
Journal of Computer and Knowledge Engineering, Vol. , No.. 2023.

DOI:

Uncertain Virtual Network Embedding Using

Neighborhood Information Based Edge Prediction

Arezoo Jahani1

Abstract-- Network virtualization is a key technology for

efficient resource sharing in modern data centers, particularly

with the advent of paradigms like Software-Defined Networking

(SDN) that enable flexible and centralized control. However,

virtual network users cannot always express their exact

requirements, leading to uncertainties in topology and resource

demands. We model such requests as uncertain virtual networks

(UVNs). In this paper, we describe such networks as uncertain

virtual networks (UVN) and use uncertain graphs to model them.

This paper proposes UVNE (uncertain virtual network

embedding), which is a three-step algorithm to embed the UVNs.

(1) Extracting a certain virtual network from multiple versions of

an uncertain virtual network using a proposed edge prediction

algorithm based on the SOM (self-organizing map) classifier. (2)

Clustering the extracted virtual network with the HCS (highly

connected subgraph) clustering algorithm. (3) Embedding the

extracted virtual network with a one-step embedding algorithm.

The proposed algorithm is compared with edge prediction and

virtual network embedding algorithms. The results demonstrate

the strength of the edge prediction algorithm, the benefit, and the

reduction of the cost of the embedding.

Index Terms-- Uncertain virtual network, Edge prediction,

SOM classifier, Neighborhood information, Graph clustering.

INTRODUCTION

odern data center networks (DCNs) face the critical

challenge of efficiently managing resources to meet dynamic

and diverse application demands. Paradigms such as Software-

Defined Networking (SDN) and Network Virtualization (NV)

have emerged as foundational technologies to address this

challenge. SDN, by decoupling the control plane from the data

plane, provides a centralized, programmable, and global view

of the network infrastructure. This capability is particularly

beneficial for resource allocation tasks like Virtual Network

Embedding (VNE), which involves mapping virtual networks

(VNs) onto a shared physical substrate. Virtual networks have

been created to improve the resource efficiency in the data

center networks (DCN). Data center networks consist of a large

data center network. Data center networks consist of a large

number of servers with communication between them [1].

Virtual networks (VN) are requested as nodes and links with

heterogeneous topology [2, 3]. The aim of virtual network

embedding (VNE) is to provide the infrastructure with the

lowest cost and highest revenue. In the mapping of virtual

networks, each virtual node must be mapped onto a physical

node with sufficient capacity [4] and each virtual link must be

1 Faculty of Electrical and Computer Engineering, Tabriz University of Technology, Tabriz, Iran. Email: a.jahani@sut.ac.ir

mapped on one or multiple separate parallel paths [5] with

sufficient total bandwidth. The responsibility of virtual network

embedding is with infrastructure providers (InP). Service

providers (SP) are solely responsible for leasing resources from

infrastructure providers and providing them to users [6, 7].

Therefore, SPs are connected to users for receiving requests and

InP are responsible for providing resources. Virtual network

users sometimes have not the ability to express their

requirements accurately; (a) the virtual network topology may

not be important for them. (b) The nodes’ capacity or links’

bandwidth may not always be required and their requirements

are requested with probabilities on the links. We called such

virtual networks as uncertain virtual network (UVN) in this

paper. Effectively embedding these UVNs is a complex

problem. The centralized control and global visibility offered

by an SDN controller make it an ideal platform for

implementing advanced UVN embedding (UVNE) strategies,

as it can dynamically assess substrate resource availability and

make optimal embedding decisions. An example of an

uncertain virtual network is shown in Fig. 1.

As shown in Fig. 1(B), there is an uncertain virtual network

with six virtual nodes and seven virtual links. The required

capacity of all virtual nodes is shown on nodes and the link

bandwidth of all virtual links are shown on links. Also, the

uncertain virtual network has probabilities on the links that

indicate the amount of need to the link listed in the lifetime of

the virtual network. In this paper, we consider the uncertainty

on links and do not consider node uncertainty. In fact, we

describe the requested virtual networks with uncertain link

information as uncertain virtual networks and use uncertain

graphs to model them. Since each uncertain virtual network can

be converted into several certain virtual networks (CVN), there

are two ways to embed uncertain virtual networks in which

network topology is not important: (a) Examining all different

certain versions of each uncertain virtual network and selecting

the best one with the least cost to the user and the highest

revenue for service providers. (b) Selecting or extracting a

certain virtual network based on neighborhood information or

based on the history of virtual networks and then embedding the

extracted certain virtual network on the substrate network. The

first one creates a complex problem that takes a lot of time to

resolve. We use the second method in this article. In this way,

at first, we select a certain version of the uncertain virtual

network using edge prediction based on neighborhood

information and then embed it on a substrate network. The

M

proposed UVNE method has three steps:

 Step 1. Edge prediction: this step extracts a certain virtual

network (CVN) from multiple certain versions of an uncertain

virtual network using a proposed edge prediction algorithm

based on the SOM (self-organizing map) classifier. In this step,

we need a binary classifier which has been able to train with

virtual networks neighborhood information such as; nodes

degree and links probability. We proposed SOM-classifier as a

binary classifier which is able to organize itself. Also, we train

SOM-classifier with neighborhood information. In fact, the

training dataset were constructed with (I) running

pKwikCluster-EditDistance algorithm on uncertain virtual

networks to find the suitable certain version of them. and (II)

adding noise to some certain virtual networks.

Fig. 1 The proposed SOGVNE process

 Step 2. Clustering: this step completes the clustering the

extracted certain virtual network with HCS (Highly Connected

Subgraphs) clustering algorithm.

 Step 3. VNE: this step completes the embedding of the

extracted certain virtual network with one-step embedding

algorithms.

 The proposed UVNE compared with three related uncertain

VNE algorithms and the results show that in presence of

uncertainty, the cost will be decreased and the revenue will be

increased. Because in uncertain virtual networks, we can cluster

the network and then embed it on the substrate network. In

another test, we examined the strength of the edge prediction

algorithm in comparison to other available methods. The results

indicate the accuracy of the proposed algorithm.

A. Our contribution

This paper proposes an uncertain virtual network embedding

algorithm which the requested virtual networks are not

deterministic and the user’s requirement on links, indicate the

probability of needing that link over the life of the virtual

network. Our contributions are shown in Fig. 1. As shown in

Fig. 1, the requested VN is an uncertain VN and there are

multiple certain versions of requested uncertain virtual

network. The proposed UVNE, extracts a certain VN (step 1),

then clusters the extracted CVN (step 2) and at last, embeds the

CVN on a substrate network (step 3).

The proposed UVNE framework is designed to leverage the

SDN paradigm. The global network view provided by the SDN

controller facilitates efficient resource discovery and allocation

during the embedding process, particularly in the clustering and

VNE steps. Furthermore, once an embedding solution is found,

the SDN controller can proactively configure the substrate

network (e.g., installing flow rules on OpenFlow-enabled

switches) to realize the virtual network, enabling rapid and

dynamic provisioning.

The rest of paper is organized as follow. Section 2 expresses

the related works. The third section describes the physical and

virtual network modelling as well as the concepts of clustering

and edge prediction. The fourth section expresses the proposed

UVNE algorithm with details. The evaluation steps of the

proposed strategy have been discussed in the fifth section and

section 6 includes the conclusion and future works.

II. RELATED WORKS

 VNE problem is a resource provisioning problem to requested
virtual networks. Purpose of most methods is to increase the
acceptance ratio. Some VNE methods are resilient in embedding
to increase the strength of VNs against failures [8]. Green VNE
methods use green energy resources or try to use fewer servers to
VNs embedding in each time interval [9], [10], [11]. Topology-

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 3

aware VNE methods select substrate nodes based on topological
information, such as proximity to existing nodes with the high
degree or stacking in clusters with identical nodes [12].
 In all of the above-mentioned research, VNE has been
completed in two phases of node mapping and link mapping
[13], [14, 15]. The VNE methods complete these two phases in
the uncoordinated or coordinated manner [16]. Coordinated
methods are separated into two groups; coordinated two-stage
and coordinated one-stage [16]. In the uncoordinated method,
two phases are performed sequentially and separately [17]. But in
the coordinated method, two phases are performed in
synchronization with each other. In the coordinated two-phase,
the conditions of the second phase were added to the first
phase as constraints, so that the second phase can be verified
at this stage to some extent. In the coordinated one-phase, the
two phases are completed simultaneously.

