrigation and Drainage Engineering, 111(2), 113-124.
doi: 10.1061/(ASCE)0733-9437(1985)111:2(113)
Huang, S., Yan, H., Zhang, C., Wang, G., Acquah, S. J., Yu, J., Li, L., Ma, J., & Opoku Darko, R. (2020). Modeling evapotranspiration for cucumber plants based on the Shuttleworth-Wallace model in a Venlo-type greenhouse. Agricultural Water Management, 228, 105861.
https://doi.org/10.1016/j.agwat.2019.105861
Ibrahim, Y.M., Buyuktas, D., & Karaca, C. (2024). Evaporation and Transpiration Components of Crop Evapotranspiration and Growth Parameters of Lettuce Grown under Greenhouse Conditions. Journal of Irrigation and Drainage Engineering, 150(5), 1-16.
https://doi.org/10.1061/jidedh.ireng-10256
Iddio, E., Wang, L., Thomas, Y., McMorrow, G., & Denzer, A. (2020). Energy efficient operation and modeling for greenhouses: A literature review. Renewable and Sustainable Energy Reviews, 117, 109480.
https://doi.org/10.1016/j.rser.2019.109480
Jaafar, H.H., & Ahmad, F. (2019). Determining Reference Evapotranspiration in Greenhouses from External Climate. Journal of Irrigation and Drainage Engineering, 145(9), 1-12.
https://doi.org/10.1061/(asce)ir.1943-4774.0001404
Jessica, J., Prenger, R., Peter F., Robert, C., & Hansen, D. (2001). An Evaluation of Four Evapotranspiration Models. American Society of Agricultural and Biological Engineers, 018010, 1-10.
https://doi.org/10.13031/2013.7500
Jo, W.J., Kim, D.S., Sim, H.S., Ahn, S.R., Lee, H.J., Moon, Y.H., Woo, U.J., & Kim, S.K. (2021). Estimation of Evapotranspiration and Water Requirements of Strawberry Plants in Greenhouses Using Environmental Data. Frontiers in Sustainable Food Systems, 5.
https://doi.org/10.3389/fsufs.2021.684808
Jolliet, O. (1994). HORTITRANS, a Model for Predicting and Optimizing Humidity and Transpiration in Greenhouses. Journal of Agricultural Engineering Research, 57(1), 23–37.
https://doi.org/10.1006/jaer.1994.1003
Jung, D.H., Lee, T.S., Kim, K., & Park, S.H. (2022). A Deep Learning Model to Predict Evapotranspiration and Relative Humidity for Moisture Control in Tomato Greenhouses. Agronomy, 12(9), 2169.
https://doi.org/10.3390/agronomy12092169
Karaca, C., Tezcan, A., Büyüktas, K., Büyüktaş, D., & Bastug, R. (2018). Equations developed to estimate evapotranspiration in greenhouses. Yuzuncu Yıl University Journal of Agricultural Sciences, 28(4), 482-489.
https://doi.org/10.29133/yyutbd.427115
Kashyap, P.S., & Panda, R.K. (2001). Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agricultural Water Management, 50(1), 9–25.
https://doi.org/10.1016/s0378-3774(01)00102-0
Katsoulas, N., & Stanghellini, C. (2019). Modelling Crop Transpiration in Greenhouses: Different Models for Different Applications. Agronomy, 9(7), 392.
https://doi.org/10.3390/agronomy9070392
Keykhaei, F., Zareai, G., Ganji Khorramdel, N., & Sadeghi, S. (2021). Determining Crop Water Requirement of Rose Varieties in Hydroponic Greenhouse, Journal of Water Research in Agriculture, 34(4), 531-542.
doi: 10.22092/jwra.2021.123622
Khorsand, A., Rezaverdinejad, V., Asgarzadeh, H., Majnooni-Heris, A., Rahimi, A. & Besharat, S., (2019). Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes. Agricultural Water Management, 224(105740), 1-11.
https://doi.org/10.1016/j.agwat.2019.105740
Khorsand, A., Rezaverdinejad, V., Asgarzadeh, H., Heris, A.M., Rahimi, A. & Besharat, S., (2020). Response of maize and black gram yield and water productivity to variations in canopy temperature and crop water stress index. International Agrophysics, 34(3), 381-390.
