Arjmand Zadeh, R., Karimpour, M.H., Mazaheri, A., Francisco Santos, ZH., Medina, J. and Homam, S.M. 2010. Study of alteration zones, geochemistry and petrogenesis of the Chah Shalghami mineral index, eastern Iran. Researchs in Earth Sciences, 1(3): 74–89. Retrieved October 23, 2012 from https://esrj.sbu.ac.ir/article_94304_ccb23ba2c34e5ced3c9b2ab159180a58.pdf
Arribas, A., 1995. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. In: J.F.H. Tompson (Editor), In magmas, fluids, and ore deposits. Mineralogical Association of Canada Short Course, Canada, pp. 419–454. Retrieved Septamber 12, 2000 from https://www.researchgate.net/publication/268376300_Characteristics_of_high-sulfidation_epithermal_deposits_and_their_relation_to_magmatic_fluid
Bodnar, R., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica acta, 57(3): 683–684. https://doi.org/10.1016/0016-7037(93)90378-A
Bodnar, R.J., Lecumberri-Sanchez, P., Moncada, D. and Steele-MacInnis, M. 2014. Fluid inclusions in hydrothermal ore deposits. Treatise on geochemistry, 13: 119–142. http://dx.doi.org/10.1016/b978-0-08-095975-7.01105-0
Buchanan, L.J., 1979. Las Torres mine, Guanajuato, Mexico: ore controls of a fossil geothermal system. Mines Theses and Dissertations, 3(1): 1970–1979. Retrieved January 20, 2002 from https://hdl.handle.net/11124/171928
Chang, Z., Hedenquist, J.W., White, N.C., Cooke, D.R., Roach, M., Deyell, C.L. and Cuison, A.L., 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106(8): 1365–1398. https://doi.org/10.2113/econgeo.106.8.1365
Cooke, D.R., White, N.C., Zhang, L., Chang, Z. and Chen, H., 2017. Lithocaps–characteristics, origins and significance for porphyry and epithermal exploration. In Proceedings of the 14th SGA Biennial Meeting, Canada, pp. 291–294. Retrieved June 24, 2019 from https://www.researchgate.net/publication/322087357_Lithocaps_-_characteristics_origins_and_significance_for_porphyry_and_epithermal_exploration
Corbett, G., 2005. Epithermal Au-Ag deposit types–implications for exploration. The Proexplo Conference, Peru, south America. Retrieved April 15, 2008 from https://www.researchgate.net/publication/237489786_EPITHERMAL_AU-AG_DEPOSIT_TYPES_-_IMPLICATIONS_FOR_EXPLORATION
Corbett, G.J. and Leach, T.M., 1998. Southwest Pacific Rim gold-copper systems: structure, alteration, and mineralization. Society of Economic Geologists, USA, 167 pp. https://doi.org/10.5382/SP.06
Cunningham, G., 1978. Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems, Journal of Research of the U.S. Geological Survey, 6(6): 745–754. Retrieved April 22, 1978 from
https://pubs.usgs.gov/journal/1978/vol6issue6/report.pdf#page=53
Einaudi, F., Godard, M., Pezard, P., Cochemé, J.J., Coulon, C., Brewer, T. and Harvey, P., 2003. Magmatic cycles and formation of the upper oceanic crust at spreading centers: Geochemical study of a continuous extrusive section in the Oman ophiolite. Geochemistry, Geophysics, Geosystems, 4(6): 1–25. https://doi.org/10.1029/2002GC000362
Eskandari, M., Mousivand, F., Sheibi, M. and Lehmann, B., 2024. Mineralogy, alteration, fluid inclusions microthermometry and genesis of the Cu-Au Kalateh Dasht deposit, south of Shahrood, NE Iran. Journal of Economic Geology, 16(4): 125–147. (in Persian with English abstract) https://doi.org/10.22067/econg.2024.1121
Eskandari, M., Sheibi, M., Mousivand, F. and Lehmann, B., 2022, Mineralization, alteration and mineralogy pattern in the Dogan copper deposit, southeast of Shahrood, 41st National Conference of Earth Sciences, Geoscience Research Institute and Geological and Mineral Exploration Organization of the country, Tehran, Iran. (in Persian) Retrieved March 4, 2025 from https://civilica.com/doc/1665486
Eshraghi, S. and Jalali, A., 2006. 1:100,000 geological map of Moaleman. Geological Survey of Iran, Tehran. (in Persian) Retrieved April 12, 2010 from https://nla.gov.au/nla.obj-233247255/view
Ghorchi Ruki, M., Karimpour, M.H. and Ebrahimi Nasrabadi, K., 2012. Investigation of alteration and mineralization of the Halakabad-Shashtamad area (south of Sabzevar). 31th Conference on Earth Sciences, Geology and Mineral Exploration Organization of the country, Tehran, Iran. (in Persian) Retrieved March 9, 2013 from https://civilica.com/doc/186976
