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Abstract-- Network virtualization is a key technology for 

efficient resource sharing in modern data centers, particularly 

with the advent of paradigms like Software-Defined Networking 

(SDN) that enable flexible and centralized control. However, 

virtual network users cannot always express their exact 

requirements, leading to uncertainties in topology and resource 

demands. We model such requests as uncertain virtual networks 

(UVNs). In this paper, we describe such networks as uncertain 

virtual networks (UVN) and use uncertain graphs to model them. 

This paper proposes UVNE (uncertain virtual network 

embedding), which is a three-step algorithm to embed the UVNs. 

(1) Extracting a certain virtual network from multiple versions of 

an uncertain virtual network using a proposed edge prediction 

algorithm based on the SOM (self-organizing map) classifier. (2) 

Clustering the extracted virtual network with the HCS (highly 

connected subgraph) clustering algorithm. (3) Embedding the 

extracted virtual network with a one-step embedding algorithm. 

The proposed algorithm is compared with edge prediction and 

virtual network embedding algorithms. The results demonstrate 

the strength of the edge prediction algorithm,  the benefit, and the 

reduction of the cost of the embedding. 

 
Index Terms-- Uncertain virtual network, Edge prediction, 

SOM classifier, Neighborhood information, Graph clustering.  

INTRODUCTION 

 

odern data center networks (DCNs) face the critical 

challenge of efficiently managing resources to meet dynamic 

and diverse application demands. Paradigms such as Software-

Defined Networking (SDN) and Network Virtualization (NV) 

have emerged as foundational technologies to address this 

challenge. SDN, by decoupling the control plane from the data 

plane, provides a centralized, programmable, and global view 

of the network infrastructure. This capability is particularly 

beneficial for resource allocation tasks like Virtual Network 

Embedding (VNE), which involves mapping virtual networks 

(VNs) onto a shared physical substrate. Virtual networks have 

been created to improve the resource efficiency in the data 

center networks (DCN). Data center networks consist of a large 

data center network. Data center networks consist of a large 

number of servers with communication between them [1]. 

Virtual networks (VN) are requested as nodes and links with 

heterogeneous topology [2, 3]. The aim of virtual network 

embedding (VNE) is to provide the infrastructure with the 

lowest cost and highest revenue. In the mapping of virtual 

networks, each virtual node must be mapped onto a physical 

node with sufficient capacity [4] and each virtual link must be 
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mapped on one or multiple separate parallel paths [5] with 

sufficient total bandwidth. The responsibility of virtual network 

embedding is with infrastructure providers (InP). Service 

providers (SP) are solely responsible for leasing resources from 

infrastructure providers and providing them to users [6, 7]. 

Therefore, SPs are connected to users for receiving requests and 

InP are responsible for providing resources. Virtual network 

users sometimes have not the ability to express their 

requirements accurately; (a) the virtual network topology may 

not be important for them. (b) The nodes’ capacity or links’ 

bandwidth may not always be required and their requirements 

are requested with probabilities on the links. We called such 

virtual networks as uncertain virtual network (UVN) in this 

paper. Effectively embedding these UVNs is a complex 

problem. The centralized control and global visibility offered 

by an SDN controller make it an ideal platform for 

implementing advanced UVN embedding (UVNE) strategies, 

as it can dynamically assess substrate resource availability and 

make optimal embedding decisions. An example of an 

uncertain virtual network is shown in Fig. 1. 

As shown in Fig. 1(B), there is an uncertain virtual network 

with six virtual nodes and seven virtual links. The required 

capacity of all virtual nodes is shown on nodes and the link 

bandwidth of all virtual links are shown on links. Also, the 

uncertain virtual network has probabilities on the links that 

indicate the amount of need to the link listed in the lifetime of 

the virtual network. In this paper, we consider the uncertainty 

on links and do not consider node uncertainty. In fact, we 

describe the requested virtual networks with uncertain link 

information as uncertain virtual networks and use uncertain 

graphs to model them. Since each uncertain virtual network can 

be converted into several certain virtual networks (CVN), there 

are two ways to embed uncertain virtual networks in which 

network topology is not important: (a) Examining all different 

certain versions of each uncertain virtual network and selecting 

the best one with the least cost to the user and the highest 

revenue for service providers. (b) Selecting or extracting a 

certain virtual network based on neighborhood information or 

based on the history of virtual networks and then embedding the 

extracted certain virtual network on the substrate network. The 

first one creates a complex problem that takes a lot of time to 

resolve. We use the second method in this article. In this way, 

at first, we select a certain version of the uncertain virtual 

network using edge prediction based on neighborhood 

information and then embed it on a substrate network. The 

M 



 

 

proposed UVNE method has three steps: 

 Step 1. Edge prediction: this step extracts a certain virtual 

network (CVN) from multiple certain versions of an uncertain 

virtual network using a proposed edge prediction algorithm 

based on the SOM (self-organizing map) classifier. In this step, 

we need a binary classifier which has been able to train with 

virtual networks neighborhood information such as; nodes 

degree and links probability. We proposed SOM-classifier as a 

binary classifier which is able to organize itself. Also, we train 

SOM-classifier with neighborhood information. In fact, the 

training dataset were constructed with (I) running 

pKwikCluster-EditDistance algorithm on uncertain virtual 

networks to find the suitable certain version of them. and (II) 

adding noise to some certain virtual networks. 

 

 
Fig. 1 The proposed SOGVNE process 

 

 Step 2. Clustering: this step completes the clustering the 

extracted certain virtual network with HCS (Highly Connected 

Subgraphs) clustering algorithm. 

 Step 3. VNE: this step completes the embedding of the 

extracted certain virtual network with one-step embedding 

algorithms. 

    The proposed UVNE compared with three related uncertain 

VNE algorithms and the results show that in presence of 

uncertainty, the cost will be decreased and the revenue will be 

increased. Because in uncertain virtual networks, we can cluster 

the network and then embed it on the substrate network. In 

another test, we examined the strength of the edge prediction 

algorithm in comparison to other available methods. The results 

indicate the accuracy of the proposed algorithm. 

A.  Our contribution 

This paper proposes an uncertain virtual network embedding 

algorithm which the requested virtual networks are not 

deterministic and the user’s requirement on links, indicate the 

probability of needing that link over the life of the virtual 

network. Our contributions are shown in Fig. 1. As shown in 

Fig. 1, the requested VN is an uncertain VN and there are 

multiple certain versions of requested uncertain virtual 

network. The proposed UVNE, extracts a certain VN (step 1), 

then clusters the extracted CVN (step 2) and at last, embeds the 

CVN on a substrate network (step 3). 

The proposed UVNE framework is designed to leverage the 

SDN paradigm. The global network view provided by the SDN 

controller facilitates efficient resource discovery and allocation 

during the embedding process, particularly in the clustering and 

VNE steps. Furthermore, once an embedding solution is found, 

the SDN controller can proactively configure the substrate 

network (e.g., installing flow rules on OpenFlow-enabled 

switches) to realize the virtual network, enabling rapid and 

dynamic provisioning. 

The rest of paper is organized as follow. Section 2 expresses 

the related works. The third section describes the physical and 

virtual network modelling as well as the concepts of clustering 

and edge prediction. The fourth section expresses the proposed 

UVNE algorithm with details. The evaluation steps of the 

proposed strategy have been discussed in the fifth section and 

section 6 includes the conclusion and future works. 

