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Abstract- The frequency spectrum is a limited and valuable 

resource and faces challenges due to anomalies. Hence, the 

detection of anomalies in the frequency spectrum is crucial for 

maintaining the integrity and reliability of telecommunication 

systems. These anomalies, which include jamming signals and 

interference, can disrupt communication channels and degrade 

system performance.  This paper presents a comprehensive review 

of deep learning applications in spectrum anomaly detection, 

focusing on research conducted between 2017 and 2024. The 

review examines various pre-processing techniques used in 

spectrum anomaly detection, highlighting the widespread use of 

spectrogram and short-time Fourier transform (STFT), 

particularly in reconstruction-based methods, due to their 

effectiveness in capturing time-frequency information despite 

their computational challenges. Additionally, the study 

underscores the importance of selecting appropriate problem-

solving approaches, such as classification, segmentation, or object 

detection, and tailoring models to suit specific tasks. These 

findings underscore the potential of deep learning-based 

approaches in enhancing spectrum monitoring and interference 

management. 

Index Terms- Anomaly, Deep learning, Interference, Spectrum. 

I. INTRODUCTION AND RELATED WORK 

he frequency spectrum, a limited and valuable resource, 

serves as the backbone for wireless communication 

networks [1, 2]. However, its optimal utilization faces 

challenges due to anomalies that may arise from interference, 

equipment malfunction, unauthorized access, or other 

unexpected events. Detecting these anomalies is vital for 

maintaining network performance, avoiding disruptions, and 

ensuring compliance with regulatory standards. In general, any 

factor that causes a change in the behavioral pattern of data is 

recognized as an anomaly. This can include unexpected events 

resulting from behavior that deviates from the user’s 

perspective, isolated incidents, or the presence of disruptive 

elements within the system [3]. Unusual events that deviate 

from common patterns are often recognized as anomalies. For 

instance, a sudden gathering of people in a specific area or 

motorcyclists appearing on sidewalks are considered abnormal 

behaviors [4-6]. An unwanted, isolated occurrence within a 

dataset is also classified as an anomaly; for instance, a sudden, 

one-time change in the intensity of received signals [7-9]. 
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Similarly, in the medical field, phenomena such as tumors, 

which threaten an individual’s health, are considered anomalies 

[10, 11]. The presence of jamming signals that disrupt 

communication is another example of an anomaly in 

telecommunications. 

This paper focuses specifically on anomaly detection in the 

radio frequency (RF) spectrum, where disruptions such as 

interference or jamming can significantly impact 

communication reliability and spectrum efficiency. The 

occurrence of anomalies leads to changes in the behavioral 

pattern of the spectrum. The frequency spectrum usually 

exhibits a specific behavior when telecommunication signals 

are present. If an unknown phenomenon or anomaly occurs, this 

regular behavior is altered. Therefore, by learning the 

behavioral pattern of the spectrum, the occurrence of anomalies 

can be identified [12, 13].  

Advances in computational systems and access to large 

datasets have enabled the use of artificial intelligence (AI) 

tools[14]. These tools analyze data and accurately detect 

anomalies. Time-series anomaly detection is applied in various 

fields, such as urban management, intrusion detection, and 

medical diagnostics[15, 16]. Continuous observation during 

spectrum monitoring ensures prompt detection of anomalies 

and the implementation of appropriate actions. 

In recent years, AI methods have emerged as the most 

widely used approach for anomaly detection. This interest in AI 

stems from its ability to deliver better performance, particularly 

in solving complex problems like detecting the time and 

frequency of spectrum anomalies, as well as faster inference 

after model training. AI-based algorithms enable the 

development of systems that can learn the behavior of a normal 

spectrum (without anomalies) and detect and classify various 

types of anomalies. Among AI methods widely used for 

spectrum monitoring, deep learning (DL) models have become 

the most prevalent in some studies [17-21]. These models, 

inspired by the structure of the human brain, can extract 

hierarchical patterns from data. In blind detection scenarios, 

where there is no prior knowledge about the signal, machine 

learning and deep learning tools become invaluable for 

uncovering inherent patterns within the data and enabling 

effective signal identification.  
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Given the extensive body of research in this area, numerous 

review articles have been published on spectrum anomalies, 

each offering a distinct analytical perspective. Table I 

summarizes and compares the most relevant works in this 

domain. However, a detailed examination of these studies 

reveals several critical limitations that our work directly 

addresses. Below, we outline these shortcomings and highlight 

our corresponding contributions: 