https://doi.org/10.31545/intagr/126439
Khorsand, A., Rezaverdinejad, V., Asgarzadeh, H., Majnooni-Heris, A., Rahimi, A., Besharat, S. & Sadraddini, A.A., (2021). Linking plant and soil indices for water stress management in black gram. Scientific reports, 11(869), 1-19.
https://doi.org/10.1038/s41598-020-79516-3
Kipp, J.A. (2010). Optimal climate regions in Mexico for greenhouse crop production (No. GTB-1024). Wageningen UR Greenhouse Horticulture, 1-24. Netherlands.
Lazarovitch, N., Ben‐Gal, A., & Shani, U. (2006). An Automated Rotating Lysimeter System for Greenhouse Evapotranspiration Studies. Vadose Zone Journal, 5(2), 801–804. Portico.
https://doi.org/10.2136/vzj2005.0137
Li, X., Kang, S., Niu, J., Huo, Z., & Liu, J. (2019). Improving the representation of stomatal responses to CO2 within the Penman–Monteith model to better estimate evapotranspiration responses to climate change. Journal of Hydrology, 572, 692-705.
https://doi.org/10.1016/j.jhydrol.2019.03.029
Liu, H.J., Cohen, S., Tanny, J., Lemcoff, J.H., & Huang, G. (2008). Estimation of banana (Musa sp.) plant transpiration using a standard 20 cm pan in a greenhouse. Irrigation and Drainage Systems, 22(3–4), 311–323.
https://doi.org/10.1007/s10795-008-9058-2
López-Cruz, I. L., Olivera-López, M., & Herrera-Ruiz, G. (2008). SIMULATION OF GREENHOUSE TOMATO CROP TRANSPIRATION BY TWO THEORETICAL MODELS. Acta Horticulturae, 797, 145–150.
https://doi.org/10.17660/actahortic.2008.797.18
Moazed, H.A. Ghaemi, A. & Rafiee M.R. (2014). Evaluation of Several Reference Evapotranspiration Methods: A Comparitive Study of Greenhouse and Outdoor Conditions. Iranian Journal of Science and Technology Transactions of Civil Engineering, 38(C2), 421-437.
doi: 10.22099/ijstc.2014.2419
Möller, M., Tanny, J., Li, Y., & Cohen, S. (2004). Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agricultural and Forest Meteorology, 127(1–2), 35–51.
https://doi.org/10.1016/j.agrformet.2004.08.002
Möller, M., & Assouline, S. (2007). Effects of a shading screen on microclimate and crop water requirements. Irrigation Science, 25(2), 171–181.
https://doi.org/10.1007/s00271-006-0045-9
Morille, B., Migeon, C., & Bournet, P. E. (2013). Is the Penman–Monteith model adapted to predict crop transpiration under greenhouse conditions? Application to a New Guinea Impatiens crop. Scientia Horticulturae, 152, 80-91. https://doi.org/10.1016/j.rse.2020.111716
Nikolaou, G., Neocleous, D., Katsoulas, N., & Kittas, C. (2019). Irrigation of Greenhouse Crops. Horticulturae, 5(1), 7.
https://doi.org/10.3390/horticulturae5010007
Nikolaou, G., Neocleous, D., Kitta, E., & Katsoulas, N. (2023). Assessment of the Priestley-Taylor coefficient and a modified potential evapotranspiration model. Smart Agricultural Technology, 3, 100075.
https://doi.org/10.1016/j.atech.2022.100075
Okuya, A., & Okuya, T. (1988). The Transpiration of Greenhouse Tomato Plants in Rockwool Culture and Its Relationship to Climatic Factors. Acta Horticulturae, 230, 307–312.
https://doi.org/10.17660/actahortic.1988.230.39
Pardossi, A., Tognoni, F., & Incrocci, L. (2004). Mediterranean greenhouse technology. Chronica Horticulturae, 44(2), 28–34.