II.  RELATED WORKS 

    VNE problem is a resource provisioning problem to requested 
virtual networks. Purpose of most methods is to increase the 
acceptance ratio. Some VNE methods are resilient in embedding 
to increase the strength of VNs against failures [8]. Green VNE 
methods use green energy resources or try to use fewer servers to 
VNs embedding in each time interval [9], [10], [11]. Topology-
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aware VNE methods select substrate nodes based on topological 
information, such as proximity to existing nodes with the high 
degree or stacking in clusters with identical nodes [12]. 
    In all of the above-mentioned research, VNE has been 
completed in two phases of node mapping and link mapping 
[13], [14, 15]. The VNE methods complete these two phases in 
the uncoordinated or coordinated manner [16]. Coordinated 
methods are separated into two groups; coordinated two-stage 
and coordinated one-stage [16]. In the uncoordinated method, 
two phases are performed sequentially and separately [17]. But in 
the coordinated method, two phases are performed in 
synchronization with each other. In the coordinated two-phase, 
the conditions of the second phase were added to the first 
phase as constraints, so that the second phase can be verified 
at this stage to some extent. In the coordinated one-phase, the 
two phases are completed simultaneously. 

A.  Uncoordinated 

methods 

In the uncoordinated category, Yu et al. [18] propose a 
heuristic optimization algorithm for VNE. The main goal in 
their approach was maximizing the long-term average 
revenue. They complete node mapping with a greedy 
algorithm and link mapping with k-shortest path algorithm. 
Houidi et al. [19] had designed a distributed VNE algorithm 
responsible for load balancing with a two-stage heuristic 
algorithm; The first stage is called the selection of hub-and-
spoke, that finds the virtual node with the highest capacity as 
the hub of the cluster and distinguish the neighboring virtual 
nodes directly connected to the selected hub node to represents 
the spoke nodes; then removes all hub and spoke nodes and 
repeats the process to find all hub-and-spokes. The second 
stage is called mapping of hub-and-spokes, that selects a 
substrate node with high remained capacity and embeds the 
first hub on it and the selected node should be mapped all itself 
spokes on the substrate network and repeats this process for all 
available hubs. Botero et al. [20] introduce hidden hops 
constraints. They believe each virtual link which is embedded 
on a substrate path, needs the CPU demand in the intermediate 
nodes (hidden hops) of the substrate path and this problem has 
not been taken into account as an important parameter in 
related works. To address this problem the authors of [20] add 
hidden hops constraint to a heuristic algorithm in their 
proposed method. In Ref. [21] VNE problem was formulated 
as a mixed integer linear programming problem and was 
introduced stochastic bandwidth demand to solving it. Most 
related works complete node mapping phase with node 
ranking based on their remained capacity. But Ref. [22] uses 
node connectivity between each pair of nodes which was 
formulated to measure the resource ranking of the nodes as a 
new feature to node ranking. 
In VNE problem, physical node reusable mapping (PNRM) 
[23] shows a virtual node should be mapped on a single physical 
node and all pair virtual nodes of same VN should be mapped 
on separated substrate nodes. But Ref. [24] to reach high 
acceptance ratio and high revenue, ignored PNRM and has 
maps one virtual node in several substrate nodes. Mijumbi et al. 
[25] use multi-agent for resource management in data centers. 
All of the nodes and links have an agent which agents can learn 
environment status and update their policy to do the best action 
in the future. The authors use q- learning method for agent 

training. Gong et al. [26] propose a new metric, i.e., global 
resource capacity (GRC) which computes the embedding 
potential for each substrate resources. Wang et al. [27] proposed 
Presto as a VNE method. Presto solves VNE in a preemptive 
strategy. They convert the substrate network to a tree by 
Blocking Island (BI) method, which can select suitable 
substrate nodes and paths to virtual nodes and links in O(1). But 
recording the extracted tree needs space and the constructed tree 
should be updated with any changing in the substrate network. 
Haeri et. al [28], used Markov Decision Process (MDP) 
framework to formulate node mapping phase and solve it by 
Monte Carlo tree search algorithm. 
Some papers in order to reduce VNE time, complete VNE in a 
distributed way. Ref. [29] proposed a distributed embedding 
algorithm with enabling the embedding of multiple VNs in 
parallel. To reach the specified aim, the authors partition the 
physical network hierarchically. The first layer includes all 
physical network and the last one includes some clusters of 
nodes. VNE starts from the last layer and each VN assigns to a 
cluster. If the assigned clusters could embed the VNs, repeat 
this process and take other VNs. But if each cluster could not 
embed VN, send it to the previous layer which has more 
resources and this process continue to VN embedded 
successfully. 
Botero et al. [30] proposed an energy efficient VNE, where the 
objective is to switch off as many substrate nodes and interfaces 
as possible by allocating the virtual demands to a consolidated 
subset of active physical networking equipment. Guan et al. 
[31], proposed an energy efficient VNE by future migration 
which plans in embedding time. They consider the amount of 
used energy at day and night and embed a VN at day on suitable 
substrate resources and plan to embed the VN at night on the 
other resources to reduce used energy. 
Oliveira et al. [32], proposed an opportunistic resilience 
embedding (ORE) algo- rithm to embed VNs and protect VNs 
against substrate network disruptions. Their proposed 
algorithm has a two-fold: a proactive strategy and a reactive 
strategy. The proactive strategy smoothes the initial disruption 
and its impact and the reactive strategy recovers any disruption 
in the resources. 

B.  Coordinated two-phase 

methods 

In the coordinated two-phase manner, Chowdhury et al. [33] 

used integer programming to formulate VNE problem. Then 

propose two algorithms to relax integer programming 

constraints: a deterministic and a randomized. In deterministic 

VNE, they extend the physical network graph by introducing 

meta nodes for each virtual node and then treat with each virtual 

link with bandwidth constraints as a commodity consisting of a 

pair of meta-nodes and solve it with the multi-commodity flow 

problem. Cheng et al. [34] proposed two algorithms. The prime 

proposed algorithm uses node ranking concept to map virtual 

requested nodes on substrate nodes, then embeds the virtual 

links by the shortest path and multiple commodity flow 

problems with splittable paths. The second proposed algorithm 

is a backtracking VNE based on breadth-first search, which 

embeds both virtual nodes and virtual links in the same stage. 

Zhang et al. [35] solved VNE by particle swarm optimization 

(PSO) meta-heuristic and to reduce the time complexity of the 



 

 

link mapping stage. Cao et al. [? ] proposed a new node ranking 

approach to made a balance between used energy and reached 

revenue. 

Hesselbach et al. [36] used the paths algebra-based strategy 

by coordinating, in a single stage. They map nodes and links 

with a node ranking method which made of the bi-directional 

pair of nodes of the physical network and ordered by their 

available resources. Ref. [37] proposes a heuristic VNE method 

to minimize the total physical resources required when the 

virtual network operators request substrate resource shar- ing 

among multiple priority classes within their virtual networks. 

Bienkowski et al. [38] used migration when service access 

position changes. Their main contributions are a randomized 

and a deterministic online algorithm that achieves a competitive 

ratio of O(nlogn) in a simplified scenario, where is the size of 

the physical network. Butt et al. [39] present a mechanism to 

differentiate among resources based on their importance in the 

substrate topology and also proposed a set of algorithms for re-

optimizing and re-embedding initially-rejected VNs. Soualah et 

al. [40] used Gomory-Hu tree to solve the VNE which is 

formulated as an integer linear program. 

C.  Coordinated one-

phase methods 

The last category is coordinated one-phase which completes the 

embedding process in only one phase (node mapping and link 

mapping complete concurrently) [41]. Ref. [42] was the first 

one-phase method and it detected subgraph isomorphism with 

requested virtual network. Houidi et al. [43] proposed a one-

stage algorithm with split- ting ability of the virtual network 

provisioning request across multiple infrastructure providers 

and solving it using both max-flow min-cut algorithms and 

linear program- ming techniques. Fajjari et al. [44] proposed a 

Max-Min ant colony meta-heuristic VNE approach. Botero et 

al. [45] introduced the energy-aware VNE. Pages et al. [46] 

introduced the VNE for optical networks in only one phase. 

     Yu et al. [47] suggested one step VNE that increases 

coordination. They were selecting some candidate nodes and 

then select nodes with enough link bandwidth to embed VNs. 

