Adamu, C.I., Nganje, T.N. and Edet, A.E., 2015. Major and trace elements pollution of sediments associated with abandoned barite mines in parts of Oban massif and Mamfe embayment, SE Nigeria. Journal of Geochemical Exploration, 151: 17–33. https://doi.org/10.1016/j.gexplo.2014.12.010
Baishan, K., Wang, X., Huang, X. and Eziz, M., 2023. Health Risk Assessment and Source Analysis of Toxic Element Pollution In Cultivated Soils of the Weigan and Kuqa Rivers Oasis in Xinjiang, China. Polish. Journal of Environmental studies, 32(4): 3501–3514. https://doi.org/ https://doi.org/10.15244/pjoes/166167
Banza, C.L.N., Nawrot, T.S., Haufroid, V., Decrée, S., De Putter, T., Smolders, E., Kabyla, B.I., Luboya, O.N., Ilunga, A.N., Mtombo, A.M. and Nemery, B., 2009. High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environmental Research, 109(6): 745–752. https://doi.org/10.1016/j.envres.2009.04.012
Barton, M.D., 2014. Iron oxide (Cu-Au-REE-P-Ag-U-Co) systems. Treatise on Geochemistry (Second Edition), V. 13, pp. 515-541. http://dx.doi.org/10.1016/B978-0-08-095975-7.01123-2
Boumaza, B., Kechiched, R. and Chekushina, T.V., 2021. Trace metal elements in phosphate rock wastes from the Djebel Onk mining area (Tébessa, eastern Algeria): A geochemical study and environmental implications. Applied Geochemistry, 127: 104910. https://doi.org/10.1016/j.apgeochem.2021.104910
Chau, N., Benamghar, L., Pham, Q.T., Teculescu, D., Rebstock, E. and Mur, J.M., 1993. Mortality of iron miners in Lorraine (France): Relations between lung function and respiratory symptoms and subsequent mortality. British Journal of Industrial Medicine, 50(11): 1017–1031. https://doi.org/10.1136/oem.50.11.1017
Chen, S.Y., Hayes, R.B., Liang, S.R., Li, Q.G., Stewart, P.A. and Blair, A., 1990. Mortality experience of haematite mine workers in China. British Journal of Industrial Medicine, 47(3): 175–181. https://doi.org/10.1136/oem.47.3.175
Dabiri, R., Bakhshi Mazdeh, M. and Mollai, H., 2017. Heavy metal pollution and identifcation of their sources in soil over Sangan iron-mining region, NE Iran. Journal of Mining and Environment, 8(2): 277–289. https://doi.org/10.22044/jme.2016.820
Daliran, F., 2002. Kiruna-type iron oxide-apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. In: T.M. Porter, (Editor), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, vol. 2. PGC Publishing, Adelaide, pp. 303–320. Retrieved June 23, 2025 from https://www.geokniga.org/bookfiles/geokniga-19bafq-district-irandaliran.pdf
Daliran, F., Stosch, H.-G., Williams, P.J., Jamali, H. and Dorri, M.B., 2010. Early Cambrian iron oxide-apatite-REE (U) deposits of the Bafq district, East-Central Iran. In: Co. Louise and M. Hamid (Editors), Exploring for Iron Oxide Copper-Gold (Ag-Bi-Co-U) Deposits: Examples from Canada and Global Analogues, pp. 147– 160. Retrieved June 23, 2025 from https://www.scirp.org/reference/referencespapers?referenceid=1942458
Dou, Y., Li, J., Zhao, J., Hu, B. and Yang, S., 2013. Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Marin Pollution Bulletin, 67(1–2): 137–145. https://doi.org/10.1016/j.marpolbul.2012.11.022
Eby, G.N., 2004. Principles of environmental geochemistry. Brooks/Cole, Australia, 514 pp.
