Amiri, M., Khalaji, A.A., Tahmasbi, Z., Santos, J.F., Sahamieh, R.Z. and Zamanian, H., 2017. Geochemistry, petrogenesis, and tectonic setting of the Almogholagh batholith in the Sanandaj–Sirjan zone, western Iran. Journal of African Earth Sciences, 134: 113–133. https://doi.org/10.1016/j.jafrearsci.2017.06.018
Ashragi, S.A. and Mahmoudi Garaii, M., 2003, Geological report of the tuyserkan sheet Iran geological survey and mineral exploration country: Scale 1:100,000. Geological Surver of Iran.
Azizi, H., Hadad, S., Stern, R.J. and Asahara, Y., 2019. Age, geochemistry, and emplacement of the~ 40-Ma Baneh granite–appinite complex in a transpressional tectonic regime, Zagros suture zone, northwest Iran. International Geology Review, 61(2): 195–223. https://doi.org/10.1080/00206814.2017.1422394
Azizi, H. and Stern, R.J., 2019. Jurassic igneous rocks of the central Sanandaj–Sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc. Terra Nova, 31(5): 415–423. https://doi.org/10.1111/ter.12404
Ballard, J.R., Palin, J.M. and Campbell, I.H., 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347–364. https://doi.org/10.1007/s00410-002-0402-5
Barton, M.D. and Johnson, D.A., 2000. Alternative brine sources for Fe-oxide (Cu–Au) systems: Implications for hydrothermal alteration and metals. In: T.M. Porter (Editor), Hydrothermal Iron Oxide Copper–Gold and Related Deposits: A Global Perspective, Glenside, SA, Australian Mineral Foundation, pp. 43–60. Retrieved May 17, 2025 from https://www.geo.arizona.edu/~mdbarton/MDB_papers_pdf/Barton00_BrineSourcesIOCGdeps_AMF.pdf
Belousova, E.A., Griffin, W.L., O'Reilly, S.Y. and Fisher, N.L., 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to mineralogy and petrology, 143: 602–622. https://doi.org/10.1007/s00410-002-0364-7
Berberian, M. and King, G.C.P., 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210–265. https://doi.org/10.1139/e81-019
Blevin, P.L., 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold‐rich ore systems. Resource Geology, 54(3): 241–252. https://doi.org/10.1111/j.1751-3928.2004.tb00205.x
Botcharnikov, R.E., Linnen, R.L., Wilke, M., Holtz, F., Jugo, P.J. and Berndt, J., 2011. High gold concentrations in sulphide-bearing magma under oxidizing conditions. Nature Geoscience, 4(2): 112–115. https://doi.org/10.1038/NGEO1042
Carroll, M.R. and Rutherford, M.J., 1985. Sulfide and sulfate saturation in hydrous silicate melts. Journal of Geophysical Research: Solid Earth, 90(S02): C601-C612. https://doi.org/10.1029/JB090iS02p0C601
Chou, I.M. and Eugster, H.P., 1977. Solubility of magnetite in supercritical chloride solutions. American Journal of Sciences. 277(10): 1296–1314. https://doi.org/10.2475/ajs.277.10.1296
Claiborne, L.L., Miller, C.F. and Wooden, J.L., 2010. Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contributions to Mineralogy and Petrology, 160: 511–531. https://doi.org/10.1007/s00410-010-0491-5
Davidson, J., Turner, S., Handley, H., Macpherson, C. and Dosseto, A., 2007. Amphibole “sponge” in arc crust? Geology, 35(9): 787–790. https://doi.org/10.1130/G23637A.1
Dilles, J.H., Kent, A.J., Wooden, J.L., Tosdal, R.M., Koleszar, A., Lee, R.G. and Farmer, L.P., 2015. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Economic Geology, 110(1): 241–251. https://doi.org/10.2113/econgeo.110.1.241
El-Bialy, M.Z. and Ali, K.A., 2013. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600–614 Ma) post-collisional Dokhan Volcanics and Younger Granites of SE Sinai, NE Arabian–Nubian Shield. Chemical Geology, 360–361: 54–73. http://dx.doi.org/10.1016/j.chemgeo.2013.10.009
Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contribution to Mineralalogy and Petrology. 154(4): 429–437. https://doi.org/10.1007/s00410-007-0201-0
Geisler, T., Schaltegger, U. and Tomaschek, F., 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements, 3(1): 43–50. https://doi.org/10.2113/gselements.3.1.43