Ref. [48] accelerated the convergence of PSO VNE meta-

heuristic with topology-aware node ranking. Ref. [49] 

coordinated VNE reducing the number of backtracks by 

carefully choosing the first virtual node to map. Ref. [50] used 

integer linear programming problem and multicommodity flow 

allocation problem respectively for the node and link mapping. 

Zhu et al. [51] suggested an ant colony based VNE which 

complete node and link mapping stages concurrently. 

Due to recent advances in the field of VNE, deep learning and 

artificial intelligence-based approaches have attracted much 

attention. For example, [16] presents an advanced framework 

for optimal virtual network embedding by combining graph 

attention network (GAT) and deep reinforcement learning 

(DRL). Similarly, [25] uses graph convolutional networks 

(GCN) to assist the embedding process. Also, [12] proposed a 

multi-criteria fuzzy inference system to solve the virtual 

network function placement problem (VNFP). Although these 

methods are powerful, they are mainly focused on deterministic 

virtual networks. This paper aims to fill this gap by providing a 

specialized solution for uncertain environments where 

complete topology information is not available. We will also 

compare our method (UVNE) with simulations of these new 

approaches in the experimental section. 

 

Table 1 Frequently used notations 

Notation  Notation Description 

𝐺𝑠 Substrate network 

𝑁𝑠 Set of substrate nodes 

𝐸𝑠 Set of substrate links 

𝐶𝑠(𝑛𝑠) Capacity of substrate node 𝑛𝑠  ∈  𝑁𝑠 

𝐵𝑠(𝑒𝑠) Bandwidth of substrate link 𝑒𝑠  ∈  𝐸𝑠 

𝑃𝑠 Set of all substrate path 

𝐵(𝑝) Bandwidth of substrate path 𝑝 ∈  𝑃𝑠 

𝐺𝑣  Virtual network 

𝑁𝑣 Set of virtual nodes 

𝐸𝑣 Set of virtual links 

𝑃𝑣 Set of existence probability of virtual links 

𝐶𝑣(𝑛𝑣) Required capacity of virtual node 𝑛 𝑣 ∈  𝑁𝑣 

𝐵𝑣(𝑒𝑣) Required bandwidth of virtual link 𝑒𝑣  ∈  𝐸𝑣 

𝑌 𝑛𝑠

𝑛𝑣 

 

Virtual node 𝑛𝑣 mapped on substrate node ns 

(if mapped will be 1 and otherwise will be 0) 

𝑋 𝑒𝑠

𝑒𝑣  

 

Virtual link 𝑒𝑣 mapped on substrate link es 

(if mapped will be 1 and otherwise will be 0) 
 

 

III.  PROBLEM FORMULATION 

The proposed UVNE algorithm operates within a broader 

Software-Defined Networking (SDN) framework, as illustrated 

in Fig. 1. The SDN controller acts as the infrastructure provider 

(InP), maintaining a global and real-time view of the substrate 

network resources, including the available CPU capacity of 

nodes and bandwidth of links. This global view is crucial for 

the UVNE process. When an uncertain virtual network (UVN) 

request arrives, the SDN controller invokes the UVNE 

algorithm. The algorithm's three steps—edge prediction, 

clustering, and embedding—utilize this centralized knowledge 

base to make informed decisions. After a successful embedding 

solution is computed, the SDN controller translates it into 

specific configuration commands (e.g., installing flow rules via 

the OpenFlow protocol) to program the underlying physical 

switches and servers, thereby instantiating the virtual network. 

This integration enables dynamic, efficient, and automated 

provisioning of uncertain virtual networks. 

This section formulates substrate/infrastructure network, 

uncertain virtual networks and used graph clustering 

algorithms. 

A.  Substrate network 

Let 𝐺𝑠  =  {𝑁𝑠, 𝐸𝑠} be a substrate network, where 𝑁𝑠is a set of 

nodes and 𝐸𝑠 is a set of edges. Substrate network has two 

attributes; where 𝐶𝑠(𝑛𝑠) is the capacity of substrate node 𝑛𝑠 and  
𝐵𝑠(𝑒𝑠) is the link bandwidth of substrate link 𝑒𝑠 which is shown 

in Table. 1. In substrate network, there is multiple path (𝑝 ∈
 𝑃𝑠) and 𝑃𝑠  is substrate path set. 𝐵(𝑝) is bandwidth of path p 

which is minimum bandwidth of all links in path p. 

B.  Uncertain virtual network 

Let 𝐺 𝑣 =  {𝑁𝑣 , 𝐸𝑣 , 𝑃𝑣} be a uncertain virtual network, where 𝑁𝑣 

is a set of nodes and 𝐸𝑣 is a set of edges. 𝑃𝑣 is a set of the 
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es es 

existence probability of virtual links. So 𝑃𝑣 ∶  𝐸𝑣  →  (0, 1] and 

assigns a probability between zero and one to all virtual links 

which shows the existence of that virtual link in network. 

Uncertain virtual network has two attributes; where 𝐶𝑣(𝑛𝑣) is 

the capacity of virtual node nv and 𝐵𝑣(𝑒𝑣) is link bandwidth 

virtual link ev which is shown in Table. 1. 

    We formulate uncertain virtual network (UVN) by uncertain 

graph. Therefore, each UVN has multiple certain version of 

virtual network. As shown in Fig. 1(C), the UVN has multiple 

certain VN which three of them demonstrated. So, a UVN is 

also called a probabilistic VN. Suppose a 

probabilistic/uncertain VN 𝐺𝑣  as a universal set, where includes 

multiple deterministic/certain version of 𝐺𝑣  like 𝐺′𝑣  ⊑  𝐺𝑣 . A 

deterministic/certain VN 𝐺′𝑣  can be considered to be an 

instance of 𝐺𝑣, according to the probability distribution 𝑃 (𝐺′𝑣). 

The probabilities assigned to the VN’s links are treated as 

mutually independent variables. Assuming independence 

among links, the probability distribution over discrete certain 

VN is computed as Eq. 1. 

 

𝑃 (𝐺′
𝑣|𝐺𝑣) = ∏ 𝑃𝑣(𝑒𝑣)

𝑒𝑣𝜖𝐸𝑣

∏ 1 − (𝑃𝑣(𝑒𝑣))

𝑒𝑣𝜖𝐸\𝐸𝑣

 
(1) 

 

C.  Virtual network embedding 

As mentioned before, virtual network embedding process has two 

phases of node map- ping and link mapping. In node mapping 

phase, each virtual node should be mapped on a substrate node 

with adequate capacity. We formulated this concept with a binary 

variable; 𝑌 𝑛𝑠

𝑛𝑣 , where shows virtual node 𝑛𝑣 is mapped on 

substrate node 𝑛𝑠 or not (If it mapped, then 𝑌 𝑛𝑠

𝑛𝑣  
=  1 and 

otherwise 𝑌 𝑛𝑠

𝑛𝑣 =  0). Also a node mapping is possible, when 

the virtual node’s requested capacity is equal or less than the 

remained substrate node’s capacity (𝐶𝑣(𝑛𝑣)  ≤  𝐶𝑠(𝑛𝑠)). 

In link mapping phase, each virtual link should be mapped 

on a or multiple path with adequate bandwidth as shown in 

𝑋 𝑒𝑠

𝑒𝑣  where demonstrate virtual link 𝑒𝑣 is mapped on substrate 

link 𝑒𝑠 or not (If it mapped, then 𝑋 𝑒𝑠

𝑒𝑣  = 1 and otherwise 

𝑋 𝑒𝑠

𝑒𝑣  = 0). A link mapping is possible, when the virtual link’s 

required bandwidth is equal or less than the remained 
bandwidth of substrate path (𝐵(𝑒𝑣)  ≤  𝐵(𝑝)). 