Hedenquist, J.W., Arribas, A.N. and Gonzalez-Urien, E., 2000. Exploration for epithermal gold deposits. In: S.G. Hagemann and P.E. Brown (Editors), Reviews in Economic Geology, Geoscienceworld, United States of America, pp. 245-277. https://doi.org/10.5382/Rev.13.07
Hedenquist, J.W., Arribas, A. and Reynolds, T.J., 1998. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology, 93(4): 373–404. https://doi.org/10.2113/gsecongeo.93.4.373
Heidari, S.M., Ghaderi, M. and Afzal, P., 2013. Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au–Ag (Cu) deposit, NW Iran. Geochemistry, 31: 119–132. .https://doi.org/10.1016/j.apgeochem.2012.12.014
Henley, R.W. and McNabb, A., 1978. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Economic Geology, 73(1): 1–20. https://doi.org/10.2113/gsecongeo.73.1.1
Houshmandzadeh, A., Alavi Nayini, M. and Haqipour, A., 1978. Evolution of Geological Phenomena in Toroud Region, from the Precambrian to the present era. Iran Geological and Mineral Exploration Organization, Tehran, 138 pp. (in Persian)
Imamjomeh, A., Rastad, E., Bouzari, F. and Rashidnejad Omran, N., 2009. An introduction to individual disseminated-veinlet and vein mineralization system of cu (pb- zn) in the Chahmoosa-Gholekaftaran mining district, eastern part of Toroud-Chahshirin magmatic arc. Scientific quarterly Journal of Geosciences, 18(70): 112–125. (in Persian) https://doi.org/10.22071/gsj.2009.57383
Jannas, R.R., Bowers, T.S., Petersen, U. and Beane, R.E., 1999. High-sulfidation deposit types in the El Indio district, Chile. In: Skinner, B.J, Geology and Ore Deposits of the Central Andes. Society of Economic Geologists, America, pp. 219–266. https://doi.org/10.5382/SP.07.07
John, D.A. 2001. Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin, western United States: Characteristics, distribution, and relationship to magmatism. Economic Geology, 96(8): 1827–1853. https://doi.org/10.2113/gsecongeo.96.8.1827
Kelley, K.D. and Ludington, S. 2002. Cripple Creek and other alkaline-related gold deposits in the southern Rocky Mountains, USA: influence of regional tectonics. Mineralium Deposita, 37(1): 38–60. https://doi.org/10.1007/s00126-001-0229-4
Kelley, K.D., Romberger, S.B., Beaty, D.W., Pontius, J.A., Snee, L.W., Stein, H.J. and Thompson, T.B., 1998. Geochemical and geochronological constraints on the genesis of Au-Te deposits at Cripple Creek, Colorado. Economic Geology, 93(7): 981–1012. https://doi.org/10.2113/gsecongeo.93.7.981
Kelley, K., Spry, P., McLemore, V., Fey, D. and Anderson, E. 2020. Alkalic-Type Epithermal Gold Deposit Model. Geological Survey Scientific Investigations, U.S, Report 2010-5070-R, 74 pp. https://doi.org/10.3133/sir20105070R
Khajehzadeh, M.H., 2012. Petrography and geochemistry of igneous intrusive in North Moalleman, Shahrood University of Technology, 146 pp. (in Persian)
Khalaj, M., Hassan-Nezhad, A., Alizadeh, H., Haji Babaei, A. and Ghorbani, G. 2021. Investigation of mineralization fluid evolution of hydrothermal vein copper deposits: Based on studies of fluid inclusions at Chah Mousa area (north of central Iran). Advanced Applied Geology, 11(1): 116–135. (in Persian with English abstract) https://doi.org/10.22055/aag.2021.34599.2152
Kouhestani, H., Ghaderi, M., Zaw, K., Meffre, S. and Emami, M.H., 2012. Geological setting and timing of the Chah Zard breccia-hosted epithermal gold–silver deposit in the Tethyan belt of Iran. Mineralium Deposita, 47(1): 425–440. https://doi.org/10.1007/s00126-011-0382-3
Li, X., Zhou, T., Fan, Y., Chen, J., White, N.C., Zhang, L. and Zhang, Y., 2024. Geology and exploration indications of the lithocap in Qianpu area, Luzong Basin, Anhui. Ore Geology Reviews, 164: 105811. https://doi.org/10.1016/j.oregeorev.2023.105811
Mahabadi, R. and Fardoust, F., 2018. Investigating the mineralization type of Abgareh copper deposit (south of Damghan) based on mineralogical, alteration and geochemical evidence. 10th National Conference of Economic Geology Association of Iran, University of Esfahan, Esfahan, Iran. (in Persian) Retrieved September 4, 2019 from https://civilica.com/doc/804980