Parsinejad, M., Raja, O., & Chehrenegar, B. (2022). Practical analysis of remote sensing estimations of water use for major crops throughout the Urmia Lake basin. Agricultural Water Management, 260, 107232.
https://doi.org/10.1016/j.agwat.2021.107232
Pérez, M.D., Villanueva, D.G., Medina, J.C., Ferre, F.C., & Rodríguez, E.J.F. (2003). Utilización de mallas anti-insectos como protección en invernaderos mediterráneos: efectos de la densidad de hilos y de la fotoselectividad sobre la difusión del tylcv (virus de la cuchara) en el cultivo de tomate. In Innovaciones tecnológicas en cultivos de invernadero (pp. 165-175). Ediciones Agrotécnicas.
Pidwirny, M. )2006(. Actual and Potential Evapotranspiration. Fundamental of Physical Geography, 2nd Edition.
http://www.physicalgeography.net/fundamentals/8j.html
Priestley, C.H.B. & Taylor, R.J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly weather review, 100(2), 81-92.
https://doi.org/10.1175/1520-0493(1972)100%3C0081:otaosh%3E2.3.co;2
Rafie, M., & Mahbod, M. (2020). Application of logistic model to estimate eggplant yield and dry matter under different levels of salinity and water deficit in greenhouse and outdoor conditions. Water SA, 46(3), 419-428.
https://doi.org/10.17159/wsa/2020.v46.i3.8652
Rahimikhoob, H., Sohrabi, T., & Delshad, M. (2020). Assessment of reference evapotranspiration estimation methods in controlled greenhouse conditions. Irrigation Science, 38(4), 389–400.
https://doi.org/10.1007/s00271-020-00680-5
Richard L. & Bello, B.A. (2007). Evapotranspiration: Greenhouses. Encyclopedia of Water Science, Second Edition, 337–342.
https://doi.org/10.1081/e-ews2-120010311
Scheff, J., & Frierson, D.M.W. (2014). Scaling Potential Evapotranspiration with Greenhouse Warming. Journal of Climate, 27(4), 1539–1558.
https://doi.org/10.1175/jcli-d-13-00233.1
Shi, W., Zhang, X., Xue, X., Feng, F., Zheng, W., & Chen, L. (2023). Analyzing Evapotranspiration in Greenhouses: A Lysimeter-Based Calculation and Evaluation Approach. Agronomy, 13(12), 3059.
https://doi.org/10.3390/agronomy13123059
Stanghellini, C. (1987). Transpiration of Greenhouse Crops: an aid to climate management. Ph. D, Wageningen University and Research, Wageningen, Netherlands.
https://doi.org/10.18174/202121
Subedi, A., & Chávez, J.L. (2015). Crop evapotranspiration (ET) estimation models: a review and discussion of the applicability and limitations of ET methods. J Agric Sci, 7(6), 50.
http://dx.doi.org/10.5539/jas.v7n6p50
Tadj, N., Draoui, B., Theodoridis, G., Bartzanas, T., & Kittas, C. (2007). Convective Heat Transfer in A Heated Greenhouse Tunnel. Acta Horticulturae, 747, 113–120.
https://doi.org/10.17660/actahortic.2007.747.11
Takakura, T., Kubota, C., Sase, S., Hayashi, M., Ishii, M., Takayama, K., Nishina, H., Kurata, K., & Giacomelli, G. A. (2009). Measurement of evapotranspiration rate in a single-span greenhouse using the energy-balance equation. Biosystems Engineering, 102(3), 298–304.
https://doi.org/10.1016/j.biosystemseng.2008.12.004
Tanny, J., Cohen, S., Elmowitz, D., Liu, H., & Grava, A. (2006). Measuring and Predicting Evapotranspiration in a Banana Screenhouse. Acta Horticulturae, 718, 538–546.
https://doi.org/10.17660/actahortic.2006.718.63
Teitel, M., Vitoshkin, H., Geoola, F., Karlsson, S., & Stahl, N. (2017). Greenhouse and screenhouse cover materials: Literature review and industry perspective. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant, 1227, 31-44. Beijing, China.
https://doi.org/10.17660/ActaHortic.2018.1227.4
Tognoni, F., Pardossi, A., & Serra, G. (1999). Strategies to Match Greenhouses to Crop Production. In International Symposium on Growing Media and Hydroponics, 481, 451-462.
https://doi.org/10.17660/actahortic.1999.481.52
Turan, M.A., Elkarim, A.H.A., Taban, N., & Taban, S. (2009). Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. African Journal of Agricultural Research, 4(9), 893-897.