D.  Uncertain graph clustering 

In this section, we consider the problem of uncertain graph 

clustering. We formulate both substrate and uncertain virtual 

networks as graph in this paper and as we know the uncertain 

graphs also called probabilistic graphs. In this way, at first 

we consider EditDistance in uncertain graphs and then 

consider pKwikCluster algorithm to extract all clustered 

uncertain graph. 

Definition 1 (EditDistance). Let 𝐺 and 𝑄 be two 

deterministic graphs, where 𝐺 =  (𝑉, 𝐸𝐺) and 𝑄 =
 (𝑉,  𝐸𝑄), we define EditDistance between 𝐺 and 𝑄 as the 

number of edges that need to be added or deleted from 𝐺 in 

order to be transformed into 𝑄 which is shown in Eq. 2. 

𝐷(𝐺, 𝑄)  =  |𝐸𝐺  \ 𝐸𝑄|  +  |𝐸𝑄  \ 𝐸𝐺| (2) 

 

If 𝐺 and also 𝑄 denoted by adjacency matrix (includes 0 or 

1), So Eq. 2 can be written like Eq. 3. 

𝐷(𝐺, 𝑄)  =  
1

2
∑ ∑ |𝐺(𝑥, 𝑦) − 𝑄(𝑥, 𝑦)|

𝑛

𝑦=1

𝑛

𝑥=1

 (3) 

 

Kollios et al. [52] extend EditDistance definition between a 

deterministic and an uncertain/probabilistic graph. 

Definition 2. Suppose we have a deterministic graph 𝑄 =
 (𝑉, 𝐸𝑄) and a uncertain graph 𝐺 =  (𝑉,  𝐸𝐺 , 𝑃𝐺). The 

EditDistance between 𝐺 and 𝑄 is defined as expected 

EditDistance between all certain version of 𝐺 like 𝐺′ ⊑  𝐺 

and 𝑄 that is shown in Eq. 4. 

𝐷(𝐺, 𝑄)  =  ∑ 𝑃(𝐺′)𝐷(𝐺′, 𝑄)

𝐺′ ⊑ 𝐺 

 (4) 

In Eq. 4, 𝑃 (𝐺′) is probability of deterministic graph 𝐺′ and 

is computed by Eq. 1. 𝐷(𝐺′, 𝑄) is EditDistance between two 

deterministic graphs 𝐺′ and 𝑄 that is computed by Eq. 3. 

Definition 3 (Cluster graph). A cluster graph 𝐶 =  (𝑉,  𝐸𝐶) 

is a deterministic graph with the following properties [52]: 

1. C defines a partition of the nodes in V into k parts, 𝑉 =
 {𝑉1, … , 𝑉𝑘} such that 𝑉𝑖  ∩  𝑉𝑗  =  ∅. 

2. For every 𝑖 ∈  {1, . . . , 𝑘} and for every pair of nodes 𝑣 ∈
 𝑉𝑖  and 𝑣′ ∈  𝑉𝑖, we have that {𝑣, 𝑣′}  ∈  𝐸𝐶 . 

3. For every 𝑖, 𝑗 ∈  {1, . . . , 𝑘} with 𝑖  =  𝑗 and every pair of 

nodes 𝑣, 𝑣′ such that 𝑣 ∈ 𝑉𝑖 and 𝑣′ ∈ 𝑉𝑗 , {𝑣, 𝑣′}  ∉  𝐸𝐶 . 

Definition 4 (pKwikCluster algorithm). pKwikCluster 

algorithm [53] is a clustering algorithm for uncertain graphs 

which solve the problem ”Finding a cluster graph 𝐶 =
 (𝑉, 𝐸𝑐) for a probabilistic graph 𝐺 =  (𝑉, 𝑃) such that 

𝐷(𝐺, 𝐶) is minimized.” pKwikCluster algorithm starts with 

a single node and then find all neighbor nodes of selected 

node with probability higher than p (a constant variable) and 

adds all of them to a cluster. If there was not any neighbor 

with this status, the selected node adds to a single cluster and 

algorithm continue with other nodes until all nodes consider. 

Algorithm 1 shows the pKwikCluster algorithm. 

 

Algorithm 1 pKwikCluster Algorithm [52] 

1. repeat 

2.      Choose 𝑢 ∈ 𝑉 randomly; 

3.      𝐶(𝑢)  ←  𝑢; 

4.      for 𝑣 ∈  𝑉 such that 𝑝(𝑢, 𝑣)  >  0.5 do 

5.          𝐶(𝑢)  ←  𝐶(𝑢) ∪ 𝑣; 

6.      end for 

7.      𝑉 ←  𝑉 −  𝐶(𝑢); 

8. until 𝑉 =  ∅ 

 

E.  Certain graph clustering 

The process of dividing a set of input data into possibly 

overlapping, subsets, where elements in each subset were 

considered related by some similarity measure is called 

clustering. In deterministic graphs, dividing nodes to 

multiple clusters called graph clustering. Between-graph 

clustering methods divide a set of graphs into different 

clusters and within-graph clustering methods divides the 

nodes of a graph into clusters. In this paper we need standard 



 

 

within-graph clustering methods which are: k-spanning tree, 

shared nearest neighbor, betweenness centrality based, 

highly connected components, maximal clique enumeration, 

and kernel k-means. 

    The HCS (Highly Connected Subgraphs) clustering 

algorithm [54] is an algorithm based on graph connectivity 

for cluster analysis, by first representing the similarity data 

in a similarity graph, and afterwards finding all the highly 

connected subgraphs as clusters. This algorithm finds min-

cut of mentioned graph and if min-cut of graph was less than 

|V |/2, then divide graph by min-cut and repeat the process 

of cutting on two separated subgraphs and otherwise finish 

the algorithm process and return the extracted subgraphs. 

HCS graph clustering is shown in Algorithm. 2. 

 

Algorithm 2 HCS clustering Algorithm \\ Highly 

connected Subgraph 

1. function   HCS(G(V,E)) 

2. if G is highly connected then 

3.      return (G); 

4. else 

5.      (H1,H2,C) ← Min − cut(G); 

6.      HCS(H1); 

7.      HCS(H2); 

8. end if 

9. end function 

IV.  PROPOSED UVNE ALGORITHM 

This paper proposes UVNE as a new method for uncertain 

virtual network embedding. In this paper, we formulated 

uncertain virtual networks which do not have certain link 

information by uncertain graph and called these types of 

virtual networks as uncertain virtual network. The proposed 

UVNE has three steps; In the first step, the best certain 

virtual network (CVN) extracted from requested UVN by a 

proposed SOM-classifier. In the second step, it uses the HCS 

algorithm to clustering the extracted CVN. Then in the third 

step, it uses a VNE algorithm to embed CVN on the substrate 

network. The proposed UVNE algorithm is given in 

Algorithm 3. 

Algorithm 3 UVNE algorithm // Uncertain Virtual 

Network Embedding 

Require: input: 𝐺𝑠  (Substrate Network State from SDN 

Controller); 𝐺𝑣  (Uncertain VN Request); 

                 output: embedding results in X and Y ; 

1. 𝐺𝑣=SOM-classifier(𝐺𝑣); 

2. 𝐺𝑣=HCS(𝐺𝑣); 

3. (𝑋, 𝑌 ) =VNE(𝐺𝑣, 𝐺𝑠); 

 

A.  First step: Edge prediction 

In the first step, the proposed SOM-classifier applies to 

extract suitable certain virtual network from multiple certain 

versions of requested virtual network. In fact, proposed 

SOM classifier presented to predict edges existence of 

uncertain virtual network based on neighborhood 

information. We extract five various graph neighborhood 

information to train the SOM classifier and use the same 

classifier to predict the edges of uncertain requested VNs. 

This step converts an uncertain (probabilistic) virtual net- 

work to a certain (deterministic) virtual network based on 

predicting the existence of the link in uncertain VN based on 

five neighborhood information (see section IV.A.1).  