Ettler, V., Cihlová, M., Jarošíková, A., Mihaljevič, M., Drahota, P., Kříbek, B., Vaněk, A., Penížek, V., Sracek, O. and Klementová, M., Engel, Z., Kamona, F. and Mapani, B., 2019. Oral bioaccessibility of metal (loid) s in dust materials from mining areas of northern Namibia. Environment International. 124: 205–215. https://doi.org/10.1016/j.envint.2018.12.027
Garcia, J.H., Li, W.W., Arimoto, R., Qkarasinski, R., Greenllee, J. and Walton, J., 2004. Characterization and implication of potential fugitive dust sources in the Paso del Norte region. Science of the Total Environment, 325(1–3): 95–112. https://doi.org/10.1016/j.scitotenv.2003.11.011
Haghipour, A., 1977. Geological map of Posht-eBadam, Scale 1:250,000. Geological Survey of Iran.
Hakanson, L., 1980. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14(8): 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8
Heidarian, H., Alirezaei, S. and Lentz, D.R., 2017. Chadormalu Kiruna-type magnetite-apatite deposit, Bafq district, Iran: Insights into hydrothermal alteration and petrogenesis from geochemical, fluid inclusion, and sulfur isotope data. Ore Geology Reviews. 83: 43–62. http://dx.doi.org/10.1016/j.oregeorev.2016.11.031
Hini, G., Eziz, M., Wang, W., Ili, A. and Li, X., 2020. Spatial distribution, contamination levels, sources, and potential health risk assessment of trace elements in street dusts of Urumqi city, NW China. Human and Ecological Risk Assessment: An International Journal, 26(8): 2112–2128. https://doi.org/10.1080/10807039.2019.1651629
Hossen, M.A., Chowdhury, A.I.H., Mullick, M.R.A. and Hoque, A., 2021. Heavy metal pollution status and health risk assessment vicinity to Barapukuria coal mine area of Bangladesh. Environmental Nanotechnology Monitoring & Management, 16: 100469. https://doi.org/10.1016/j.enmm.2021.100469
Huang, B., Long, J., Liao, H., Liu, L., Li, J., Zhang, J., Li, Y., Wang, X. and Yang, R., 2019. Characteristics of Bacterial Community and Function in Paddy Soil Profile around Antimony Mine and Its Response to Antimony and Arsenic Contamination. International Journal of Environmental Research and Public Health, 16(24): 4883. https://doi.org/10.3390/ijerph16244883
Kani Kavan Shargh Consulting Engineers Company, 2021. Engineering services on mining observation and operation of Chadormalu Iron Ore Mine. Chadormalu Mining and Industrial Company. Project No, 1482.
Kaufman, L. and Rousseeuw, P.J., 1990. Finding Groups in Data. An Introduction to Cluster Analysis. John Wiley and Sons, Inc., New York. 342 pp. https://doi.org/10.1002/9780470316801
Kaufman, L. and Rousseeuw, P.J., 2005. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons, Inc., New York. 368 pp. http://dx.doi.org/10.1002/9780470316801.ch1
Khelifi, F. Caporale, A.G., Hamed, Y. and Adamo, P., 2021. Bioaccessibility of potentially toxic metals in soil, sediments and tailings from a North Africa phosphate-mining area: Insight into human health risk assessment. Journal of Environmental Managment, 279: 111634. https://doi.org/10.1016/j.jenvman.2020.111634
Kříbek, B., Majer, V., Pašava, J., Kamona, F., Mapani, B., Keder, J. and Ettler, V., 2014. Contamination of soils with dust fallout from the tailings dam at the Rosh Pinah Area, Namibia: Regional assessment, dust dispersion modeling and environmental consequences. Journal of Geochemical Exploration, 144(Part C): 391–408. https://doi.org/10.1016/j.gexplo.2014.01.010
Liu, E., Yan, T., Birch, G. and Zhu, Y., 2014. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Science of the Total Environment, 476–477: 522–531. https://doi.org/10.1016/j.scitotenv.2014.01.055
Loska, K. and Wiechuya, D., 2003. Application of principle component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51(8): 723–33. http://dx.doi.org/10.1016/S0045-6535(03)00187-5
Moghtaderi, A., 2006. Geology and geochemistry of Chadormalu iron mine, southeast of Yazd, northeast of Bafq. Ph.D. Thesis, Shiraz University, Shiraz, Iran, 346 pp.