 Mapping Conceptual Anomaly Types to Deep 

Learning Techniques: We propose a novel conceptual 

classification of spectral anomalies into known and 

unknown categories. This distinction is essential, as it 

informs the selection of the most appropriate deep 

learning models based on the nature of the anomaly. 

Building on this framework, we establish a direct 

mapping between anomaly types and deep learning 

approaches, such as classification, reconstruction, 

detection, and segmentation, offering practical 

guidance for model selection. In contrast, previous 

surveys [22-25] primarily define anomalies based on 

application domains (e.g., jamming, interference) or 

signal sources (e.g., intentional vs. unintentional), 

without providing an explicit linkage between anomaly 

types and suitable deep learning techniques. 

 Comparative Analysis of Pre-processing Techniques: 

Existing studies [22, 23] mention pre-processing 

techniques only briefly and do not assess their impact 

on deep learning model performance. Other relevant 

surveys [24, 25] discuss certain methods but lack a 

systematic comparative evaluation or apply pre-

processing solely as part of the model input without 

further analysis. This absence of a thorough 

comparison represents a significant research gap, which 

we address by providing a comprehensive evaluation of 

pre-processing techniques for spectral anomaly 

detection. 

 AI Model Comparison – Scope and Depth of Review: 

We provide an updated review of deep learning-based 

spectrum anomaly detection methods, covering up to 

the year 2024. While the survey in [24] offers a 

structured overview of deep learning models, its 

coverage is limited to studies published before 2021. 

Additionally, prior works [22, 23] provide limited 

analysis and only a superficial review of AI methods, 

or focus exclusively on AI applications and introduce a 

benchmark dataset for next-generation networks [25]. 

 Challenges and Future Directions: In addition to the 

above, we discuss existing research gaps, including the 

challenges of detecting hybrid anomalies, generalizing 

models across varying conditions. 

The remainder of this paper presents background on 

spectrum anomaly detection, reviews deep learning 

methods and pre-processing techniques, compares existing 

approaches, and concludes with key insights and future 

directions. 

 

TABLE I 

Comparison of Related Surveys on Deep Learning for Spectrum Anomaly Detection 

Aspect 
Pirayesh et al. 

[22] 

Oyedare et al. 

 [24] 

Lohan et al. 

[23] 

Lancho et al. 

[25] 
Ours 

Year  Published 2021 2022 2024 2025 2025 

Main Focus Jamming 
Interference + 

Jamming 

Interference + 

Jamming 

RF signal separation 

(mixed sources) 
Interference + Jamming 

Anomaly Type 
Protocol-level 

attack types 

Signal-type 

anomalies 

Intentional vs. 

unintentional 

Mixed / unknown 

anomalies 
Known vs. Unknown anomalies 

Pre-processing 

Comparison 
Brief mention Brief mention Brief comparison 

Used in model 

inputs only 
✔ Systematic comparative analysis 

AI Model 

Comparison 

✖Limited 

discussion 

✔Systematic 

overview of DL 

models 

✖Brief 

comparison 

✔Benchmarked 

(UNet, WaveNet) 

✔Deep model–approach-based 

comparison 

DL Techniques vs. 

Anomaly Type 
✖ Not addressed 

✖ Not explicitly 

compared 

✖ Not anomaly-

specific 

✖ Task-specific, not 

anomaly-specific 

✔ Explicit mapping of DL methods to 

anomaly types 

Unique 

Contribution 

Protocol-level 

jamming 

taxonomy and 

mitigation 

strategies 

Survey of DL-

based interference 

suppression 

methods 

Review of AI-

based interference 

in 5G/6G systems 

RF Challenge 

dataset + DL 

benchmarking 

Novel anomaly taxonomy and 

methodological comparison of different 

models across deep learning approaches 

(classification, detection, object 

detection, and segmentation). 