    Traditional works in the uncertain graph, applying a 

threshold and delete all edges lower than a threshold to make 

a certain graph or compute the probability of all possible 

certain graphs and select the best certain graph with high 

probability. However, in uncertain virtual networks, 

although network topology is not important, the performance 

of network and its responsiveness is very important at the 

times required. So, the threshold-based approaches are not 

suitable in uncertain virtual networks. In order to address this 

problem, the current algorithm (SOM-classifier) presents an 

intelligent approach instead of threshold-based approaches. 

It uses a binary classifier based on supervised self-

organizing map neural network to predict the existence of 

edges. 

    At first, the SOM-classifier is trained using certain virtual 

networks which were collected as training dataset by 

applying the pKwikCluster algorithm on uncertain VNs and 

applying noise to various certain VNs. Then, the same 

classifier is used to predict the existence of edges in UVN. 

The proposed classifier will be tested before using a natively 

uncertain virtual network which are generated by GT-ITM 

tools [55] and the comparison is done by Davies-Bouldin 

index (DBI), Dunn index (DI), and Silhouette coefficient 

(SC) metrics. The proposed SOM-classifier is given in 

Algorithm. 4. 

As shown in Algorithm. 4, at first the SOM-classifier trained 

and tested by the collected dataset (rows 2-3). Then, the 

extracted features which are extracted from neighborhood 

information (row 6) (section 4.1.1) are applied to have 

trained SOM- classifier (row 7) to get a certain virtual 

network (row 8). The details of the proposed algorithm will 

be explained in the next subsection. 

The edge prediction step, while primarily analyzing the 

UVN request itself, can be significantly enhanced by the 

global network visibility provided by the SDN controller. In 

a practical SDN-based implementation, the controller’s 

centralized monitoring capabilities can collect rich historical 

data on previously embedded virtual networks. This includes 

real‐ world metrics such as actual link utilization, traffic 

patterns, and the lifespan of virtual links. Such data can be 

used to refine the training dataset for the SOM-classifier, 

moving beyond purely topological features 

toward performance‐ aware link prediction. For instance, 

links that were frequently utilized or critical to network 

performance in past embeddings can be weighted more 

heavily during training. Although the current model relies on 

features extracted from the UVN topology, the SDN 

framework paves the way for future extensions where 

features like link centrality (CEN) could be dynamically 

computed based on the current substrate network state, 

leading to even more accurate and context‐ aware 

predictions. 

    1)  Feature extraction 

In an uncertain virtual network, there are several attributes 

for an uncertain link, such as the probability of mentioned 
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link and neighbor links, end nodes degree, graph 

connectivity and the number of the shortest path passing 

through the mentioned link. Complete knowledge of each 

uncertain virtual network is crucial for training the SOM- 

classifier and provides complete information from the 

uncertain virtual network. We extract five features for every 

uncertain link and use them to train the SOM-classifier. In 

fact, the classifier is a binary classifier and should answer the 

mentioned link will be required in the requested virtual 

network or not and this answer completely depends on 

extracted features. So, the SOM-classifier predicts the 

existence of edges in an uncertain virtual network and 

extract the suitable certain virtual network. 

 

Algorithm 4 SOM-classifier algorithm 

Require: input: 𝐺𝑣, TrainingSet, TestingSet, numEpoch  

               (Number of epochs), η (Learning rate); 
                output: 𝐺𝑣 (extracted certain virtual network); 

 

1. make SOM-classifier; 

2. Training (SOM-classifier, TrainingSet, numEpoch, η); 

3. Testing (SOM-classifier, TestingSet);  

4. Loop 

5.      if 𝐸𝑣 ≠  ∅ then 

6.          for 𝑒𝑣  ∈  𝐸𝑣 do 

7.              FeatureVector=getFeatureVector(𝑒𝑣);  

8.              𝐺𝑣=SOM-classifier.getOutput(FeatureVector);  

9.             return 𝐺𝑣; 
10.         end for 

11.     end if 

12. end loop 

 

 

    The extracted five features for each uncertain link (𝑒𝑣) is 

listed as below: 

1. Link probability (𝑃𝑣): the probability of an uncertain 

link 𝑒𝑣 in an uncertain virtual network 𝐺𝑣  is 𝑃𝑣(𝑒𝑣) and 

has a large impact in predicting uncertain link hesitance. 

2. Average of neighbor links probability (𝐴𝑉𝐺𝑃𝑣
): the 

average of neighbour links probability which is 

computed by Eq. 5, considers the neighbor links 

existence probability to decide about the existence of the 

mentioned link. 

𝐴𝑉𝐺𝑃𝑣
=  ∑ 𝑃𝑣(𝑒𝑣)/|𝐸𝑣|

𝑒𝑣∈𝐸𝑣

 (5) 

 

3. Sum of end nodes degree (DEG): each uncertain link 

has two end nodes degree and this feature computes the 

sum of end nodes degree. 
4. Graph connectivity (CON ): This feature considers 

the graph’s connectivity in the absence of a link. If 
in the absence of the link, the graph is connected, it 
receives a zero value. Otherwise, it will receive a 
value of one. 

5. Link centrality (CEN ): centrality is a concept which 
is computed how many paths will pass through the 
mentioned link and in fact measures the 

importance of the link. In this paper, we compute 
the link centrality by closeness centrality which 
computes the sum of the distance of all possible 
paths contains the mentioned link as shown in Eq. 
6. 
𝐶𝐸𝑁 = 1/ ∑ 𝑑(𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛({𝑛(𝑒𝑣), 𝑛′(𝑒𝑣)}, 𝑢))

∀𝑢,   𝑢≠𝑛(𝑒𝑣),𝑛′(𝑒𝑣)

 (6) 

In Eq. 6, 𝑑(𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛({𝑛(𝑒𝑣), 𝑛′(𝑒𝑣)}, 𝑢))is the distance 

between node u and two end nodes 𝑛(𝑒𝑣) and 𝑛′(𝑒𝑣)of 

virtual link 𝑒𝑣. In fact, we want to compute the distance 

between other nodes from edge 𝑒𝑣. So permutation 
{𝑛(𝑒𝑣), 𝑛′(𝑒𝑣)}, shows the mentioned link which the path 

should pass through that link. 

After extracting these five features, the normalized values of 

features will be computed and a feature vector was made. 

The extracted feature vector is shown in Eq. 7. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟 
=  (𝑃𝑣(𝑒𝑣), 𝐴𝑉𝐺𝑝𝑣

 (𝑒𝑣), 𝐷𝐸𝐺(𝑒𝑣), 𝐶𝑂𝑁(𝑒𝑣), 𝐶𝐸𝑁(𝑒𝑣)) 
(7) 

 

    The feature vector is used in extracting features of the 

training and testing set and training the classifier and also in 

getting output from trained SOM-classifier. 

    2)  Generating the training dataset 

 

After designing a classifier, it should be trained and tested 

by trained and test dataset. We collect the training and testing 

dataset in two ways: (1) from generated uncertain virtual 

networks by GT-ITM tools and clustering them by 

pKwikCluster algorithm and extracting certain virtual 

networks and learning their features, and (2) from generated 

certain virtual networks by GT-ITM tools and adding noise 

to them and making uncertain virtual networks. We divide 

the extracted dataset to two sections; training and testing 

respectively with 80% and 20% data. 

 

    3)  Training and testing 

In the training process, the required parameters initialized 

and the SOM-classifier trained by training dataset in several 

epochs. The input of the training process is an uncertain 

virtual network and in each UVN, there are several uncertain 

links. For every uncertain link, the required features 

(FeatureVector) extracted. The output of this process is a 

trained SOM-classifier. SOM-classifier is a self-organizing 

map neural network which is unsupervised in real. But we 

apply the supervised method and train the classifier by 

labelled data. The supervised method, in each epoch, 

compare the output with the existed labels of data. The sum 

of squares error (SSE) is a metric to compare and the 

classifier is trained when its value is close to zero. SSE 

metric shown in Eq. 8. 