A. Uncoordinated

methods

In the uncoordinated category, Yu et al. [18] propose a
heuristic optimization algorithm for VNE. The main goal in
their approach was maximizing the long-term average
revenue. They complete node mapping with a greedy
algorithm and link mapping with k-shortest path algorithm.
Houidi et al. [19] had designed a distributed VNE algorithm
responsible for load balancing with a two-stage heuristic
algorithm; The first stage is called the selection of hub-and-
spoke, that finds the virtual node with the highest capacity as
the hub of the cluster and distinguish the neighboring virtual
nodes directly connected to the selected hub node to represents
the spoke nodes; then removes all hub and spoke nodes and
repeats the process to find all hub-and-spokes. The second
stage is called mapping of hub-and-spokes, that selects a
substrate node with high remained capacity and embeds the
first hub on it and the selected node should be mapped all itself
spokes on the substrate network and repeats this process for all
available hubs. Botero et al. [20] introduce hidden hops
constraints. They believe each virtual link which is embedded
on a substrate path, needs the CPU demand in the intermediate
nodes (hidden hops) of the substrate path and this problem has
not been taken into account as an important parameter in
related works. To address this problem the authors of [20] add
hidden hops constraint to a heuristic algorithm in their
proposed method. In Ref. [21] VNE problem was formulated
as a mixed integer linear programming problem and was
introduced stochastic bandwidth demand to solving it. Most
related works complete node mapping phase with node
ranking based on their remained capacity. But Ref. [22] uses
node connectivity between each pair of nodes which was
formulated to measure the resource ranking of the nodes as a
new feature to node ranking.
In VNE problem, physical node reusable mapping (PNRM)
[23] shows a virtual node should be mapped on a single physical
node and all pair virtual nodes of same VN should be mapped
on separated substrate nodes. But Ref. [24] to reach high
acceptance ratio and high revenue, ignored PNRM and has
maps one virtual node in several substrate nodes. Mijumbi et al.
[25] use multi-agent for resource management in data centers.
All of the nodes and links have an agent which agents can learn
environment status and update their policy to do the best action
in the future. The authors use q- learning method for agent

training. Gong et al. [26] propose a new metric, i.e., global
resource capacity (GRC) which computes the embedding
potential for each substrate resources. Wang et al. [27] proposed
Presto as a VNE method. Presto solves VNE in a preemptive
strategy. They convert the substrate network to a tree by
Blocking Island (BI) method, which can select suitable
substrate nodes and paths to virtual nodes and links in O(1). But
recording the extracted tree needs space and the constructed tree
should be updated with any changing in the substrate network.
Haeri et. al [28], used Markov Decision Process (MDP)
framework to formulate node mapping phase and solve it by
Monte Carlo tree search algorithm.
Some papers in order to reduce VNE time, complete VNE in a
distributed way. Ref. [29] proposed a distributed embedding
algorithm with enabling the embedding of multiple VNs in
parallel. To reach the specified aim, the authors partition the
physical network hierarchically. The first layer includes all
physical network and the last one includes some clusters of
nodes. VNE starts from the last layer and each VN assigns to a
cluster. If the assigned clusters could embed the VNs, repeat
this process and take other VNs. But if each cluster could not
embed VN, send it to the previous layer which has more
resources and this process continue to VN embedded
successfully.
Botero et al. [30] proposed an energy efficient VNE, where the
objective is to switch off as many substrate nodes and interfaces
as possible by allocating the virtual demands to a consolidated
subset of active physical networking equipment. Guan et al.
[31], proposed an energy efficient VNE by future migration
which plans in embedding time. They consider the amount of
used energy at day and night and embed a VN at day on suitable
substrate resources and plan to embed the VN at night on the
other resources to reduce used energy.
Oliveira et al. [32], proposed an opportunistic resilience
embedding (ORE) algo- rithm to embed VNs and protect VNs
against substrate network disruptions. Their proposed
algorithm has a two-fold: a proactive strategy and a reactive
strategy. The proactive strategy smoothes the initial disruption
and its impact and the reactive strategy recovers any disruption
in the resources.

B. Coordinated two-phase

methods

In the coordinated two-phase manner, Chowdhury et al. [33]

used integer programming to formulate VNE problem. Then

propose two algorithms to relax integer programming

constraints: a deterministic and a randomized. In deterministic

VNE, they extend the physical network graph by introducing

meta nodes for each virtual node and then treat with each virtual

link with bandwidth constraints as a commodity consisting of a

pair of meta-nodes and solve it with the multi-commodity flow

problem. Cheng et al. [34] proposed two algorithms. The prime

proposed algorithm uses node ranking concept to map virtual

requested nodes on substrate nodes, then embeds the virtual

links by the shortest path and multiple commodity flow

problems with splittable paths. The second proposed algorithm

is a backtracking VNE based on breadth-first search, which

embeds both virtual nodes and virtual links in the same stage.

Zhang et al. [35] solved VNE by particle swarm optimization

(PSO) meta-heuristic and to reduce the time complexity of the

link mapping stage. Cao et al. [?] proposed a new node ranking

approach to made a balance between used energy and reached

revenue.

Hesselbach et al. [36] used the paths algebra-based strategy

by coordinating, in a single stage. They map nodes and links

with a node ranking method which made of the bi-directional

pair of nodes of the physical network and ordered by their

available resources. Ref. [37] proposes a heuristic VNE method

to minimize the total physical resources required when the

virtual network operators request substrate resource shar- ing

among multiple priority classes within their virtual networks.

Bienkowski et al. [38] used migration when service access

position changes. Their main contributions are a randomized

and a deterministic online algorithm that achieves a competitive

ratio of O(nlogn) in a simplified scenario, where is the size of

the physical network. Butt et al. [39] present a mechanism to

differentiate among resources based on their importance in the

substrate topology and also proposed a set of algorithms for re-

optimizing and re-embedding initially-rejected VNs. Soualah et

al. [40] used Gomory-Hu tree to solve the VNE which is

formulated as an integer linear program.

C. Coordinated one-

phase methods

The last category is coordinated one-phase which completes the

embedding process in only one phase (node mapping and link

mapping complete concurrently) [41]. Ref. [42] was the first

one-phase method and it detected subgraph isomorphism with

requested virtual network. Houidi et al. [43] proposed a one-

stage algorithm with split- ting ability of the virtual network

provisioning request across multiple infrastructure providers

and solving it using both max-flow min-cut algorithms and

linear program- ming techniques. Fajjari et al. [44] proposed a

Max-Min ant colony meta-heuristic VNE approach. Botero et

al. [45] introduced the energy-aware VNE. Pages et al. [46]

introduced the VNE for optical networks in only one phase.

 Yu et al. [47] suggested one step VNE that increases

coordination. They were selecting some candidate nodes and

then select nodes with enough link bandwidth to embed VNs.

Ref. [48] accelerated the convergence of PSO VNE meta-

heuristic with topology-aware node ranking. Ref. [49]

coordinated VNE reducing the number of backtracks by

carefully choosing the first virtual node to map. Ref. [50] used

integer linear programming problem and multicommodity flow

allocation problem respectively for the node and link mapping.

Zhu et al. [51] suggested an ant colony based VNE which

complete node and link mapping stages concurrently.

Due to recent advances in the field of VNE, deep learning and

artificial intelligence-based approaches have attracted much

attention. For example, [16] presents an advanced framework

for optimal virtual network embedding by combining graph

attention network (GAT) and deep reinforcement learning

(DRL). Similarly, [25] uses graph convolutional networks

(GCN) to assist the embedding process. Also, [12] proposed a

multi-criteria fuzzy inference system to solve the virtual

network function placement problem (VNFP). Although these

methods are powerful, they are mainly focused on deterministic

virtual networks. This paper aims to fill this gap by providing a

specialized solution for uncertain environments where

complete topology information is not available. We will also

compare our method (UVNE) with simulations of these new

approaches in the experimental section.

Table 1 Frequently used notations

Notation Notation Description

𝐺𝑠 Substrate network

𝑁𝑠 Set of substrate nodes

𝐸𝑠 Set of substrate links

𝐶𝑠(𝑛𝑠) Capacity of substrate node 𝑛𝑠 ∈ 𝑁𝑠

𝐵𝑠(𝑒𝑠) Bandwidth of substrate link 𝑒𝑠 ∈ 𝐸𝑠

𝑃𝑠 Set of all substrate path

𝐵(𝑝) Bandwidth of substrate path 𝑝 ∈ 𝑃𝑠

𝐺𝑣 Virtual network

𝑁𝑣 Set of virtual nodes

𝐸𝑣 Set of virtual links

𝑃𝑣 Set of existence probability of virtual links

𝐶𝑣(𝑛𝑣) Required capacity of virtual node 𝑛 𝑣 ∈ 𝑁𝑣

𝐵𝑣(𝑒𝑣) Required bandwidth of virtual link 𝑒𝑣 ∈ 𝐸𝑣

𝑌 𝑛𝑠

𝑛𝑣

Virtual node 𝑛𝑣 mapped on substrate node ns

(if mapped will be 1 and otherwise will be 0)

𝑋 𝑒𝑠

𝑒𝑣

Virtual link 𝑒𝑣 mapped on substrate link es

(if mapped will be 1 and otherwise will be 0)

III. PROBLEM FORMULATION

The proposed UVNE algorithm operates within a broader

Software-Defined Networking (SDN) framework, as illustrated

in Fig. 1. The SDN controller acts as the infrastructure provider

(InP), maintaining a global and real-time view of the substrate

network resources, including the available CPU capacity of

nodes and bandwidth of links. This global view is crucial for

the UVNE process. When an uncertain virtual network (UVN)

request arrives, the SDN controller invokes the UVNE

algorithm. The algorithm's three steps—edge prediction,

clustering, and embedding—utilize this centralized knowledge

base to make informed decisions. After a successful embedding

solution is computed, the SDN controller translates it into

specific configuration commands (e.g., installing flow rules via

the OpenFlow protocol) to program the underlying physical

switches and servers, thereby instantiating the virtual network.