Ghasemi Siani, M., Mehrabi, B., Neubauer, F., Zhang, R. and Cao, S., 2022. Geochronology and geochemistry of zircons from fertile and barren intrusions in the Sangan mining area (NE Iran): Implications for tectonic setting and mineral exploration. Journal of Asian Earth Sciences, 233: 105243. https://doi.org/10.1016/j.jseaes.2022.105243
Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghøj, K. and Schwartz, J.J., 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35(7): 643–646. http://dx.doi.org/10.1130/G23603A.1
Hidaka, H., Shimizu, H. and Adachi, M., 2002. U–Pb geochronology and REE geochemistry of zircons from Palaeoproterozoic paragneiss clasts in the Mesozoic Kamiaso conglomerate, central Japan: evidence for an Archean provenance. Chemical Geology, 187(3–4): 279–293. https://doi.org/10.1016/S0009-2541(02)00058-X
Hofmann, A.E., Baker, M.B. and Eiler, J.M., 2014. Sub-micron-scale trace-element distributions in natural zircons of known provenance: implications for Ti-in-zircon thermometry. Contributions to Mineralogy and Petrology, 168: 1–21. https://doi.org/10.1007/s00410-014-1057-8
Hoskin, P.W., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et cosmochimica acta, 69(3): 637–648. https://doi.org/10.1016/j.gca.2004.07.006
Hoskin, P.W. and Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. https://doi.org/10.2113/0530027
Jugo, P.J., 2009. Sulfur content at sulfide saturation in oxidized magmas. Geology, 37(5): 415–418. https://doi.org/10.1130/G25527A.1
Kamaunji, V.D., Wang, L., Girei, M.B., Zhu, Y., Li, L., Vincent, V.I. and Amuda, A.K., 2023. Petrogenesis and tectonic implication of the alkaline ferroan granites from Ropp complex, north‐central Nigeria: Clues from zircon chemistry, U–Pb dating, and Lu–Hf isotope. Geological Journal, 58(1): 21–50. https://doi.org/10.1002/gj.4579
Krasnobaev, A.A., 1986. Zircon as an indicator of geological processes. Moscow Izdatel Nauka, Moscow, 200 pp. (in Russian)
Li, H., Watanabe, K. and Yonezu, K., 2014. Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: Implications for the magmatic evolution and mineralization processes. Ore Geology Reviews, 60: 14–35. https://doi.org/10.1016/j.oregeorev.2013.12.009
Lowenstern, J.B., Mahood, G.A., Hervig, R.L. and Sparks, J., 1993. The occurrence and distribution of Mo and molybdenite in unaltered peralkaline rhyolites from Pantelleria, Italy. Contributions to Mineralogy and Petrology, 114: 119–129. https://doi.org/10.1007/BF00307869
Lu, Y.J., Loucks, R.R., Fiorentini, M., McCuaig, T.C., Evans, N.J., Yang, Z.M., Hou, Z.,
Kirkland, C., Parra-Avila, L. and Kobussen, A., 2016. Zircon compositions as a pathfinder
for porphyry Cu±Mo±Au deposits. Society of Economic Geology Special Publication, 19, 329–347. Retrieved May 17, 2025 from https://pubs.geoscienceworld.org/segweb/books/edited-volume/1387/chapter-abstract/107051323/Zircon-Compositions-as-a-Pathfinder-for-Porphyry?redirectedFrom=fulltext
Mathieu, L., Wasuita, T.D., Sherlock, R., Speidel, F., Marsh, J.H., Dubé, B. and Côté-Mantha, O., 2022. Zircon from altered monzonite rocks provides insights into magmatic and mineralizing processes at the Douay Au project, Abitibi Greenstone Belt. Geosciences, 12(3): 114. https://doi.org/10.3390/geosciences12030114
Meinert, L.D., Dipple, G.M. and Nicolescu, S., 2005. World Skarn Deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb, J.P. and Richards (Editors), Economic Geology 100th Anniversary Volume 1905-2005, Society of Economic Geologists, Littleton, Colorado, USA, pp. 299–336. https://doi.org/10.5382/AV100.11
Nie, L., Zhou, T., White, N., Wang, F. and Song, Y., 2020. Zircon geochemistry of Edong granitoids in the middle-lower Yangtze Metallogenic Belt (eastern China): constraints on W-Cu-Fe skarn mineralization. Ore Geology Reviews, 120: 103461. https://doi.org/10.1016/j.oregeorev.2020.103461
Pozebon, D., Scheffler, G.L. and Dressler, V.L., 2017. Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review. Journal of Analytical Atomic Spectrometry, 32(5): 890–919. https://doi.org/10.1039/C7JA00026J