Mehrabi, B. and Ghasemi Siani, M., 2012. Intermediate sulfidation epithermal Pb-Zn-Cu (±Ag-Au) mineralization at Cheshmeh Hafez deposit, Semnan province, Iran. Journal of the Geological Society of India, 80(4): 563–578. https://doi.org/10.1007/s12594-012-0177-x
Misra, K.C., 2000. Formation of mineral deposits. In: K.C. Misra (Editor), Understanding Mineral Deposits. Springer, Dordrecht, pp. 5–92. https://doi.org/10.1007/978-94-011-3925-0_2
Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D. and Bodnar, R.J., 2012. Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical Exploration, 114: 20–35. https://doi.org/10.1016/j.gexplo.2011.12.001
Muntean, J.L. and Einaudi, M.T., 2000. Porphyry gold deposits of the Refugio district, Maricunga belt, northern Chile. Economic Geology, 95(7): 1445–1472. https://doi.org/10.2113/gsecongeo.95.7.1445
Panahi Shahri, M., Karimpour, M.H. and Shabani, F., 2010. Mineralization and Geochemical Exploration in Volcanic-Plotonic Area of Halakabad Village (Sabzevar), Regarding to Cu-Porphyry Deposits. Journal of Economic Geology, 2(1): 21–37. (in Persian with English abstract) https://doi.org/10.22067/econg.v2i1.3676
Pirajno, F., 2009. Water and hydrothermal fluids on earth. In: F. Piranjo (Editor), Hydrothermal Processes and Mineral Systems. Springer Science and Business Media, Geological Survey of Western Australia, Australia, pp. 1–71. Retrieved October 2, 2011 from https://link.springer.com/chapter/10.1007/978-1-4020-8613-7_1
Pudack, C., Halter, W.E., Heinrich, C.A. and Pettke, T., 2009. Evolution of magmatic vapor to gold-rich epithermal liquid: The porphyry to epithermal transition at Nevados de Famatina, northwest Argentina. Economic Geology, 104(4): 449–477. https://doi.org/10.2113/gsecongeo.104.4.449
Redmond, P.B., Einaudi, M.T., Inan, E.E., Landtwing, M.R. and Heinrich, C.A., 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology, 32(3): 217–220. https://doi.org/10.1130/G19986.1
Richards, J.P., Bray, C.J., Channer, D.D. and Spooner, E.C., 1997. Fluid chemistry and processes at the Porgera gold deposit, Papua New Guinea. Mineralium Deposita, 32(1): 119–132. https://doi.org/10.1007/s001260050079
Richards, J.P., Wilkinson, D. and Ullrich, T., 2006. Geology of the Sari Gunay epithermal gold deposit, northwest Iran. Economic Geology, 101(8): 1455–1496. https://doi.org/10.2113/gsecongeo.101.8.1455
Robb, L., 2020. Introduction to ore-forming processes. Blackwell science, Australia, 386 pp. Retrieved November 6, 2022 from https://kursatozcan.com/ders_notlari/Introduction_to_Ore_Forming_Processes.pdf
Roohbakhsh, P., Karimpour, M.H. and Malekzadeh Shafaroudi, A. 2018. Geology, mineralization, geochemistry and petrology of intrusive masses in the Kouh Zar gold-copper deposit, Damghan. Journal of Economic Geology, 10(1): 1–23. (in Persian with English abstract) https://doi.org/10.22067/econg.v10i1.64316
Seifivand, A. and Sheibi, M., 2019. Ballooning emplacement and alteration of the Chah-Musa subvolcanic intrusion (NE Iran) inferred from magnetic susceptibility and fabric. Geological Magazine, 157(4): 621–639. https://doi.org/10.1017/S0016756819001158
Shafaii Moghadam, H., Griffin, W.L., Kirchenbaur, M., Garbe-Schönberg, D., Zakie Khedr, M., Kimura, J.I. and Maghdour-Mashhour, R., 2018. Roll-back, extension and mantle upwelling triggered Eocene potassic magmatism in NW Iran. Journal of Petrology, 59(7): 1417–1465. https://doi.org/10.1093/petrology/egy067
Sheibi, M. and Mousivand, F., 2018. Petrology, geochemistry and magnetic receptivity of Chah Musa intrusive, host of copper mineralization (northwest of Toroud, south of Shahroud) with a special view on mineralization, Middle East Mines Development and Expansion Company. unpublished Report 1, 200 pp. (in Persian)
Shepherd, T. and Allen, P., 1985. Metallogenesis in the Harlech Dome, North Wales: A fluid inclusion interpretation. Mineralium Deposita, 20(1): 159–168, Retrieved July 18, 1985 from https://link.springer.com/article/10.1007/BF00204560
Sillitoe, R.H., 1995. Exploration of porphyry copper lithocaps. In Pacific rim congress, 95(1): 19–22.