This integration enables dynamic, efficient, and automated

provisioning of uncertain virtual networks.

This section formulates substrate/infrastructure network,

uncertain virtual networks and used graph clustering

algorithms.

A. Substrate network

Let 𝐺𝑠 = {𝑁𝑠, 𝐸𝑠} be a substrate network, where 𝑁𝑠is a set of

nodes and 𝐸𝑠 is a set of edges. Substrate network has two

attributes; where 𝐶𝑠(𝑛𝑠) is the capacity of substrate node 𝑛𝑠 and
𝐵𝑠(𝑒𝑠) is the link bandwidth of substrate link 𝑒𝑠 which is shown

in Table. 1. In substrate network, there is multiple path (𝑝 ∈
 𝑃𝑠) and 𝑃𝑠 is substrate path set. 𝐵(𝑝) is bandwidth of path p

which is minimum bandwidth of all links in path p.

B. Uncertain virtual network

Let 𝐺 𝑣 = {𝑁𝑣 , 𝐸𝑣 , 𝑃𝑣} be a uncertain virtual network, where 𝑁𝑣

is a set of nodes and 𝐸𝑣 is a set of edges. 𝑃𝑣 is a set of the

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 5

es es

existence probability of virtual links. So 𝑃𝑣 ∶ 𝐸𝑣 → (0, 1] and

assigns a probability between zero and one to all virtual links

which shows the existence of that virtual link in network.

Uncertain virtual network has two attributes; where 𝐶𝑣(𝑛𝑣) is

the capacity of virtual node nv and 𝐵𝑣(𝑒𝑣) is link bandwidth

virtual link ev which is shown in Table. 1.

 We formulate uncertain virtual network (UVN) by uncertain

graph. Therefore, each UVN has multiple certain version of

virtual network. As shown in Fig. 1(C), the UVN has multiple

certain VN which three of them demonstrated. So, a UVN is

also called a probabilistic VN. Suppose a

probabilistic/uncertain VN 𝐺𝑣 as a universal set, where includes

multiple deterministic/certain version of 𝐺𝑣 like 𝐺′𝑣 ⊑ 𝐺𝑣 . A

deterministic/certain VN 𝐺′𝑣 can be considered to be an

instance of 𝐺𝑣, according to the probability distribution 𝑃 (𝐺′𝑣).

The probabilities assigned to the VN’s links are treated as

mutually independent variables. Assuming independence

among links, the probability distribution over discrete certain

VN is computed as Eq. 1.

𝑃 (𝐺′
𝑣|𝐺𝑣) = ∏ 𝑃𝑣(𝑒𝑣)

𝑒𝑣𝜖𝐸𝑣

∏ 1 − (𝑃𝑣(𝑒𝑣))

𝑒𝑣𝜖𝐸\𝐸𝑣

(1)

C. Virtual network embedding

As mentioned before, virtual network embedding process has two

phases of node map- ping and link mapping. In node mapping

phase, each virtual node should be mapped on a substrate node

with adequate capacity. We formulated this concept with a binary

variable; 𝑌 𝑛𝑠

𝑛𝑣 , where shows virtual node 𝑛𝑣 is mapped on

substrate node 𝑛𝑠 or not (If it mapped, then 𝑌 𝑛𝑠

𝑛𝑣
= 1 and

otherwise 𝑌 𝑛𝑠

𝑛𝑣 = 0). Also a node mapping is possible, when

the virtual node’s requested capacity is equal or less than the

remained substrate node’s capacity (𝐶𝑣(𝑛𝑣) ≤ 𝐶𝑠(𝑛𝑠)).

In link mapping phase, each virtual link should be mapped

on a or multiple path with adequate bandwidth as shown in

𝑋 𝑒𝑠

𝑒𝑣 where demonstrate virtual link 𝑒𝑣 is mapped on substrate

link 𝑒𝑠 or not (If it mapped, then 𝑋 𝑒𝑠

𝑒𝑣 = 1 and otherwise

𝑋 𝑒𝑠

𝑒𝑣 = 0). A link mapping is possible, when the virtual link’s

required bandwidth is equal or less than the remained
bandwidth of substrate path (𝐵(𝑒𝑣) ≤ 𝐵(𝑝)).

D. Uncertain graph clustering

In this section, we consider the problem of uncertain graph

clustering. We formulate both substrate and uncertain virtual

networks as graph in this paper and as we know the uncertain

graphs also called probabilistic graphs. In this way, at first

we consider EditDistance in uncertain graphs and then

consider pKwikCluster algorithm to extract all clustered

uncertain graph.

Definition 1 (EditDistance). Let 𝐺 and 𝑄 be two

deterministic graphs, where 𝐺 = (𝑉, 𝐸𝐺) and 𝑄 =
 (𝑉, 𝐸𝑄), we define EditDistance between 𝐺 and 𝑄 as the

number of edges that need to be added or deleted from 𝐺 in

order to be transformed into 𝑄 which is shown in Eq. 2.

𝐷(𝐺, 𝑄) = |𝐸𝐺 \ 𝐸𝑄| + |𝐸𝑄 \ 𝐸𝐺| (2)

If 𝐺 and also 𝑄 denoted by adjacency matrix (includes 0 or

1), So Eq. 2 can be written like Eq. 3.

𝐷(𝐺, 𝑄) =
1

2
∑ ∑ |𝐺(𝑥, 𝑦) − 𝑄(𝑥, 𝑦)|

𝑛

𝑦=1

𝑛

𝑥=1

 (3)

Kollios et al. [52] extend EditDistance definition between a

deterministic and an uncertain/probabilistic graph.

Definition 2. Suppose we have a deterministic graph 𝑄 =
 (𝑉, 𝐸𝑄) and a uncertain graph 𝐺 = (𝑉, 𝐸𝐺 , 𝑃𝐺). The

EditDistance between 𝐺 and 𝑄 is defined as expected

EditDistance between all certain version of 𝐺 like 𝐺′ ⊑ 𝐺

and 𝑄 that is shown in Eq. 4.

𝐷(𝐺, 𝑄) = ∑ 𝑃(𝐺′)𝐷(𝐺′, 𝑄)

𝐺′ ⊑ 𝐺

 (4)

In Eq. 4, 𝑃 (𝐺′) is probability of deterministic graph 𝐺′ and

is computed by Eq. 1. 𝐷(𝐺′, 𝑄) is EditDistance between two

deterministic graphs 𝐺′ and 𝑄 that is computed by Eq. 3.

Definition 3 (Cluster graph). A cluster graph 𝐶 = (𝑉, 𝐸𝐶)

is a deterministic graph with the following properties [52]:

1. C defines a partition of the nodes in V into k parts, 𝑉 =
 {𝑉1, … , 𝑉𝑘} such that 𝑉𝑖 ∩ 𝑉𝑗 = ∅.

2. For every 𝑖 ∈ {1, . . . , 𝑘} and for every pair of nodes 𝑣 ∈
 𝑉𝑖 and 𝑣′ ∈ 𝑉𝑖, we have that {𝑣, 𝑣′} ∈ 𝐸𝐶 .

3. For every 𝑖, 𝑗 ∈ {1, . . . , 𝑘} with 𝑖 = 𝑗 and every pair of

nodes 𝑣, 𝑣′ such that 𝑣 ∈ 𝑉𝑖 and 𝑣′ ∈ 𝑉𝑗 , {𝑣, 𝑣′} ∉ 𝐸𝐶 .

Definition 4 (pKwikCluster algorithm). pKwikCluster

algorithm [53] is a clustering algorithm for uncertain graphs

which solve the problem ”Finding a cluster graph 𝐶 =
 (𝑉, 𝐸𝑐) for a probabilistic graph 𝐺 = (𝑉, 𝑃) such that

𝐷(𝐺, 𝐶) is minimized.” pKwikCluster algorithm starts with

a single node and then find all neighbor nodes of selected

node with probability higher than p (a constant variable) and

adds all of them to a cluster. If there was not any neighbor

with this status, the selected node adds to a single cluster and

algorithm continue with other nodes until all nodes consider.

Algorithm 1 shows the pKwikCluster algorithm.

Algorithm 1 pKwikCluster Algorithm [52]

1. repeat

2. Choose 𝑢 ∈ 𝑉 randomly;

3. 𝐶(𝑢) ← 𝑢;

4. for 𝑣 ∈ 𝑉 such that 𝑝(𝑢, 𝑣) > 0.5 do

5. 𝐶(𝑢) ← 𝐶(𝑢) ∪ 𝑣;

6. end for

7. 𝑉 ← 𝑉 − 𝐶(𝑢);

8. until 𝑉 = ∅

E. Certain graph clustering

The process of dividing a set of input data into possibly

overlapping, subsets, where elements in each subset were

considered related by some similarity measure is called

clustering. In deterministic graphs, dividing nodes to

multiple clusters called graph clustering. Between-graph

clustering methods divide a set of graphs into different

clusters and within-graph clustering methods divides the

nodes of a graph into clusters. In this paper we need standard

within-graph clustering methods which are: k-spanning tree,

shared nearest neighbor, betweenness centrality based,

highly connected components, maximal clique enumeration,

and kernel k-means.