II. BACKGROUND 

A.  Categorization of Spectrum Anomalies 

In addition to the conventional anomaly categories noted in 

prior work [22-25], this review introduces the distinction 

between known and unknown anomalies, a perspective that, to 

our knowledge, has not yet been explicitly applied to spectrum 

anomaly detection. 

Known anomalies:  These anomalies refer to disruptions 

whose features (e.g., signal shape, power level, and duration) 

have been previously observed or modeled. Detection 

approaches for these anomalies typically rely on supervised 

learning techniques or signature-based methods that use labeled 

datasets. 

Unknown anomalies: These are previously unseen or 

unpredictable events that do not appear in the training data, 



Journal of Computer and Knowledge Engineering, Vol. , No.. 2025. 

DOI:  

 

 

making them much harder to detect. Approaches targeting 

unknown anomalies often employ unsupervised or semi-

supervised learning, relying on deviations from learned normal 

patterns. 

Another classification of anomalies can also be proposed 

based on their characteristics: 

Disruptive Signals: Jamming signals serve as a prime example 

of disruptive signals. Jamming signals, typically created by 

humans to interfere with a telecommunication system’s receiver 

by transmitting high power, are referred to as jamming [26]. 

When jamming signals display known behavior, they are 

classified as known anomalies. Identifying these requires prior 

knowledge of various jammer types. 

Some spectrum anomaly detection studies emphasize 

methods for detecting and classifying known types of 

jammers[27, 28]. However, real-world scenarios present the 

challenge of unknown jamming attacks[12, 13, 29]. These 

attacks are excluded from pre-existing algorithms, leaving such 

systems vulnerable. 

Compiling a comprehensive database of all potential 

jamming attacks is challenging since new attacks can be easily 

generated by altering parameters like frequency, duration, or 

power. Consequently, numerous studies have aimed to identify 

spectral anomalies caused by unknown attacks. These methods 

typically issue alerts when anomalies occur. This approach 

aligns with the core concept of anomaly detection, where any 

unknown factor causing disruption in the telecommunication 

system is identified as an anomaly [30]. 

Interference: Anomalies such as interference, are 

unexpected events that disrupt telecommunication systems. 

Unlike jamming attacks, which are intentional, interference 

involves unintentional signals. Unlicensed frequency bands 

allow data transmission but face significant challenges from 

signal interference. For instance, interference between radar 

signals and LTE-U signals in the 5 GHz band in North America 

is a prominent example [19]. Detecting and managing 

interference as anomalies is a key area of research in cognitive 

radio[31]. 

B.  System Model  

The presence of spectrum anomalies can be modeled using a 

binary hypothesis framework as follows[32]: 

0: ( ) ( ) ( ) ( )H y n h n x n N n    1 

1: ( ) ( ) ( ) ( ) ( ) , 1,...,H y n h n x n A n N n n w      2  
 

Where 𝑦(𝑛) represents the received signal, 𝑥(𝑛) is the 

transmitted signal, 𝐴(𝑛) is the anomaly, 𝑁(𝑛) is the white noise 

with a Gaussian distribution and a two-sided power spectral 

density of 
𝑁0

2⁄ , and ℎ(𝑛) is the channel coefficients. Also 𝑛 

refers to discrete time samples, and 𝑤 is the length of the time 

window at the receiver. In Equation 2, 𝐴(𝑛) can be categorized 

into two types of anomalies: (1) anomaly signals or (2) 

unauthorized simultaneous signal activity within the frequency 

range of the authorized signal 𝑥(𝑛) , referred to as interference 

[19]. Specifically, in spectrum anomaly detection using deep 

learning approaches, the acceptance or rejection of each 

hypothesis is carried out as follows: 

0

1

: ( ( ( ))) :

: ( ( ( ))) :

H F P y n No Anomaly

H F P y n Anomaly present








  3 

According to Equation 3, the received signal 𝑦(𝑛) is first 

preprocessed using a function 𝑃 to extract relevant features and 

normalize the data. The preprocessed signal is then fed into 

deep learning models to learn a transformation function 𝐹. This 

function 𝐹 is designed to map the input signal to a 

representation that emphasizes distinguishing features, 

enabling the model to detect anomalies effectively. 