Müller, G., 1969. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2(3): 108–118. Retrieved June 23, 2025 from https://www.researchgate.net/publication/30306 0644_Index_of_geoaccumulation_in_sediments _of_the_Rhine_River
Müller, G., 1979. Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umschau, 79: 778–783. Retrieved June 23, 2025 from https://www.scirp.org/reference/ReferencesPapers?ReferenceID=792349
Niencheski, L.F., Windom, H.L. and Smith, R., 1994. Distribution of particulate trace metal in Patos Lagoon Estuary (Brazil). Marine Pollution Bulletin, 28(2): 96–102. http://dx.doi.org/10.1016/0025-326X(94)90545-2
NISCO., 1980. Result of search and valuation works at magnetic anomalies of the Bafq iron ore region during 1976-1979. National Iranian Steel Corporation, Iran, Unpublished Report, 260 pp.
Plumlee, G.S., Morman, S. A. and Ziegler, T.L., 2006. The toxicological geochemistry of earth materials: An Environ Geochem Health 123 overview of processes and the interdisciplinary methods used to understand them. Reviews in Mineralogy and Geochemistry, 64(1): 5–57. https://doi.org/10.2138/rmg.2006.64.2
Ramezani, J., 1997. Regional geology, geochronology and geochemistry of the igneous and metamorphic rock suites of the Saghand Area, central Iran: Unpublished Ph.D. Thesis, St. Louis, Missouri, Washington University, 416 pp.
Ramezani, J. and Tucker, R.D., 2003. The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science, 303(3): 622–665. http://dx.doi.org/10.2475/ajs.303.7.622
Reimann, C. and DeCaritat, P., 2000. Intrinsic flaws of element enrichment factor (EFs) in environmental geochemistry. Environmental Science and Technology, 34(24): 5084–5091. https://doi.org/10.1021/es001339o
Reimann, C., Filzmoser, P. and Garrett, R.G., 2002. Factor analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 17(3): 185–206. https://doi.org/10.1016/S0883-2927(01)00066-X
Rudnick, R.L. and Gao, S., 2003. Composition of the continental crust. Treatise on Geochemistry, 3: 1–64. http://doi.org/10.1016/B0-08-043751-6/03016-4
Rusk, B., Oliver, N., Cleverley J., Blenkinsop, T., Zhang, D., Williams, P. and Habermann, P., 2010. Physical and chemical characteristics of the Ernest Henry iron oxide copper gold deposit, Australia; implications for IOGC genesis. Global Perspective Series, 3. PGC Publishing, Linden Park, SA, Australia, pp. 201–218. Retrieved June 23, 2025 frpm https://researchonline.jcu.edu.au/18884
Sawut, R., Kasim, N., Maihemuti, B., Hu, L., Abliz, A., Abdujappar, A. and Kurban, M., 2018. Pollution Characteristics and Health Risk Assessment of Heavy Metals in the Vegetable Bases of Northwest China. Science of the Total Environment, 642: 864–878. https://doi.org/10.1016/j.scitotenv.2018.06.034
Singh, G., Pal, A. and Khoiyanbam, R.S., 2009. Impact of mining on human health in and around Jhansi, Bundelkhand region of Uttar Pradesh, India. Journal of Ecophysiology and Occupational Health, 9(1): 47–54. Retrieved June 23, 2025 from https://www.researchgate.net/publication/364958597
Smolders, E., Roels, L., Kuhangana, T.C., Coorevits, K., Vassilieva, E., Nemery, B. and Lubaba Nkulu, C.B., 2019. Unprecedentedly high dust ingestion estimates for the general population in a mining district of DR Congo. Environmental Science and Technology, 53(13): 7851–7858. https://doi.org/10.1021/acs.est.9b01973
Soltani, N., 2017. Medical Geology and Environmental Impact Associated with Mining and Mineral Processing in Gol-E-Gohar Iron Mine, Sirjan. Ph.D. Thesis, Shiraz University, Shiraz, Iran, 246 pp.
Stöcklin, J., 1971. Stratigraphic Lexicon of Iran; Part 1. Central, North and East Iran. Geologic Survey of Iran, Tehran, 338 pp.