 The HCS (Highly Connected Subgraphs) clustering

algorithm [54] is an algorithm based on graph connectivity

for cluster analysis, by first representing the similarity data

in a similarity graph, and afterwards finding all the highly

connected subgraphs as clusters. This algorithm finds min-

cut of mentioned graph and if min-cut of graph was less than

|V |/2, then divide graph by min-cut and repeat the process

of cutting on two separated subgraphs and otherwise finish

the algorithm process and return the extracted subgraphs.

HCS graph clustering is shown in Algorithm. 2.

Algorithm 2 HCS clustering Algorithm \\ Highly

connected Subgraph

1. function HCS(G(V,E))

2. if G is highly connected then

3. return (G);

4. else

5. (H1,H2,C) ← Min − cut(G);

6. HCS(H1);

7. HCS(H2);

8. end if

9. end function

IV. PROPOSED UVNE ALGORITHM

This paper proposes UVNE as a new method for uncertain

virtual network embedding. In this paper, we formulated

uncertain virtual networks which do not have certain link

information by uncertain graph and called these types of

virtual networks as uncertain virtual network. The proposed

UVNE has three steps; In the first step, the best certain

virtual network (CVN) extracted from requested UVN by a

proposed SOM-classifier. In the second step, it uses the HCS

algorithm to clustering the extracted CVN. Then in the third

step, it uses a VNE algorithm to embed CVN on the substrate

network. The proposed UVNE algorithm is given in

Algorithm 3.

Algorithm 3 UVNE algorithm // Uncertain Virtual

Network Embedding

Require: input: 𝐺𝑠 (Substrate Network State from SDN

Controller); 𝐺𝑣 (Uncertain VN Request);

 output: embedding results in X and Y ;

1. 𝐺𝑣=SOM-classifier(𝐺𝑣);

2. 𝐺𝑣=HCS(𝐺𝑣);

3. (𝑋, 𝑌) =VNE(𝐺𝑣, 𝐺𝑠);

A. First step: Edge prediction

In the first step, the proposed SOM-classifier applies to

extract suitable certain virtual network from multiple certain

versions of requested virtual network. In fact, proposed

SOM classifier presented to predict edges existence of

uncertain virtual network based on neighborhood

information. We extract five various graph neighborhood

information to train the SOM classifier and use the same

classifier to predict the edges of uncertain requested VNs.

This step converts an uncertain (probabilistic) virtual net-

work to a certain (deterministic) virtual network based on

predicting the existence of the link in uncertain VN based on

five neighborhood information (see section IV.A.1).

 Traditional works in the uncertain graph, applying a

threshold and delete all edges lower than a threshold to make

a certain graph or compute the probability of all possible

certain graphs and select the best certain graph with high

probability. However, in uncertain virtual networks,

although network topology is not important, the performance

of network and its responsiveness is very important at the

times required. So, the threshold-based approaches are not

suitable in uncertain virtual networks. In order to address this

problem, the current algorithm (SOM-classifier) presents an

intelligent approach instead of threshold-based approaches.

It uses a binary classifier based on supervised self-

organizing map neural network to predict the existence of

edges.

 At first, the SOM-classifier is trained using certain virtual

networks which were collected as training dataset by

applying the pKwikCluster algorithm on uncertain VNs and

applying noise to various certain VNs. Then, the same

classifier is used to predict the existence of edges in UVN.

The proposed classifier will be tested before using a natively

uncertain virtual network which are generated by GT-ITM

tools [55] and the comparison is done by Davies-Bouldin

index (DBI), Dunn index (DI), and Silhouette coefficient

(SC) metrics. The proposed SOM-classifier is given in

Algorithm. 4.

As shown in Algorithm. 4, at first the SOM-classifier trained

and tested by the collected dataset (rows 2-3). Then, the

extracted features which are extracted from neighborhood

information (row 6) (section 4.1.1) are applied to have

trained SOM- classifier (row 7) to get a certain virtual

network (row 8). The details of the proposed algorithm will

be explained in the next subsection.

The edge prediction step, while primarily analyzing the

UVN request itself, can be significantly enhanced by the

global network visibility provided by the SDN controller. In

a practical SDN-based implementation, the controller’s

centralized monitoring capabilities can collect rich historical

data on previously embedded virtual networks. This includes

real‐ world metrics such as actual link utilization, traffic

patterns, and the lifespan of virtual links. Such data can be

used to refine the training dataset for the SOM-classifier,

moving beyond purely topological features

toward performance‐ aware link prediction. For instance,

links that were frequently utilized or critical to network

performance in past embeddings can be weighted more

heavily during training. Although the current model relies on

features extracted from the UVN topology, the SDN

framework paves the way for future extensions where

features like link centrality (CEN) could be dynamically

computed based on the current substrate network state,

leading to even more accurate and context‐ aware

predictions.

 1) Feature extraction

In an uncertain virtual network, there are several attributes

for an uncertain link, such as the probability of mentioned

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 7

link and neighbor links, end nodes degree, graph

connectivity and the number of the shortest path passing

through the mentioned link. Complete knowledge of each

uncertain virtual network is crucial for training the SOM-

classifier and provides complete information from the

uncertain virtual network. We extract five features for every

uncertain link and use them to train the SOM-classifier. In

fact, the classifier is a binary classifier and should answer the

mentioned link will be required in the requested virtual

network or not and this answer completely depends on

extracted features. So, the SOM-classifier predicts the

existence of edges in an uncertain virtual network and

extract the suitable certain virtual network.

Algorithm 4 SOM-classifier algorithm

Require: input: 𝐺𝑣, TrainingSet, TestingSet, numEpoch

 (Number of epochs), η (Learning rate);
 output: 𝐺𝑣 (extracted certain virtual network);

1. make SOM-classifier;

2. Training (SOM-classifier, TrainingSet, numEpoch, η);

3. Testing (SOM-classifier, TestingSet);

4. Loop

5. if 𝐸𝑣 ≠ ∅ then

6. for 𝑒𝑣 ∈ 𝐸𝑣 do

7. FeatureVector=getFeatureVector(𝑒𝑣);

8. 𝐺𝑣=SOM-classifier.getOutput(FeatureVector);

9. return 𝐺𝑣;
10. end for

11. end if

12. end loop

 The extracted five features for each uncertain link (𝑒𝑣) is

listed as below:

1. Link probability (𝑃𝑣): the probability of an uncertain

link 𝑒𝑣 in an uncertain virtual network 𝐺𝑣 is 𝑃𝑣(𝑒𝑣) and

has a large impact in predicting uncertain link hesitance.

2. Average of neighbor links probability (𝐴𝑉𝐺𝑃𝑣
): the

average of neighbour links probability which is

computed by Eq. 5, considers the neighbor links

existence probability to decide about the existence of the

mentioned link.

𝐴𝑉𝐺𝑃𝑣
= ∑ 𝑃𝑣(𝑒𝑣)/|𝐸𝑣|

𝑒𝑣∈𝐸𝑣

 (5)

3. Sum of end nodes degree (DEG): each uncertain link

has two end nodes degree and this feature computes the

sum of end nodes degree.
4. Graph connectivity (CON): This feature considers

the graph’s connectivity in the absence of a link. If
in the absence of the link, the graph is connected, it
receives a zero value. Otherwise, it will receive a
value of one.

5. Link centrality (CEN): centrality is a concept which
is computed how many paths will pass through the
mentioned link and in fact measures the

importance of the link. In this paper, we compute
the link centrality by closeness centrality which
computes the sum of the distance of all possible
paths contains the mentioned link as shown in Eq.
6.
𝐶𝐸𝑁 = 1/ ∑ 𝑑(𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛({𝑛(𝑒𝑣), 𝑛′(𝑒𝑣)}, 𝑢))

∀𝑢, 𝑢≠𝑛(𝑒𝑣),𝑛′(𝑒𝑣)

 (6)

In Eq. 6, 𝑑(𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛({𝑛(𝑒𝑣), 𝑛′(𝑒𝑣)}, 𝑢))is the distance

between node u and two end nodes 𝑛(𝑒𝑣) and 𝑛′(𝑒𝑣)of

virtual link 𝑒𝑣. In fact, we want to compute the distance

between other nodes from edge 𝑒𝑣. So permutation
{𝑛(𝑒𝑣), 𝑛′(𝑒𝑣)}, shows the mentioned link which the path

should pass through that link.

After extracting these five features, the normalized values of

features will be computed and a feature vector was made.

The extracted feature vector is shown in Eq. 7.

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟
= (𝑃𝑣(𝑒𝑣), 𝐴𝑉𝐺𝑝𝑣

 (𝑒𝑣), 𝐷𝐸𝐺(𝑒𝑣), 𝐶𝑂𝑁(𝑒𝑣), 𝐶𝐸𝑁(𝑒𝑣))
(7)

 The feature vector is used in extracting features of the

training and testing set and training the classifier and also in

getting output from trained SOM-classifier.