Valdés-Gómez, H., Ortega-Farías, S., & Argote, M. (2009). Evaluación del Consumo de Agua de un Cultivo de Tomate en Invernadero Usando el Método de Priestley-Taylor. Chilean Journal of Agricultural Research, 69(1), 3-11.
https://doi.org/10.4067/s0718-58392009000100001
Villarreal-Guerrero, F., Kacira, M., Fitz-Rodríguez, E., Linker, R., Kubota, C., Giacomelli, G.A., & Arbel, A. (2012). Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. Biosystems Engineering, 111(2), 217–228.
https://doi.org/10.1016/j.biosystemseng.2011.11.015
Wang, L., Iddio, E., & Ewers, B. (2021). Introductory overview: Evapotranspiration (ET) models for controlled environment agriculture (CEA). Computers and Electronics in Agriculture, 190, 106447.
https://doi.org/10.1016/j.compag.2021.106447
Wang, B., Bao, R., Yan, H., Zheng, H., Wu, J., Zhang, C., & Wang, G. (2025). Study of evapotranspiration and crop coefficients for eggplant in a Venlo‐type greenhouse in South China. Irrigation and Drainage, 74(2), 556-568.
https://doi.org/10.1002/ird.3025
Yadava, R., & Singh, T. B. (2003). Stability analysis in wheat for grain protein. Indian Journal of Genetics and Plant Breeding, 63(04), 337-338.
Yan, H., Huang, S., Zhang, C., Gerrits, M. C., Wang, G., Zhang, J., Zhao, B., Acquah, S. J., Wu, H., & Fu, H. (2020). Parameterization and Application of Stanghellini Model for Estimating Greenhouse Cucumber Transpiration. Water, 12(2), 517.
https://doi.org/10.3390/w12020517
Yan, H., Joe Acquah, S., Zhang, J., Wang, G., Zhang, C., & Opoku Darko, R. (2021). Overview of modelling techniques for greenhouse microclimate environment and evapotranspiration. International Journal of Agricultural and Biological Engineering, 14(6), 1–8.
https://doi.org/10.25165/j.ijabe.20211406.3948
Yan, H., Zhao, S., Zhang, C., Zhang, J., Wang, G., Li, M., Deng, S., Liang, S. & Jiang, J. (2024). Calibration and assessment of evapotranspiration methods for cucumber plants in a Venlo‐type greenhouse. Irrigation and Drainage, 73(1), 119-135.
https://doi.org/10.1002/ird.2856
Yao, M., Gao, M., Wang, J., Li, B., Mao, L., Zhao, M., Xu, Z., Niu, H., Wang, T., Sun, L., & Niu, D. (2023). Estimating Evapotranspiration of Greenhouse Tomato under Different Irrigation Levels Using a Modified Dual Crop Coefficient Model in Northeast China. Agriculture, 13(9), 1741.
https://doi.org/10.3390/agriculture13091741
Yuan, H., Feng, C., Li, J., Zhang, J., Wang, X., & Cheng, M. (2023). A Method to Estimate Evapotranspiration in Greenhouse Conditions by Artificial Neural Networks Using Limited Climate Parameters. Journal of Physics: Conference Series, 2650(1), 012029.
https://doi.org/10.1088/1742-6596/2650/1/012029
Zhang, Z., Liu, S., Liu, S., & Huang, Z. (2010). Estimation of Cucumber Evapotranspiration in Solar Greenhouse in Northeast China. Agricultural Sciences in China, 9(4), 512–518.
https://doi.org/10.1016/s1671-2927(09)60124-3
Zhang, J., Bai, Y., Yan, H., Guo, H., Yang, S., & Wang, J. (2020). Linking observation, modelling and satellite-based estimation of global land evapotranspiration. Big Earth Data, 4(2), 94–127.
https://doi.org/10.1080/20964471.2020.1743612