Sucharovà, J., Suchara, I., Hola, M., Marikova, S., Reimann, C., Boyd, R., Filzmoser, P. and Englmaier, P., 2012. Top-/bottomsoil ratios and enrichment factors: What do they really show? Applied Geochemistry, 27(1): 138–145. https://doi.org/10.1016/j.apgeochem.2011.09.025
Torab, F.M., 2008. Geochemistry and metallogeny of magnetite-apatite deposits of the Bafq mining district, central Iran. Unpublished Ph.D. Thesis, Clausthal University of Technology, Germany.
Torab, F.M. and Lehmann, B., 2006. Iron oxide-apatite deposits of the Bafq district, Central Iran: an overview from geology to mining. World of Mining- Surface and Underground, 58(6): 355–362. Retrieved June 23, 2025 from https://sciexplore.ir/Documents/Details/816-174-421-583
Torab, F. M. and Lehmann, B., 2007. Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine, 71(3): 347–363. http://doi.org/10.1180/minmag.2007.071.3.347
USEPA, 1997. Exposure Factors Handbook; Office of Research and Development, National Center for Environmental Assessment, U.S. Environmental Protection Agency. Washington, D.C, USA. Retrieved June 23, 2025 from https://cfpub.epa.gov/ncea/efp/recordisplay.cfm?deid=236252
USEPA, 2001. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355, US Environmental Protection Agency, Washington DC, 4–24. Retrieved June 23, 2025 from https://nepis.epa.gov/Exe/ZyNET.exe/91003IJK
USEPA, 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Solid Waste and Emergency Response: Washington, DC 20460. Retrieved June 23, 2025 from https://nepis.epa.gov/Exe/ZyNET.exe/91003IJK
Wang, F., Guan, Q., Tian, J., Lin, J., Yang, Y., Yang, L. and Pan, N., 2020. Soil enzyme kinetics indicate ecotoxicity of long-term arsenic pollution in the soil at field scale. Ecotoxicology and Environmental Safety, 191: 110215. https://doi.org/10.1016/j.ecoenv.2020.110215
Wang, X.S. and Qin, Y., 2006. Spatial distribution of metals in urban topsoils of Xuzhou (China): controlling factors and environmental implications. Environmental Geology, 49(6): 905–914. https://doi.org/10.1007/s00254-005-0122-z
Wild, P., Bourgkard, E. and Paris, C., 2009. Lung cancer and exposure to metals: The epidemiological evidence. Cancer Epidemiology: Modifiable Factors, 472: 139–167. https://doi.org/10.1007/978-1-60327-492-0_6
Xu, Z., Ni, S., Tuo, X. and Zhang, C., 2008. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science & Technology, 2(8): 31. http://doi.org/10.19672/j.cnki.1003-6504.2008.02.030
Yang, X.Y., Ezizi, M., Ismayil, A. and Hayrat, A., 2021. Assessment of Pollution and Health Risks of Heavy Metals in Surface Dust in Changji City, Xinjiang. Environmental Science & Technology, 44(5): 211. Retrieved June 23, 2025 from https://www.sciengine.com/AJE/doi/10.7524/AJE.1673-5897.20200203001
Ying, L., Shaogang, L. and Xiaoyang., 2016. Assessment of heavy metal pollution and human health risk in urban soils of a coal mining city in East China. HUMAN AND ECOLOGICAL RISK ASSESSMENT, 22(6): 1359-1374. https://doi.org/10.1080/10807039.2016.1174924
Yuan, G.L., Sun, T.H., Han, P., Li, J. and Lang, X.X., 2014. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: typical urban renewal area in Beijing, China. Journal of Geochemical Exploration, 136: 40–47. https://doi.org/10.1016/j.gexplo.2013.10.002
Zhang, Y., Li, S., Wang, F., Chen, Z., Chen, J. and Wang, L., 2018. An Innovative Expression Model of Human Health Risk Based on the Quantitative Analysis of Soil Metals Sources Contribution in Different Spatial Scales. Chemosphere, 207: 60–69. https://doi.org/10.1016/j.chemosphere.2018.04.157
Zheng, N., Liu, J.S., Wang, Q.C. and Liang, Z.Z., 2010. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district northeast of China. Science of the Total Environment, 408 (4): 726–33. https://doi.org/10.1016/j.scitotenv.2009.10.075