 2) Generating the training dataset

After designing a classifier, it should be trained and tested

by trained and test dataset. We collect the training and testing

dataset in two ways: (1) from generated uncertain virtual

networks by GT-ITM tools and clustering them by

pKwikCluster algorithm and extracting certain virtual

networks and learning their features, and (2) from generated

certain virtual networks by GT-ITM tools and adding noise

to them and making uncertain virtual networks. We divide

the extracted dataset to two sections; training and testing

respectively with 80% and 20% data.

 3) Training and testing

In the training process, the required parameters initialized

and the SOM-classifier trained by training dataset in several

epochs. The input of the training process is an uncertain

virtual network and in each UVN, there are several uncertain

links. For every uncertain link, the required features

(FeatureVector) extracted. The output of this process is a

trained SOM-classifier. SOM-classifier is a self-organizing

map neural network which is unsupervised in real. But we

apply the supervised method and train the classifier by

labelled data. The supervised method, in each epoch,

compare the output with the existed labels of data. The sum

of squares error (SSE) is a metric to compare and the

classifier is trained when its value is close to zero. SSE

metric shown in Eq. 8.

𝑆𝑆𝐸 =
1

2
∑(𝑥𝑖 − 𝑥′)2

𝑛

𝑖=1

 (8)

As shown in Eq. 8, suppose there are n output that should be

compared with labeled data. Also, suppose 𝑥𝑖 is an output of

training SOM-classifier and 𝑥′ is a label. We show the

training process in Algorithm 5.

In Algorithm 5, the inputs are the SOM-classifier, a training

set, number of epochs and learning rate. The output of this

algorithm is trained SOM-classifier. At first, the algorithm

extracts all features of edges in training set (rows 1-3). Then

it repeats the training process (row 4) until the computed

SSE reaches to zero number (row 13). In each iteration, all

of the parameters are initialized (row 5) and then in some

epoch (row 6), three phases of the SOM algorithm applied

(rows 7-9) that will be explained. After all, epochs are run,

algorithm get an output of trained SOM-classifier (row 11)

and then compute SSE to consider the condition of the main

loop (row 12).

These three phases are competition, cooperation and

adaptation phase:

 Competition phase: in the competition phase, a winner

neuron is selected (row 7) by assigning all inputs to

SOM-classifier. In this paper, the extracted feature vector

is one of the inputs. The other inputs are the number of

epochs and learning rate. The winner neuron is selected

based on the similarity between inputs and neurons. We

used Euclidean distance as shown in the used equation in

row 7. i is the Id number of winner neuron. 𝑤𝑗(𝑡) is the

weight of neuron j at time t. The weight matrix is a matrix

with cells same as SOM lattice size (We used grid lattice

in this paper) and initializes with constant numbers and

then changes to optimal values during the training

process. Optimal values are values that train SOM-

classifier with the training set. FeatureVector shows the

feature vector of selected link edge (row 2).

Algorithm 5 Training Algorithm

Require: input: SOM-classifier, TrainingSet, numEpoch

 (Number of epochs), η (Learning rate);
 output: Trained parameters in SOM-classifier;

1. for edge ∈ TraingSet do

2. FeatureVector = getFeatureVector(edge);

3. end for

4. repeat

5. Initialize all the parameters in SOM-classifier;

6. while iteration < numEpoch do
7. Competition phase: Compute winner neuron i using equation:

𝑖 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑗 ∥ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟 − 𝑤𝑗(𝑡) ∥;

8. Cooperation phase: Compute ℎ𝑖𝑗(𝑓𝑣 , 𝑡) for all neurons (j) using:

ℎ𝑖𝑗(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟, 𝑡) = 𝑒𝑥𝑝(−
1

2

𝑑𝑖𝑗
2

𝜎(𝑡)2
);

9. Adaptation phase: Compute WeightVectorj(t+1) using:

𝑤𝑗(𝑡 + 1) = 𝑤𝑗(𝑡) + ∑ △ 𝑤𝑗(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟, 𝑡)

𝑓𝑣𝜖𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟

;

10. end while
11. 𝐸𝑑𝑔𝑒𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 = 𝑆𝑂𝑀𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟. 𝑔𝑒𝑡𝑂𝑢𝑡𝑝𝑢𝑡(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟);

12. compute SSE with equation:

1

2
∑ (𝐸𝑑𝑔𝑒𝐸𝑥𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 − 𝑙𝑎𝑏𝑒𝑙(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑖))

|𝐸𝑑𝑔𝑒𝐸𝑥𝑖𝑠𝑡𝑎𝑛𝑐𝑒|

𝑖=1

13. until (𝑆𝑆𝐸 ≤ 𝜖)

14. Return Trained parameters in SOM-classifier;

 Cooperation phase: in the cooperation phase, the

amount of stimulation of winner neuron’s neighbors

should be computed (row 8). At this point, any neuron

that has been won will also notify as many other neurons

as possible. neighbors close to the winner neuron are

more stimulated, and vice versa, other neurons are less

stimulated. The number of stimulated neurons depends

on the distance of the winner neuron from other neurons

and is calculated by an equation in row 8.

ℎ𝑖𝑗(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉 𝑒𝑐𝑡𝑜𝑟, 𝑡) is the amount of stimulation of

neuron j against winner neuron i, when the input of SOM-

classifier is vector FeatureVector at time t. 𝑑𝑖𝑗 is

Euclidean distance between neuron j and winner neuron

i. In fact, the used function in the equation of row 8, is

famous to Gaussian function.

 Adaptation phase: the algorithm initializes the weight

matrix with the constant value before training process. In

the adaptation phase, the weight matrix is updated. In

fact, when a neuron won and the cooperation phase

completed, in this phase, the weight of all lattice neurons

was updated. Updating the weight matrix can be done

sequentially (an updating phase runs with any input

vector) or in batch processing manner (only one updating

run with receiving all input vector). Used equation shown

in Row 9. 𝑤𝑗(𝑡 + 1) is weight matrix neuron j at time t+1.

△ 𝑤𝑗(𝑥, 𝑡) is weight changes for input x at time t that

depends on learning rate η.

In the testing process, we apply the training set as input and

compare the real output with SOM-classifier output. The

testing algorithm is shown in Algorithm 6.

Algorithm 6 Testing Algorithm

Require: input: SOM-classifier, TestingSet;

 output: validity indices;

1. Initialize all the parameters in SOM-classifier;

2. for edge ∈ TraingSet do

3. FeatureVector = getFeatureVector(edge);

4. end for

5. EdgeExistence=SOM-classifier.getOutput(FeatureVector);

6. for edge ∈ TestingSet do

7. if SOM-classifier answered correctly then

8. signal(SUCCESS);

9. end if

10. end for

As shown in Algorithm 6, the algorithm needs to another

dataset as a testing set. In this regard, the collected dataset

divided into training and testing dataset respectively 80%

and 20%. The proposed algorithm initializes the parameters

at first (row 1), for all requests in the dataset, extracts feature

vector (rows 2-4) and finds the edge existence using SOM-

classifier (row 5). Then, if the SOM-classifier is able to find

edge existence successfully, the algorithm sends a success

signal (rows 7-9).

B. Second step: clustering

After extracting a certain version of the uncertain virtual

network, this step clusters the certain virtual network. As

mentioned in this paper, we are considering uncertain virtual

networks with probabilistic information on links. So, the

requested topology is not important for users. In this regard,

we can cluster the highly connected nodes to reduce the cost

and increase the revenue. The highly connected nodes are a

set of nodes with more than |𝑉 |/2 links as mentioned in

section 3.5. In this step, the proposed algorithm uses HCS

algorithm as a standard certain graph clustering algorithm.

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 9

C. Third step: virtual network embedding

After running two first steps, the requested uncertain virtual

network converted to a compact certain virtual network and

so, obviously, its mapping will require fewer resources. In

this step, we used the standard virtual network embedding

algorithm to embed the requested VN. We used the one-step

embedding algorithm (EE-CTA [56]) and embed VNs in

only one phase. In fact, one-step algorithm complete two

phases of node mapping and link mapping in one phase

concurrently and most of the evolutionary algorithms are in

this category.

V. EXPERIMENTS AND RESULTS

This section describes the experimental analysis of proposed

UVNE and its three steps compared with other classifying,

clustering and virtual network embedding algorithms. Table.

2 indices the compared indices in each step and all compared

algorithms.

Table 2 Used indices and compared algorithms in each step
of UVNE

Steps Indices Compared algorithms

(1) Edge

Prediction

Error percentage

Validation accuracy

Testing accuracy
SOM-classifier accuracy

SVM [58]

ANN-1

ANN-2
Threshold-based

(2)

Clustering

DBI

DI
SC

SVM [58]

pKwikCluster [54]
ANN-2

(3) VNE Cost

Revenue

Acceptance ratio
Node and link utilization

Robust optimization [59]

VCDN [60]

Threshold-based
GAT-DRL [16]

Ce-VNE (GCN-based) [25]

As shown in Table. 2, we compare proposed SOM-classifier

in edge prediction step with other four classifier algorithm

based on error percentage and accuracy. The second step

compared with traditional pKwikCluster, SVM and ANN-2

algorithm based on DBI, DI and SC indices. At last, the third

step compared with three related embedding algorithms and

recent advanced approaches based on cost, revenue and

acceptance ratio. ANN-2 is a traditional artificial neural

network with three neurons in the input layer, 10 neurons in

the hidden layer neurons and two output layer neurons

(binary classifier). ANN-1 has three, three, and two neurons

in the input layer, hidden layer and output layer,

respectively.