C.  Performance Metrics for Spectrum Anomaly Detection 

In anomaly detection, the following metrics are commonly 

used to assess the system’s effectiveness[33]: 

 Detection Probability (𝑝𝑑): The probability of detecting an 

anomaly when an anomaly is present, denoted by: 

1 1{ }d rp p H H   4 

 Miss Detection Probability (𝑝𝑚): The probability that an 

anomaly goes undetected, denoted by: 

0 1{ }m rp p H H   5 

 False Alarm Probability (𝑝𝑓): The probability that a  

communication signal is mistakenly identified as an 

anomaly, denoted by: 

1 0{ }f rp p H H   6 

 Receiver Operating Characteristic (ROC) Curve: A plot that 

shows the relationship between the  𝑝𝑓 and the 𝑝𝑑 for various 

Signal-to-Noise Ratio (SNR)values. 

Furthermore, other evaluation criteria are used in spectrum 

anomaly detection to evaluate deep learning models, including 

the Dice Similarity Coefficient (DSC), Recall, Specificity, and 

Accuracy, are employed. These metrics are computed using 

Equations (7) to (10), respectively [34, 35]: 

2

2

TP

TP FP FN
DSC

 
   7 

Re 


TP
call

TP FN
  8 

TN
Specificity

TN FP



  9 

TP TN
Accuracy

TP FP TN FN




  
  10 

III. ANOMALY DETECTION BASED DEEP LEARNING 

Deep learning methods, by capturing intrinsic patterns 

within data, have been extensively applied in cognitive radio 

tasks such as spectrum sensing[1, 36], signal classification[9, 

37, 38], spectrum anomaly detection[12, 13, 29], and dynamic 

spectrum sharing[39]. Specifically, spectrum anomaly 

detection methods typically involve multiple stages, as 

illustrated in Figure 1. Initially, raw I/Q samples from the 

sensing frequency bands are captured. Depending on the 
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sampling frequency, a specified number of samples are 

collected and represented y[n] as a vector. These data vectors 

can then either be directly fed into deep learning models or 

undergo pre-processing to enhance their representation for 

further analysis. Pre-processing can be considered a crucial step 

in feature extraction, as it applies transformations to raw data, 

making it more suitable for analysis by emphasizing relevant 

patterns and reducing noise.  

Once the pre-processing is completed, deep learning 

algorithms are employed to analyze the data. In intelligent 

spectrum management systems, these algorithms play a pivotal 

role in automating the detection and classification of wireless 

signals. At this stage, the focus is on identifying patterns within 

the processed data, enabling the model to learn task-specific 

features for applications such as modulation classification, 

wireless device identification, or anomaly detection. The 

following sections provide a detailed of the pre-processing 

techniques and deep learning models utilized in this context. 

 
Figure 1: Overview of using deep learning models for spectrum anomaly detection. 

IV. PRE-PROCESSING FOR SPECTRUM ANOMALY 

DETECTION 

Figure 2 shows that pre-processing for deep learning-based 

spectrum anomaly detection falls into four main categories: 

statistical features, sequence features, image-based features, 

and combined features. The following subsections provide a 

detailed overview of each approach. 

 

 
Figure 2: Pre-processing approaches for Spectrum Anomaly 

Detection.  