Richards, J.P., 2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits: Just add water. Economic Geology, 106(7): 1075–1081. https://doi.org/10.2113/econgeo.106.7.1075
Richards, J.P., 2015. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos, 233: 27–45. https://doi.org/10.1016/j.lithos.2014.12.011
Sarjoughian, F., Habibi, I., Lentz, D.R., Azizi, H. and Esna-Ashari, A., 2020. Magnetite compositions from the Baba Ali iron deposit in the Sanandaj-Sirjan zone, western Iran: Implications for ore genesis. Ore Geology Reviews, 126: 103728. https://doi.org/10.1016/j.oregeorev.2020.103728
Sarjoughian, F., Pourkarim, S., Esmaeili, R., Ao, S., Xiao, W. and Lentz, D.R., 2023. Bulk chemistry and Hf isotope ratios of the Almogholagh Intrusive Complex, western Iran: a consequence of an extensional tectonic regime in the Late Jurassic. International Geology Review, 65(11): 1878–1899. https://doi.org/10.1080/00206814.2022.2114020
Shahbazi, H., Siebel, W., Ghorbani, M., Pourmoafee, M., Sepahi, A.A., Abedini, M.V. and Shang, C.K., 2015. The Almogholagh pluton, Sanandaj-Sirjan zone, Iran: geochemistry, U-(Th)-Pb titanite geochronology and implications for its tectonic evolution. Neues Jahrbuch für Mineralogie–Abhandlungen Journal of Mineralogy and Geochemistry, 192: 85–99. https://doi.org/10.1127/njma/2014/0273
Sillitoe, R.H., 2010. Porphyry copper systems. Economic geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
Simon, A.C., Pettke, T., Candela, P.A., Piccoli, P.M. and Heinrich, C.A., 2004. Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochimica et Cosmochimca Acta 68(23): 4905–4914. https://doi.org/10.1016/j.gca.2004.05.033
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42: 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Trail, D., Watson, E.B. and Tailby, N.D., 2011. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature, 480: 79–82. https://doi.org/10.1038/nature10655
Trail, D., Watson, E.B. and Tailby, N.D., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et cosmochimica acta, 97: 70–87. https://doi.org/10.1016/j.gca.2012.08.032
Wang, X., Griffin, W.L., Chen, J., Pinyun, H. and Xiang, L., 2011. U and Th Contents and Th/U Ratios of Zircon in Felsic and Mafic Magmatic Rocks: Improved Zircon-Melt Distribution Coefficients. Acta Geologica Sinica, 85(1): 164–174. https://doi.org/10.1111/j.1755-6724.2011.00387.x
Wang, F., Liu, S.A., Li, S. and He, Y., 2013. Contrasting zircon Hf–O isotopes and trace elements between ore-bearing and ore-barren adakitic rocks in central-eastern China: implications for genetic relation to Cu–Au mineralization. Lithos, 156–159: 97–111. http://dx.doi.org/10.1016/j.lithos.2012.10.017
Watson, E.B., Wark, D.A. and Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4): 413–433. https://doi.org/10.1007/s00410-006-0068-5
Wen, G., Zhou, R.J., Li, J.W., Chang, J., Hu, H., Yan, D.R., Wei, K.T. and Jin, S.G., 2020. Skarn metallogeny through zircon record: An example from the Daye Cu-Au-Fe-Mo district, eastern China. Lithos, 378–379: 105807. https://doi.org/10.1016/j.lithos.2020.105807
Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Whitney, J.A., Hemley, J.J. and Simon, F.O., 1985. The concentration of iron in chloride solutions equilibrated with synthetic granitic compositions; the sulfur-free system. Economic Geology 80(2): 444–460. https://doi.org/10.2113/gsecongeo.80.2.444
Yang, J.H., Wu, F.Y., Wilde, S.A. and Zhao, G., 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: geochronological, geochemical and Nd–Hf isotopic evidence. Precambrian Research, 167(1–2): 125–149. https://doi.org/10.1016/j.precamres.2008.07.004
Zamanian, H. and Asadollahi, B., 2013. Geochemistry and ore potential of the Almoughlagh batholith, western Iran. Geologos 19(3): 229–242 (in Persian). https://doi.org/10.2478/logos-2013-0014
Zhong, S., Seltmann, R., Qu, H. and Song, Y., 2019. Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: a revised Ce/Ce* method. Mineralogy and Petrology, 113: 755–763. https://doi.org/10.1007/s00710-019-00682-y