Table 3 Used parameter in experiment of UVNE

Parameter Value

Classifier

SOM-lattice

SOM-similarity

SOM-learning method

Learning rate (η)

Number of Epochs

Clustering threshold

Substrate network topology

Nodes in substrate network

Links in substrate network

Virtual network topology

SOM

Grid

Gaussian

Kohonen

0.8

50

0.5

BCube [57]

500

1128

Ring, Star, Random

Nodes in virtual networks

Links in virtual networks

3-10

5-30

 All used parameters in experimental evaluation listed in

Table. 3. All the experiments are compared in an operating

system with an Intel Corei7- 8550 U- 1.89 GHz processor

with a GPU 4 GB and 12 GB Ram and Windows 10

Enterprise. In generating training and testing dataset, we use

GT-ITM [55] tools and generate 100 certain virtual networks

and 100 uncertain virtual networks with three topologies of

ring, star, and random. As mentioned, the training and testing

set generated in two ways:

1. Adding noise to certain virtual networks which were

generated with GT-ITM tools and making uncertain

virtual networks (NoiseDataSet).

2. Using pKwikCluster algorithm to generating certain

virtual networks of uncertain virtual networks which

were generated with GT-ITM tools (pKwikDataSet).

To evaluate the proposed UVNE algorithm in a context

resembling Software-Defined Networking, our simulation

environment was designed to incorporate key characteristics

of an SDN architecture. Most importantly, we assume the

presence of a centralized controller that maintains a global

and perfect view of the substrate network state. This means

that our embedding algorithm has instantaneous access to the

exact available CPU capacity of all substrate nodes and the

available bandwidth of all substrate links at the time of each

embedding decision. This ideal global knowledge eliminates

the inaccuracies that might arise from distributed or outdated

network state information, allowing us to isolate and

measure the pure performance benefits of the UVNE

algorithm itself. The ability to leverage this global view is a

fundamental advantage offered by the SDN paradigm, and

our simulation setup accurately reflects this capability. After

a successful embedding, the cost and resource utilization are

calculated based on this global information.

A. Edge prediction with SOM-classifier

This section describes all experiments to compare the

proposed SOM-classifier based on error percentage and

classifier accuracy. In fact, each classifier should be able to

predicate the right label for inputs. In this paper, the

classifier is a binary classifier and include only two

output/label for each input. So, the proposed algorithm

should be able to predicate the existence of edge in an

uncertain virtual network and labels an uncertain link with

one or zero (the value of one, shows that the mentioned link

should be as a certain link in UVN and the value of zero,

shows the uncertain link is not required in the UVN

lifetime.). In the first test, we compare error percentage on

two generated datasets NoiseDataSet and pKwikDataSet and

the results are shown in Fig. 2 and 3 respectively.

Fig. 2 Error percentage of proposed SOM-classifier based

on noise level in dataset NoiseDataSet

As shown in Fig. 2, we generate a datasets with various noise

level and use the generated datasets to compute error

percentage in proposed SOM-classifier and three state of the

artworks. SVM is one of the related works which is proposed

for edge prediction in large uncertain graphs. ANN-1 and

ANN-2 are two related works based on standard neural

network and Threshold-based is a traditional algorithm

which predicates the edges based on their probability. This

test indicates, the proposed SOM- classifier has a low error

percentage in comparison with others. The error percentage

starts from about 5% when the noise level is 5% and

increases up to 25% with 90% noise. Adding 90% noise to

dataset makes all algorithms unsuitable, because this level of

noise, eliminates all features of network and algorithms

cannot predicate the edges existence.

Fig. 3 Error percentage of proposed SOM-classifier based

on noise level in dataset pKwikDataSet

As shown in Fig. 3, the same test has been run on generated

pKwikDataSet and the results show the proposed SOM-

classifier gained less error percentage compared with the

other three works. In the second test, we compare validation

and testing accuracy in proposed and related works. The

results are shown in Table. 4. In this test, the noise level of

NoiseDataSet was 0.5 and our dataset had 20% of whole

generated dataset.

Table 4 Validation and testing accuracy of proposed SOM-
classifier for edge prediction

Algorithms

NoiseDataSet pKwikDataSet

Validation

accuracy

Testing

accuracy

Validation

accuracy

Testing

accuracy

SOM

SVM

97%

95%

93%

84%

96%

94%

91%

82%

ANN-1

ANN-2

Threshold-based

75%

70%

65%

663%

8%

48%

73%

69%

63%

66%

62%

47%

As shown in Table. 4, the validation and testing accuracy in

proposed SOM- classifier is more than other works. This is

due to the use of neighborhood information in the proposed

method for prediction of the edges. As shown the validation

accuracy is more than testing accuracy. After proposed

SOM-classifier, SVM gained high accuracy due to the use of

only one neighborhood information (neighbor links

probability). ANN-1, ANN-2 and Threshold-based

approaches have respectively low accuracy. The traditional

neural networks do not use any neighborhood information

and were trained unsupervised. So, their accuracy is less than

others. At last, the Threshold-based approach has less

accuracy because it predicates the edges existence only

based on their probability.

Table 5 SOM-classifier accuracy for edge prediction

Dataset SOM SVM ANN-1 ANN-2 Threshold-

based

NoiseDataSet 92% 90% 79% 71% 66%

pKwikDataSet 91% 88% 75% 69% 64%

B. Clustering

This section compares the clustering algorithm which apply

on extracted CVNs with related works based on three indices

DBI, DI and SC. Davies-Bouldin index (DBI) is a clustering

index and computes how well the clustering has been done.

This index is shown in Eq. 9. Where k is the number of

clusters, 𝜎𝑥 is the average distance of all nodes in a cluster

from the central node and 𝑑(𝑐𝑖 , 𝑐𝑗) is the distance between

two centers of cluster 𝑐𝑖 and 𝑐𝑗.

𝐷𝐵𝐼 =
1

𝑘
∑ 𝑚𝑎𝑥𝑖≠𝑗(

𝜎𝑖 + 𝜎𝑗

𝑑(𝑐𝑖 , 𝑐𝑗)
)

𝑘

𝑖=1

 (9)

Dunn index (DI) index is an internal cluster evaluating

metric which is shown in Eq. 10. If there are k clusters, then

the Dunn Index for the set is defined as Eq. 10. Where ∆x is

maximum d(x, y) with x and y from mentioned cluster.

𝐷𝐼 =
𝑚𝑖𝑛1≤𝑖≤𝑗≤𝑘𝑑(𝑐𝑖 , 𝑐𝑗)

𝑚𝑎𝑥1≤𝑥≤𝑘Δ𝑥
 (10)

Silhouette coefficient (SC) computes how well each object

lies within its cluster which is shown in Eq. 11 and 12.

Where a(i) is the average dissimilarity of node i from the

other nodes within the cluster and b(i) is the minimum

average dissimilarity of node i to the nodes of all other

clusters.

𝑆𝐶 =
1

𝑘
∑ 𝑠(𝑖)

𝑘

𝑖=1

 (11)

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑗)}
 (12)

The results of comparing clustering algorithm and three

related works are based on two generated datasets are shown

in Fig. 4. As demonstrated, the proposed clustering

algorithm in the second step of the proposed method

(SOM+HCS) reaches low DBI compared with ANN-2,

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 11

pKwikCluster and SVM based algorithm. DBI shows the

clustering power to the number of clusters and a low number

of this index makes a better clustering algorithm. The SVM

based algorithm has low DBI compared with pKwikCluster

and ANN-2, because uses neighborhood information to train

the SVM machine. pKwikCluster algorithm has the third

rank in clustering based on DBI index and the last one is

ANN-2. In DI and SC indices, a high number of the index

has shown the better clustering algorithm and the proposed

SOM+HCS has high value compared with other algorithms,

because of using of five neighborhood information in

training process and using HCS algorithm in clustering step.

C. Virtual network embedding

This section compares the proposed UVNE algorithm with

Robust, VCDN and threshold-based algorithms based on

cost, revenue, resource utilization and execution time. Cost

and revenue are the main indices in the evaluation of

embedding algorithms. Cost is an index which shows the

sum of assigned nodes’ capacity and links’ bandwidth for a

requested virtual network and computes by Eq. 13.