Sillitoe, R.H. 1997. Characteristics and controls of the largest porphyry copper‐gold and epithermal gold deposits in the circum‐Pacific region. Australian Journal of Earth Sciences, 44(3): 373–388. https://doi.org/10.1080/08120099708728318
Sillitoe, R., Richard, H. and Hedenquist, J., 2005. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. In: S.F. Simmons and I. Graham (Editors), Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes within the Earth. Society of Economic Geologists, Springer, pp. 73. https://doi.org/10.5382/SP.10.16
Stoffregen, R.E., 1987. Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville, Colorado. Economic Geology, 82(6): 1575–1591. https://doi.org/10.2113/gsecongeo.82.6.1575
Tale Fazel, E., Mehrabi, B. and Ghasemi Siani, M., 2019. Epithermal systems of the Torud–Chah Shirin district, northern Iran: Ore-fluid evolution and geodynamic setting. Ore Geology Reviews, 109: 253–275. https://doi.org/10.1016/j.oregeorev.2019.04.014
Thompson, J.F.H., Lessman, J. and Thompson, A. J.B. 1986. The Temora gold-silver deposit; a newly recognized style of high sulfur mineralization in the lower Paleozoic of Australia. Economic Geology, 81(3): 732–738. https://doi.org/10.2113/gsecongeo.81.3.732
White, N.C. and Hedenquist, J.W. 1990. Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration. Journal of Geochemical Exploration, 36(1–3): 445–474. https://doi.org/10.1016/0375-6742(90)90063-G
White, N.C., 1991. High sulfidation epithermal gold deposits: Characteristics and a model for their origin. Geologoical Survey of Japan, Japan, Report 277, 10 pp. Retrieved Jun 13, 1999 from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6455504
Whitney, D. and Evans, B., 2010. Abbreviations for names of rock-forming minerals. American mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371
Wilkinson, J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4): 229–272. https://doi.org/10.1016/S0024-4937(00)00047-5
Williams-Jones, A.E. and Heinrich, C.A., 2005. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits: 100th anniversary special paper. Economic Geology, 100(7): 1287–1312. https://doi.org/10.2113/gsecongeo.100.7.1287
Yasami, N., Ghaderi, M., Madanipour, S. and Taghilou, B., 2017. Structural control on overprinting high-sulfidation epithermal on porphyry mineralization in the Chodarchay deposit, northwestern Iran. Ore Geology Reviews, 86: 212–224. https://doi.org/10.1016/j.oregeorev.2017.01.028
Yasami, N. and Ghaderi, M., 2019. Distribution of alteration, mineralization and fluid inclusion features in porphyry–high sulfidation epithermal systems: The Chodarchay example, NW Iran. Ore Geology Reviews, 104: 227–245. https://doi.org/10.1016/j.oregeorev.2018.11.006
Yousefi, F., Sadeghian, M., Wanhainen, C., Ghasemi, H., and Frei, D., 2017. Geochemistry, petrogenesis and tectonic setting of middle Eocene hypabyssal rocks of the Torud–Ahmad Abad magmatic belt: An implication for evolution of the northern branch of Neo-Tethys Ocean in Iran. Journal of Geochemical Exploration, 178: 1–15. http://dx.doi.org/10.1016/j.gexplo.2017.03.008
Zadsaleh, M., Taghipour, N. and Honarmand, M., 2012, Distinguishing intermediate argillic from advanced argillic alteration in the Qoleh Kaftran mineral area using SWIR bands of the ASTER remote sensing sensor. 4th Conference of the Iranian Economic Geology Society, University of Birjand, Birjand, Iran. (in Persian) Retrieved July 5, 2014 from https://sid.ir/paper/864562/fa
Zarasvandi, A., Tashi, M., Rezaei, M., Saki, A. and Mousivand, F. 2022. Geology and geochemistry of the Choran porphyry-epithermal Cu-Au deposit in the Dehej-Sarduveyeh subzone, Urumieh-Dokhtar magmatic arc. Journal of Economic Geology, 14(1): 39–66. (in Persian with English abstract) https://doi.org/10.22067/econg.2021.52017.87614