𝑆𝑆𝐸 =  
1

2
∑(𝑥𝑖 − 𝑥′)2

𝑛

𝑖=1

 (8) 

As shown in Eq. 8, suppose there are n output that should be 

compared with labeled data. Also, suppose 𝑥𝑖  is an output of 

training SOM-classifier and 𝑥′ is a label. We show the 

training process in Algorithm 5. 

In Algorithm 5, the inputs are the SOM-classifier, a training 

set, number of epochs and learning rate. The output of this 



 

 

algorithm is trained SOM-classifier. At first, the algorithm 

extracts all features of edges in training set (rows 1-3). Then 

it repeats the training process (row 4) until the computed 

SSE reaches to zero number (row 13). In each iteration, all 

of the parameters are initialized (row 5) and then in some 

epoch (row 6), three phases of the SOM algorithm applied 

(rows 7-9) that will be explained. After all, epochs are run, 

algorithm get an output of trained SOM-classifier (row 11) 

and then compute SSE to consider the condition of the main 

loop (row 12).  

These three phases are competition, cooperation and 

adaptation phase: 

 Competition phase: in the competition phase, a winner 

neuron is selected (row 7) by assigning all inputs to 

SOM-classifier. In this paper, the extracted feature vector 

is one of the inputs. The other inputs are the number of 

epochs and learning rate. The winner neuron is selected 

based on the similarity between inputs and neurons. We 

used Euclidean distance as shown in the used equation in 

row 7. i is the Id number of winner neuron. 𝑤𝑗(𝑡) is the 

weight of neuron j at time t. The weight matrix is a matrix 

with cells same as SOM lattice size (We used grid lattice 

in this paper) and initializes with constant numbers and 

then changes to optimal values during the training 

process. Optimal values are values that train SOM-

classifier with the training set. FeatureVector shows the 

feature vector of selected link edge (row 2). 
 

Algorithm 5 Training Algorithm 

Require: input: SOM-classifier, TrainingSet, numEpoch  

                              (Number of epochs), η (Learning rate); 
                output: Trained parameters in SOM-classifier; 

1. for edge ∈ TraingSet do 

2.      FeatureVector = getFeatureVector(edge); 

3. end for 

4. repeat 

5.      Initialize all the parameters in SOM-classifier; 

6.      while  iteration < numEpoch  do 
7.           Competition phase: Compute winner neuron i using equation: 

𝑖 =  𝑎𝑟𝑔 𝑚𝑖𝑛𝑗  ∥  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟 −  𝑤𝑗(𝑡)  ∥; 

8.           Cooperation phase: Compute ℎ𝑖𝑗(𝑓𝑣 , 𝑡) for all neurons (j) using: 

ℎ𝑖𝑗(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟, 𝑡)  =  𝑒𝑥𝑝(−
1

2

𝑑𝑖𝑗
2

𝜎(𝑡)2
); 

9.            Adaptation phase: Compute WeightVectorj(t+1) using:  

𝑤𝑗(𝑡 + 1)  =  𝑤𝑗(𝑡) + ∑ △ 𝑤𝑗(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟, 𝑡)

𝑓𝑣𝜖𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟

; 

10.      end while 
11.         𝐸𝑑𝑔𝑒𝐸𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 = 𝑆𝑂𝑀𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟. 𝑔𝑒𝑡𝑂𝑢𝑡𝑝𝑢𝑡(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟); 

12.      compute SSE with equation:  

1

2
∑ (𝐸𝑑𝑔𝑒𝐸𝑥𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 − 𝑙𝑎𝑏𝑒𝑙(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟𝑖))

|𝐸𝑑𝑔𝑒𝐸𝑥𝑖𝑠𝑡𝑎𝑛𝑐𝑒|

𝑖=1

 

13. until (𝑆𝑆𝐸 ≤  𝜖) 

14. Return Trained parameters in SOM-classifier; 

 Cooperation phase: in the cooperation phase, the 

amount of stimulation of winner neuron’s neighbors 

should be computed (row 8). At this point, any neuron 

that has been won will also notify as many other neurons 

as possible. neighbors close to the winner neuron are 

more stimulated, and vice versa, other neurons are less 

stimulated. The number of stimulated neurons depends 

on the distance of the winner neuron from other neurons 

and is calculated by an equation in row 8. 

ℎ𝑖𝑗(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑉 𝑒𝑐𝑡𝑜𝑟, 𝑡) is the amount of stimulation of 

neuron j against winner neuron i, when the input of SOM-

classifier is vector FeatureVector at time t. 𝑑𝑖𝑗  is 

Euclidean distance between neuron j and winner neuron 

i. In fact, the used function in the equation of row 8, is 

famous to Gaussian function. 

 Adaptation phase: the algorithm initializes the weight 

matrix with the constant value before training process. In 

the adaptation phase, the weight matrix is updated. In 

fact, when a neuron won and the cooperation phase 

completed, in this phase, the weight of all lattice neurons 

was updated. Updating the weight matrix can be done 

sequentially (an updating phase runs with any input 

vector) or in batch processing manner (only one updating 

run with receiving all input vector). Used equation shown 

in Row 9. 𝑤𝑗(𝑡 + 1) is weight matrix neuron j at time t+1. 

△ 𝑤𝑗(𝑥, 𝑡) is weight changes for input x at time t that 

depends on learning rate η. 

In the testing process, we apply the training set as input and 

compare the real output with SOM-classifier output. The 

testing algorithm is shown in Algorithm 6. 

 

Algorithm 6 Testing Algorithm 

Require: input: SOM-classifier, TestingSet; 

                output: validity indices; 

1. Initialize all the parameters in SOM-classifier; 

2. for edge ∈ TraingSet do 

3.       FeatureVector = getFeatureVector(edge); 

4. end for 

5. EdgeExistence=SOM-classifier.getOutput(FeatureVector); 

6. for edge ∈ TestingSet do 

7.       if SOM-classifier answered correctly then 

8.           signal(SUCCESS); 

9.       end if 

10. end for 

      

As shown in Algorithm 6, the algorithm needs to another 

dataset as a testing set. In this regard, the collected dataset 

divided into training and testing dataset respectively 80% 

and 20%. The proposed algorithm initializes the parameters 

at first (row 1), for all requests in the dataset, extracts feature 

vector (rows 2-4) and finds the edge existence using SOM-

classifier (row 5). Then, if the SOM-classifier is able to find 

edge existence successfully, the algorithm sends a success 

signal (rows 7-9). 

B.  Second step: clustering 

After extracting a certain version of the uncertain virtual 

network, this step clusters the certain virtual network. As 

mentioned in this paper, we are considering uncertain virtual 

networks with probabilistic information on links. So, the 

requested topology is not important for users. In this regard, 

we can cluster the highly connected nodes to reduce the cost 

and increase the revenue. The highly connected nodes are a 

set of nodes with more than |𝑉 |/2 links as mentioned in 

section 3.5. In this step, the proposed algorithm uses HCS 

algorithm as a standard certain graph clustering algorithm. 
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C.  Third step: virtual network embedding 

After running two first steps, the requested uncertain virtual 

network converted to a compact certain virtual network and 

so, obviously, its mapping will require fewer resources. In 

this step, we used the standard virtual network embedding 

algorithm to embed the requested VN. We used the one-step 

embedding algorithm (EE-CTA [56]) and embed VNs in 

only one phase. In fact, one-step algorithm complete two 

phases of node mapping and link mapping in one phase 

concurrently and most of the evolutionary algorithms are in 

this category. 

V.  EXPERIMENTS AND RESULTS 

This section describes the experimental analysis of proposed 

UVNE and its three steps compared with other classifying, 

clustering and virtual network embedding algorithms. Table. 