𝐶𝑜𝑠𝑡(𝐺𝑣) = 𝐶𝑜𝑠𝑡(𝑁𝑣) + 𝐶𝑜𝑠𝑡(𝐸𝑣)

= ∑ 𝐶𝑣(𝑛𝑣) × 𝑌𝑛𝑠

𝑛𝑣

𝑛𝑣∈𝑁𝑣

+ ∑ 𝐵𝑣(𝑒𝑣) × 𝑋𝑒𝑠

𝑒𝑣

𝑒𝑣∈𝐸𝑣

× |𝑃(𝑒𝑣)|

(13)

In Eq. 13, for a requested UVN 𝐺𝑣 , embedding cost is equal

with sum of needed node capacity and link bandwidth which

is respectively 𝐶𝑜𝑠𝑡(𝑁𝑣) and 𝐶𝑜𝑠𝑡(𝐸𝑣). Revenue is another

index in virtual network embedding which is computed by

Eq. 14 and shows the sum of requested resources for each

uncertain virtual network.

𝑅𝑒𝑣(𝐺𝑣) = ∑ 𝐶𝑣(𝑛𝑣) + ∑ 𝐵𝑣(𝑒𝑣)

𝑒𝑣∈𝐸𝑣𝑛𝑣∈𝑁𝑣

(14)

Fig. 4 DBI, DI and SC comparison based on two datasets

The acceptance ratio is another index which shows the

number of accepted virtual networks in each time interval.

Also, node and link utilization depend on the percentage of

used resources to available resources in each time interval

and for each server in data center. In this paper, the first test

computes the cost of embedding and the results are shown in

Fig. 5.

Fig. 5 Average cost based on virtual networks arrival rate

As shown in Fig. 5, the proposed UVNE achieves a lower

average cost compared to other algorithms. This efficiency

is partly attributed to the clustering step, which is

empowered by the global network view available in an SDN-

like setting. The algorithm can make informed decisions

about consolidating virtual nodes onto physically proximate

substrate nodes, thereby reducing costly long-distance link

mappings.

Fig. 6 Average revenue based on virtual networks arrival

rate

Fig. 7 Acceptance ratio, node and link utilization of proposed UVNE based on virtual networks arrival rate

The second test compares reached revenue for InP which is

shown in Fig. 6. As demonstrated the proposed UVNE

algorithm has high average revenue compared with others.

The Robust-optimization algorithm has low revenue,

because of solving the worst case of embedding and has low

acceptance ratio.

The third and forth tests compute acceptance ratio and node

and link utilization respectively and the results are shown in

Fig. 7. As shown the proposed UVNE has high acceptance

ratio, high node utilization and also high link utilization

compared with the other three algorithms.

Fig. 8 Average execution time of proposed UVNE based on

virtual networks arrival rate

The last test computes the execution time of the proposed

UVNE algorithm. The execution time of VCDN algorithm

is higher than others because it considers the sudden changes

of the requested virtual network and tries to answer to

changed requests. The proposed UVNE has low execution

time because of using a SOM neural network and train it

based on neighborhood information.

D. Impact of Substrate Network Knowledge Accuracy

To underscore the importance of the global view provided

by an SDN controller, we conducted an additional

experiment comparing UVNE's performance under two

scenarios: (1) Perfect Global Knowledge (simulating an

ideal SDN controller) and (2) Partial/Delayed

Knowledge (simulating a non-SDN environment with

outdated information). The results, summarized in Table 6,

clearly show that when the algorithm operates with

imperfect information, the acceptance ratio decreases by

approximately 15% and the cost increases by 10% due to

embedding failures and suboptimal mappings. This

experiment validates that the performance advantages of

UVNE are fully realized when deployed within an SDN

framework that provides accurate and timely network state

information.
Table 6 Performance comparison based on substrate network
knowledge accuracy.

Scenario Average Cost Acceptance

Ratio

Perfect Global Knowledge

(SDN)

145 89%

Partial/Delayed Knowledge 160 76%

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an uncertain virtual network

embedding algorithm which requested virtual networks had

non-deterministic information on links based on edge

prediction. Uncertain virtual networks introduced in this

paper and formulated by an uncertain graph. The proposed

UVNE algorithm has three steps; the first step selects the

suitable certain virtual network by prediction edge existence

based on neighbor information. the second step clusters the

selected CVN and computes a compact one. At last, in the

third step, the CVN is embedded on a substrate network with

one-step embedding algorithms.

We tested our proposed UVNE on generated datasets and

proposed SOM-classifier algorithm on real networks. Our

experimental evaluation demonstrates proposed SOM-

classifier reach high DBI, DI and SC metrics. Also, proposed

UVNE increases InPs revenue and acceptance ratio and

decreases user’s cost.

Further research is needed to consider the design of

clustering large uncertain virtual networks. This work can

also be extended by parallel implementation of the proposed

algorithm on a high-performance computing cluster. Also,

uncertain virtual network embedding problem can be solved

by extracting association rules and association rules mining

algorithms. We consider uncertain information on links in

VNs. In future work, the uncertainty can be considered on

both nodes and links.

Conflict of Interest
The author declares that she has no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

References
[1] Sun, G., Liao, D., Zhao, D., Sun, Z., Chang, V.: Towards

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 13

provisioning hybrid virtual networks in federated cloud

data centers. Future Generation Computer Systems 87,

457–469 (2018).

[2] Jahani, A.: Virtual network embedding based on

univariate distribution esti- mation. In: 2021 11th

International Conference on Computer Engineering and

Knowledge (ICCKE), pp. 284–289 (2021). IEEE.

[3] Jahani, A., Khanli, L.M., Hagh, M.T., Badamchizadeh,

M.A.: Green virtual network embedding with supervised

self-organizing map. Neurocomputing 351, 60–76

(2019).

[4] Aguilar-Fuster, C., Rubio-Loyola, J.: A novel evaluation

function for higher acceptance rates and more profitable

metaheuristic-based online virtual network embedding.

Computer Networks 195, 108191 (2021).

[5] Jiang, C., Zhang, P.: Incorporating Energy and Load

Balance into Virtual Network Embedding Process, pp.

245–268. Springer, Singapore (2021).

[6] Jahani, A., Khanli, L.M.: Cata-vn: Coordinated and

topology-aware virtual net- work service provisioning in

data centers network. In: 2017 7th International

Conference on Computer and Knowledge Engineering

(ICCKE), pp. 353–358 (2017). IEEE.

[7] Souza, B.A., Mateus, G.R., Souza, F.S.: Compact and

extended formulations for the virtual network embedding

problem. Electronic Notes in Discrete Mathemat- ics 64,

205–214 (2018).

[8] Chowdhury, S.R., Ahmed, R., Khan, M.M.A., Shahriar,

N., Boutaba, R., Mitra, J., Zeng, F.: Dedicated protection

for survivable virtual network embedding. IEEE

Transactions on Network and Service Management

13(4), 913–926 (2016).

[9] Lei, H., Zhang, T., Liu, Y., Zha, Y., Zhu, X.: Sgeess:

smart green energy-efficient scheduling strategy with

dynamic electricity price for data center. Journal of

Systems and Software 108, 23–38 (2015).

[10] Triki, N., Kara, N., El Barachi, M., Hadjres, S.: A green

energy-aware hybrid virtual network embedding

approach. Computer Networks 91, 712–737 (2015).

[11] Arnone, D., Barberi, A., La Cascia, D., Sanseverino,

E.R., Zizzo, G.: Green data centres integration in smart

grids: New frontiers for ancillary service provision.

Electric Power Systems Research 148, 59–73 (2017).

[12] Soltani, Mohammad Amin Zare, Seyed Amin Hosseini

Seno, and AmirHossein Mohajerzadeh. Optimizing SDN

resource allocation using fuzzy logic and VM mapping

technique, Computing 107, no. 1 (2025).

[13] Khan, M.M.A., Shahriar, N., Ahmed, R., Boutaba, R.:

Multi-path link embedding for survivability in virtual

networks. IEEE Transactions on Network and Service

Management 13(2), 253–266 (2016).

[14] Wang, W., Zhao, Y., He, R., Yu, X., Zhang, J., Zheng,

H., Lin, Y., Han, J.: Con- tinuity aware spectrum

allocation schemes for virtual optical network embedding

in elastic optical networks. Optical Fiber Technology 29,

28–33 (2016).

[15] He, M., Zhuang, L., Tian, S., Wang, G., Zhang, K.: Droi:

Energy-efficient virtual network embedding algorithm

based on dynamic regions of interest. Computer

Networks 166, 106952 (2020).

[16] Ullah, Ihsan, Qaisar Ali, Muhammad Ashraf, and Youn-

Hee Han. "Advanced Virtual Network Embedding:

Combining Graph Attention Network and DRL for

Optimal Resource Utilization." In 2025 International

Conference on Artificial Intelligence in Information and

Communication (ICAIIC), pp. 0550-0555. IEEE, (2025).

[17] Mangili, M., Martignon, F., Capone, A.: Performance

analysis of content- centric and content-delivery

networks with evolving object popularity. Computer

Networks 94, 80–98 (2016)

[18] Zhan, Keqiang, Ning Chen, Sripathi Venkata Naga

Santhosh Kumar, Godfrey Kibalya, Peiying Zhang, and

Hongxia Zhang. "Edge computing network resource

allocation based on virtual network embedding."

International Journal of Communication Systems 38, no.

1 (2025).