2 indices the compared indices in each step and all compared 

algorithms. 

Table 2 Used indices and compared algorithms in each step 
of UVNE 

Steps Indices Compared algorithms 

(1) Edge 

Prediction 

Error percentage  

Validation accuracy  

Testing accuracy  
SOM-classifier accuracy  

SVM [58] 

ANN-1 

ANN-2 
Threshold-based 

(2) 

Clustering 

DBI  

DI  
SC  

SVM [58] 

pKwikCluster [54] 
ANN-2 

(3) VNE Cost  

Revenue  

Acceptance ratio  
Node and link utilization 

Robust optimization [59] 

VCDN [60] 

Threshold-based 
GAT-DRL [16]  

Ce-VNE (GCN-based) [25] 
 

 

As shown in Table. 2, we compare proposed SOM-classifier 

in edge prediction step with other four classifier algorithm 

based on error percentage and accuracy. The second step 

compared with traditional pKwikCluster, SVM and ANN-2 

algorithm based on DBI, DI and SC indices. At last, the third 

step compared with three related embedding algorithms and 

recent advanced approaches based on cost, revenue and 

acceptance ratio. ANN-2 is a traditional artificial neural 

network with three neurons in the input layer, 10 neurons in 

the hidden layer neurons and two output layer neurons 

(binary classifier). ANN-1 has three, three, and two neurons 

in the input layer, hidden layer and output layer, 

respectively.  

Table 3 Used parameter in experiment of UVNE 

Parameter Value 

Classifier  

SOM-lattice  

SOM-similarity  

SOM-learning method  

Learning rate (η)  

Number of Epochs  

Clustering threshold  

Substrate network topology  

Nodes in substrate network  

Links in substrate network  

Virtual network topology  

SOM 

Grid 

Gaussian 

Kohonen 

0.8 

50 

0.5 

BCube [57] 

500 

1128 

Ring, Star, Random 

Nodes in virtual networks 

Links in virtual networks  

3-10 

5-30 
 

 

    All used parameters in experimental evaluation listed in 

Table. 3. All the experiments are compared in an operating 

system with an Intel Corei7- 8550 U- 1.89 GHz processor 

with a GPU 4 GB and 12 GB Ram and Windows 10 

Enterprise. In generating training and testing dataset, we use 

GT-ITM [55] tools and generate 100 certain virtual networks 

and 100 uncertain virtual networks with three topologies of 

ring, star, and random. As mentioned, the training and testing 

set generated in two ways: 

1. Adding noise to certain virtual networks which were 

generated with GT-ITM tools and making uncertain 

virtual networks (NoiseDataSet). 

2. Using pKwikCluster algorithm to generating certain 

virtual networks of uncertain virtual networks which 

were generated with GT-ITM tools (pKwikDataSet). 

To evaluate the proposed UVNE algorithm in a context 

resembling Software-Defined Networking, our simulation 

environment was designed to incorporate key characteristics 

of an SDN architecture. Most importantly, we assume the 

presence of a centralized controller that maintains a global 

and perfect view of the substrate network state. This means 

that our embedding algorithm has instantaneous access to the 

exact available CPU capacity of all substrate nodes and the 

available bandwidth of all substrate links at the time of each 

embedding decision. This ideal global knowledge eliminates 

the inaccuracies that might arise from distributed or outdated 

network state information, allowing us to isolate and 

measure the pure performance benefits of the UVNE 

algorithm itself. The ability to leverage this global view is a 

fundamental advantage offered by the SDN paradigm, and 

our simulation setup accurately reflects this capability. After 

a successful embedding, the cost and resource utilization are 

calculated based on this global information. 

A.  Edge prediction with SOM-classifier 

This section describes all experiments to compare the 

proposed SOM-classifier based on error percentage and 

classifier accuracy. In fact, each classifier should be able to 

predicate the right label for inputs. In this paper, the 

classifier is a binary classifier and include only two 

output/label for each input. So, the proposed algorithm 

should be able to predicate the existence of edge in an 

uncertain virtual network and labels an uncertain link with 

one or zero (the value of one, shows that the mentioned link 

should be as a certain link in UVN and the value of zero, 

shows the uncertain link is not required in the UVN 

lifetime.). In the first test, we compare error percentage on 

two generated datasets NoiseDataSet and pKwikDataSet and 

the results are shown in Fig. 2 and 3 respectively. 

 



 

 

 
Fig. 2 Error percentage of proposed SOM-classifier based 

on noise level in dataset NoiseDataSet 

 

As shown in Fig. 2, we generate a datasets with various noise 

level and use the generated datasets to compute error 

percentage in proposed SOM-classifier and three state of the 

artworks. SVM is one of the related works which is proposed 

for edge prediction in large uncertain graphs. ANN-1 and 

ANN-2 are two related works based on standard neural 

network and Threshold-based is a traditional algorithm 

which predicates the edges based on their probability. This 

test indicates, the proposed SOM- classifier has a low error 

percentage in comparison with others. The error percentage 

starts from about 5% when the noise level is 5% and 

increases up to 25% with 90% noise. Adding 90% noise to 

dataset makes all algorithms unsuitable, because this level of 

noise, eliminates all features of network and algorithms 

cannot predicate the edges existence. 

 

 
Fig. 3 Error percentage of proposed SOM-classifier based 

on noise level in dataset pKwikDataSet 

 

As shown in Fig. 3, the same test has been run on generated 

pKwikDataSet and the results show the proposed SOM-

classifier gained less error percentage compared with the 

other three works. In the second test, we compare validation 

and testing accuracy in proposed and related works. The 

results are shown in Table. 4. In this test, the noise level of 

NoiseDataSet was 0.5 and our dataset had 20% of whole 

generated dataset. 

 

Table 4 Validation and testing accuracy of proposed SOM-
classifier for edge prediction 

Algorithms 

NoiseDataSet pKwikDataSet 

Validation 

accuracy 

Testing 

accuracy 

Validation 

accuracy 

Testing 

accuracy 

SOM    

SVM    

97% 

95% 

93% 

84% 

96% 

94% 

91% 

82% 

ANN-1    

ANN-2    

Threshold-based     

75% 

70% 

65% 

663% 

8% 

48% 

73% 

69% 

63% 

66% 

62% 

47% 
 

 

As shown in Table. 4, the validation and testing accuracy in 

proposed SOM- classifier is more than other works. This is 

due to the use of neighborhood information in the proposed 

method for prediction of the edges. As shown the validation 

accuracy is more than testing accuracy. After proposed 

SOM-classifier, SVM gained high accuracy due to the use of 

only one neighborhood information (neighbor links 

probability). ANN-1, ANN-2 and Threshold-based 

approaches have respectively low accuracy. The traditional 

neural networks do not use any neighborhood information 

and were trained unsupervised. So, their accuracy is less than 

others. At last, the Threshold-based approach has less 

accuracy because it predicates the edges existence only 

based on their probability. 

Table 5 SOM-classifier accuracy for edge prediction 

Dataset SOM SVM ANN-1 ANN-2 Threshold-

based 

NoiseDataSet 92% 90% 79% 71% 66% 

pKwikDataSet 91% 88% 75% 69% 64% 
 

 

B.  Clustering 

This section compares the clustering algorithm which apply 

on extracted CVNs with related works based on three indices 

DBI, DI and SC. Davies-Bouldin index (DBI) is a clustering 

index and computes how well the clustering has been done. 

This index is shown in Eq. 9. Where k is the number of 

clusters, 𝜎𝑥  is the average distance of all nodes in a cluster 

from the central node and 𝑑(𝑐𝑖 , 𝑐𝑗) is the distance between 

two centers of cluster 𝑐𝑖 and 𝑐𝑗. 

𝐷𝐵𝐼 =
1

𝑘
∑ 𝑚𝑎𝑥𝑖≠𝑗(

𝜎𝑖 + 𝜎𝑗

𝑑(𝑐𝑖 , 𝑐𝑗)
)

𝑘

𝑖=1

 (9) 

Dunn index (DI) index is an internal cluster evaluating 

metric which is shown in Eq. 10. If there are k clusters, then 

the Dunn Index for the set is defined as Eq. 10. Where ∆x is 

maximum d(x, y) with x and y from mentioned cluster. 

𝐷𝐼 =
𝑚𝑖𝑛1≤𝑖≤𝑗≤𝑘𝑑(𝑐𝑖 , 𝑐𝑗)

𝑚𝑎𝑥1≤𝑥≤𝑘Δ𝑥
 (10) 

 

Silhouette coefficient (SC) computes how well each object 

lies within its cluster which is shown in Eq. 11 and 12. 

Where a(i) is the average dissimilarity of node i from the 

other nodes within the cluster and b(i) is the minimum 

average dissimilarity of node i to the nodes of all other 

clusters. 

𝑆𝐶 =
1

𝑘
∑ 𝑠(𝑖)

𝑘

𝑖=1

 (11) 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑗)}
 (12) 

The results of comparing clustering algorithm and three 

related works are based on two generated datasets are shown 

in Fig. 4. As demonstrated, the proposed clustering 

algorithm in the second step of the proposed method 

(SOM+HCS) reaches low DBI compared with ANN-2, 
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pKwikCluster and SVM based algorithm. DBI shows the 

clustering power to the number of clusters and a low number 

of this index makes a better clustering algorithm. The SVM 

based algorithm has low DBI compared with pKwikCluster 

and ANN-2, because uses neighborhood information to train 

the SVM machine. pKwikCluster algorithm has the third 

rank in clustering based on DBI index and the last one is 

ANN-2. In DI and SC indices, a high number of the index 

has shown the better clustering algorithm and the proposed 

SOM+HCS has high value compared with other algorithms, 

because of using of five neighborhood information in 

training process and using HCS algorithm in clustering step. 

C.  Virtual network embedding 

This section compares the proposed UVNE algorithm with 

Robust, VCDN and threshold-based algorithms based on 

cost, revenue, resource utilization and execution time. Cost 

and revenue are the main indices in the evaluation of 

embedding algorithms. Cost is an index which shows the 

sum of assigned nodes’ capacity and links’ bandwidth for a 

requested virtual network and computes by Eq. 13. 

𝐶𝑜𝑠𝑡(𝐺𝑣) = 𝐶𝑜𝑠𝑡(𝑁𝑣) + 𝐶𝑜𝑠𝑡(𝐸𝑣)

=  ∑ 𝐶𝑣(𝑛𝑣) × 𝑌𝑛𝑠

𝑛𝑣

𝑛𝑣∈𝑁𝑣

+ ∑ 𝐵𝑣(𝑒𝑣) × 𝑋𝑒𝑠

𝑒𝑣

𝑒𝑣∈𝐸𝑣

× |𝑃(𝑒𝑣)| 
 

(13) 

In Eq. 13, for a requested UVN 𝐺𝑣 , embedding cost is equal 

with sum of needed node capacity and link bandwidth which 

is respectively 𝐶𝑜𝑠𝑡(𝑁𝑣) and 𝐶𝑜𝑠𝑡(𝐸𝑣). Revenue is another 

index in virtual network embedding which is computed by 

Eq. 14 and shows the sum of requested resources for each 

uncertain virtual network. 

𝑅𝑒𝑣(𝐺𝑣) =  ∑ 𝐶𝑣(𝑛𝑣) + ∑ 𝐵𝑣(𝑒𝑣)

𝑒𝑣∈𝐸𝑣𝑛𝑣∈𝑁𝑣

 

 

(14) 

 

 

Fig. 4 DBI, DI and SC comparison based on two datasets 

 

The acceptance ratio is another index which shows the 

number of accepted virtual networks in each time interval. 

Also, node and link utilization depend on the percentage of 

used resources to available resources in each time interval 

and for each server in data center. In this paper, the first test 

computes the cost of embedding and the results are shown in 

Fig. 5. 

 
Fig. 5 Average cost based on virtual networks arrival rate 

 

As shown in Fig. 5, the proposed UVNE achieves a lower 

average cost compared to other algorithms. This efficiency 

is partly attributed to the clustering step, which is 

empowered by the global network view available in an SDN-

like setting. The algorithm can make informed decisions 

about consolidating virtual nodes onto physically proximate 

substrate nodes, thereby reducing costly long-distance link 

mappings. 

 

 
Fig. 6 Average revenue based on virtual networks arrival 

rate 

 

 

 

 



 

 

 
Fig. 7 Acceptance ratio, node and link utilization of proposed UVNE based on virtual networks arrival rate 

 

The second test compares reached revenue for InP which is 

shown in Fig. 6. As demonstrated the proposed UVNE 

algorithm has high average revenue compared with others. 

The Robust-optimization algorithm has low revenue, 

because of solving the worst case of embedding and has low 

acceptance ratio. 

The third and forth tests compute acceptance ratio and node 

and link utilization respectively and the results are shown in 

Fig. 7. As shown the proposed UVNE has high acceptance 

ratio, high node utilization and also high link utilization 

compared with the other three algorithms. 

 
Fig. 8 Average execution time of proposed UVNE based on 

virtual networks arrival rate 

 

The last test computes the execution time of the proposed 

UVNE algorithm. The execution time of VCDN algorithm 

is higher than others because it considers the sudden changes 

of the requested virtual network and tries to answer to 

changed requests. The proposed UVNE has low execution 

time because of using a SOM neural network and train it 

based on neighborhood information. 

D.   Impact of Substrate Network Knowledge Accuracy 

To underscore the importance of the global view provided 

by an SDN controller, we conducted an additional 

experiment comparing UVNE's performance under two 

scenarios: (1) Perfect Global Knowledge (simulating an 

ideal SDN controller) and (2) Partial/Delayed 

Knowledge (simulating a non-SDN environment with 

outdated information). The results, summarized in Table 6, 

clearly show that when the algorithm operates with 

imperfect information, the acceptance ratio decreases by 

approximately 15% and the cost increases by 10% due to 

embedding failures and suboptimal mappings. This 

experiment validates that the performance advantages of 

UVNE are fully realized when deployed within an SDN 

framework that provides accurate and timely network state 

information. 
Table 6 Performance comparison based on substrate network 
knowledge accuracy. 

Scenario Average Cost Acceptance 

Ratio 

Perfect Global Knowledge 

(SDN) 

145 89% 

Partial/Delayed Knowledge 160 76% 
 

VI.  CONCLUSION AND FUTURE WORK 

In this paper, we proposed an uncertain virtual network 

embedding algorithm which requested virtual networks had 

non-deterministic information on links based on edge 

prediction. Uncertain virtual networks introduced in this 

paper and formulated by an uncertain graph. The proposed 

UVNE algorithm has three steps; the first step selects the 

suitable certain virtual network by prediction edge existence 

based on neighbor information. the second step clusters the 

selected CVN and computes a compact one. At last, in the 

third step, the CVN is embedded on a substrate network with 

one-step embedding algorithms. 

We tested our proposed UVNE on generated datasets and 

proposed SOM-classifier algorithm on real networks. Our 

experimental evaluation demonstrates proposed SOM- 

classifier reach high DBI, DI and SC metrics. Also, proposed 

UVNE increases InPs revenue and acceptance ratio and 

decreases user’s cost. 

Further research is needed to consider the design of 

clustering large uncertain virtual networks. This work can 

also be extended by parallel implementation of the proposed 

algorithm on a high-performance computing cluster. Also, 

uncertain virtual network embedding problem can be solved 

by extracting association rules and association rules mining 

algorithms. We consider uncertain information on links in 

VNs. In future work, the uncertainty can be considered on 

both nodes and links. 
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