[19] Esposito, F., Paola, D.D., Matta, I.: On distributed virtual

network embedding with guarantees. IEEE/ACM

Transactions on Networking (TON) 24(1), 569–582

(2016)

[20] Wang, Y., Hu, Q., Nguyen, L., Jalalitabar, M.: Minimum-

cost embedding of vir- tual networks: An iterative

decomposition approach. Computer Networks 234,

109907 (2023)

[21] Sun, G., Yu, H., Li, L., Anand, V., Cai, Y., Di, H.:

Exploring online virtual net- works mapping with

stochastic bandwidth demand in multi-datacenter.

Photonic Network Communications 23(2), 109–122

(2012)

[22] Jian, D., Tao, H., Jian, W., Wenbo, H., Jiang, L., Yunjie,

L.: Virtual network embedding through node

connectivity. The Journal of China Universities of Posts

and Telecommunications 22(1), 17–56 (2015)

[23] Wang, C., Liu, G., Yuan, Y.: A novel method for virtual

network embedding with incentive convergence

mechanism. In: Third International Conference on

Advanced Cloud and Big Data, pp. 275–281 (2015).

IEEE

[24] Zhang, S., Wu, J., Lu, S.: Virtual network embedding

with substrate support for parallelization. In: IEEE

Global Communications Conference (GLOBE- COM)

Conference Book, pp. 2615–2620 (2012). IEEE Global

Communications Conference

[25] Zhang, P., Luo, Z., Kumar, N., Guizani, M., Zhang, H.,

Wang, J.: Ce-vne: Constraint escalation virtual network

embedding algorithm assisted by graph con- volutional

networks. Journal of Network and Computer

Applications 221, 103736 (2024)

https://doi.org/10.1016/j.jnca.2023.103736

[26] Gong, L., Wen, Y., Zhu, Z., Lee, T.: Toward profit-

seeking virtual network embed- ding algorithm via global

resource capacity. In: Proceedings IEEE INFOCOM, pp.

1–9 (2014). IEEE

[27] Wang, T., Hamdi, M.: Presto: Towards efficient online

virtual network embedding in virtualized cloud data

centers. Computer Networks 106, 196–208 (2016)

[28] Haeri, S., Trajkovi´c, L.: Virtual network embedding via

monte carlo tree search. IEEE transactions on cybernetics

48, 510–521 (2017)

[29] Beck, M.T., Fischer, A., Botero, J.F., Linnhoff-Popien,

C., Meer, H.: Distributed and scalable embedding of

virtual networks. Journal of Network and Computer

Applications 56, 124–136 (2015)

[30] Botero, J.F., Hesselbach, X.: Greener networking in a

network virtualization environment. Computer Networks

57(9), 2021–2039 (2013)

[31] Guan, X., Choi, B.-Y., Song, S.: Energy efficient virtual

network embedding for green data centers using data

center topology and future migration. Computer

Communications 69, 50–59 (2015)

[32] Oliveira, R.R., Marcon, D.S., Bays, L.R., Neves, M.C.,

Gaspary, L.P., Medhi, D., Barcellos, M.P.: Opportunistic

resilience embedding (ore): Toward cost-efficient

resilient virtual networks. Computer Networks 89, 59–77

(2015)

[33] Chowdhury, M., Rahman, M.R., Boutaba, R.: Vineyard:

Virtual network embed- ding algorithms with

coordinated node and link mapping. IEEE/ACM

Transac- tions on Networking (TON) 20(1), 206–219

(2012)

[34] Cheng, X., Su, S., Zhang, Z., Wang, H., Yang, F., Luo,

Y., Wang, J.: Vir- tual network embedding through

topology-aware node ranking. ACM SIGCOMM

Computer Communication Review 41(2), 38–47 (2011)

[35] Zhang, Z., Cheng, X., Su, S., Wang, Y., Shuang, K., Luo,

Y.: A unified enhanced particle swarm optimization-

based virtual network embedding algorithm. Inter-

national Journal of Communication Systems 26(8),

1054–1073 (2013)

[36] Hesselbach, X., Amazonas, J.R., Villanueva, S., Botero,

J.F.: Coordinated node and link mapping vne using a new

paths algebra strategy. Journal of Network and Computer

Applications 69, 14–26 (2016)

[37] Ogino, N., Kitahara, T., Arakawa, S., Murata, M.: Virtual

network embedding with multiple priority classes

sharing substrate resources. Computer Networks

112, 52–66 (2017)

[38] Bienkowski, M., Feldmann, A., Grassler, J., Schaffrath,

G., Schmid, S.: The wide-area virtual service migration

problem: A competitive analysis approach. IEEE/ACM

Transactions on Networking (ToN) 22(1), 165–178

(2014)

[39] Butt, N.F., Chowdhury, M., Boutaba, R.: Topology-

awareness and reoptimiza- tion mechanism for virtual

network embedding. In: International Conference on

Research in Networking, pp. 27–39 (2010). Springer

[40] Soualah, O., Fajjari, I., Hadji, M., Aitsaadi, N.,

Zeghlache, D.: A novel virtual network embedding

scheme based on gomory-hu tree within cloud’s

backbone. In: IEEE/IFIP Network Operations and

Management Symposium (NOMS), pp. 536–542 (2016).

IEEE

[41] Zahedi, S.R., Jamali, S., Bayat, P.: Emcfis: Evolutionary

multi-criteria fuzzy infer- ence system for virtual network

function placement and routing. Applied Soft

Computing, 108427 (2022)

[42] Lischka, J., Karl, H.: A virtual network mapping

algorithm based on subgraph isomorphism detection. In:

Proceedings of the 1st ACM Workshop on Virtualized

Infrastructure Systems and Architectures, pp. 81–88

(2009). ACM

[43] Houidi, I., Louati, W., Ameur, W.B., Zeghlache, D.:

Virtual network provisioning across multiple substrate

networks. Computer Networks 55(4), 1011–1023 (2011)

[44] Fajjari, I., Saadi, N.A., Pujolle, G., Zimmermann, H.:

Vne-ac: Virtual network embedding algorithm based on

ant colony metaheuristic. In: IEEE International

Conference on Communications (ICC), pp. 1–6 (2011).

IEEE

[45] Botero, J.F., Hesselbach, X., Duelli, M., Schlosser, D.,

Fischer, A., De Meer, H.: Energy efficient virtual

network embedding. IEEE Communications Letters

16(5), 756–759 (2012)

[46] Pages, A., Perello, J., Spadaro, S., Junyent, G.: Strategies

for virtual optical network allocation. IEEE

Communications Letters 16(2), 268–271 (2012)

[47] Yu, H., Anand, V., Qiao, C., Di, H., Wei, X.: A cost

efficient design of virtual infrastructures with joint node

and link mapping. Journal of Network and Systems

Management 20(1), 97–115 (2012)

[48] Cheng, X., Su, S., Zhang, Z., Shuang, K., Yang, F., Luo,

Y., Wang, J.: Vir- tual network embedding through

topology awareness and optimization. Computer

Networks 56(6), 1797–1813 (2012)

[49] Di, H., Yu, H., Anand, V., Li, L., Sun, G., Dong, B.:

Efficient online virtual network mapping using resource

evaluation. Journal of Network and Systems

Management 20(4), 468–488 (2012)

[50] Papagianni, C., Leivadeas, A., Papavassiliou, S.,

Maglaris, V., Cervello-Pastor, C., Monje, A.: On the

optimal allocation of virtual resources in cloud

computing networks. IEEE Transactions on Computers

62(6), 1060–1071 (2013)

[51] Zhu, F., Wang, H.: A modified aco algorithm for virtual

network embedding based on graph decomposition.

Computer Communications 80, 1–15 (2016)

[52] Kollios, G., Potamias, M., Terzi, E.: Clustering large

probabilistic graphs. IEEE Transactions on Knowledge

and Data Engineering 25(2), 325–336 (2013)

[53] Ailon, N., Charikar, M., Newman, A.: Aggregating

inconsistent information: ranking and clustering. Journal

of the ACM (JACM) 55(5), 23 (2008)

[54] TG, K.K., Tomar, S., Addya, S.K., Satpathy, A.,

Koolagudi, S.G.: Efras: Emu- lated framework to

develop and analyze dynamic virtual network embedding

strategies over sdn infrastructure. Simulation Modelling

Practice and Theory 134, 102952 (2024)

[55] Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to

model an internetwork. In: INFOCOM’96. Fifteenth

Annual Joint Conference of the IEEE Computer

Societies. Networking the Next Generation. Proceedings

IEEE, vol. 2, pp. 594–602 (1996). IEEE

[56] Jahani, A., Khanli, L.M., Hagh, M.T., Badamchizadeh,

M.A.: Eecta: Energy efficient, concurrent and topology-

aware virtual network embedding as a multi- objective

Journal of Computer and Knowledge Engineering, Vol. , No.. 2019. 15

optimization problem. Computer Standards & Interfaces

66, 103351 (2019)

[57] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian,

C., Zhang, Y., Lu, S.: Bcube: a high performance, server-

centric network architecture for modular data centers.

ACM SIGCOMM Computer Communication Review

39(4), 63–74 (2009)