A.  Sequence features 

In this approach, the classification task is addressed based on 

the sequential processing of received samples: 

I/Q: Specifically, the in-phase (I) and quadrature (Q) signal 

samples received from the receiver can be utilized directly for 

tasks such as modulation classification[37], and anomaly 

detection [18, 40]. Typically, the received samples are divided 

into fixed-length windows (for example 128 samples), and then 

fed into deep learning models. However, as the window length 

increases, the dimensionality of the input data also grows, 

necessitating the use of deeper models. Given the constraints of 

computational resources and processing time, some studies 

have proposed feature extraction techniques, such as applying 

Fast Fourier Transform (FFT) or deriving amplitude and phase 

vectors of the received signal, as an alternative to directly 

utilizing raw I/Q samples. 

A/P: In addition to directly utilizing the raw I/Q samples, the 

amplitude (A) and phase (P) of the received samples can also 

serve as inputs to deep learning models by organizing them into 

two fixed-length windows. Compared to I/Q samples, the 

amplitude and phase representations demonstrate superior 

discrimination capabilities. This advantage arises from their 

inherent robustness to signal impairments, such as frequency 

shifts and phase variations, which can significantly impact the 

I/Q components. By leveraging this alternative representation, 

models can achieve improved performance in challenging 

signal environments[18]. 

FFT: Fast Fourier Transform (FFT) is commonly used in 

telecommunications, especially for spectrum sensing and 

anomaly detection, to convert received samples into the 

frequency domain. In this domain, frequency-related 

information proves highly effective for tasks where the 

frequency of occurrence is critical, such as identifying the 

frequency range occupied by communication signals. The FFT 

output, which consists of real and imaginary components, can 

be directly utilized as input to deep learning models. Selecting 

an appropriate number of FFT points is a key consideration; 

fewer FFT points reduce computational complexity, whereas a 

larger number increases computational demands[18, 41]. 

B.  Statical Features 

Various statistical features can be used in the task of 
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spectrum anomaly classification [42]. These features are also 

widely utilized in other telecommunications applications, such 

as signal detection, modulation classification, and related tasks. 

Below are some of the most commonly employed statistical 

features [3, 34, 15]: 

Mean: Represents the average signal value, providing 

insight into the signal's general level or bias[43]. 

Standard Deviation (STD): Measures variability around the 

mean, indicating signal fluctuations[44]. 

Skewness: Reflects the asymmetry in the signal's 

distribution, useful for detecting non-Gaussian 

interference[45]. 

Kurtosis: Measures the tailedness of the distribution, often 

helpful for identifying anomalies that introduce extreme 

values[46]. 

These basic statistical features offer simple and efficient 

computation. However, they lack the ability to localize 

anomalies in time or frequency. Therefore, for anomaly 

localization, transformations such as FFT, power spectral 

density (PSD), and time-frequency representations are 

commonly employed 

C.  Image-based features 

Deep learning excels in computer vision tasks like detection, 

classification, and segmentation by automatically extracting 

relevant features from image inputs[47]. Similarly, in 

telecommunications systems, received signals can be 

transformed into time-frequency representations by applying 

appropriate processing techniques. The subsequent sections 

explore some of these processing methods in detail: 

SCF: This processing technique enables the effective 

extraction of periodic patterns from received signals. The 

concept of periodicity encompasses symbols, spreading codes, 

and guard intervals. Some signals exhibit unique periodic or 

cyclostationary characteristics. By analyzing these 

cyclostationary features, it becomes possible to identify the type 

of received signal without prior knowledge, even under 

challenging conditions such as noise and multipath fading 

effects. Assuming a fundamental periodicity 𝑇0 =  
1

𝑓0
, the cyclic 

autocorrelation function 𝑅𝑦
𝛼 ( 𝜏) at cyclic frequency 𝛼 is 

obtained. Applying the Fourier transform to the CAF yields the 

Spectral Correlation Function (SCF), as defined in Equation 

(11) [48]: 
 

 
2 2
2

( )
T j fR e dtyTy

S f    


   11 

Where 𝛼 = 0, 𝑆 𝑦 (𝑓) represents the power spectral density 

(PSD) function [13, 49]. The computational complexity of the 

SCF is relatively high compared to alternative methods. To 

address this, Kürşat, et al. [48]reduce the SCF complexity by 

employing FFT-based accumulation methods (FAM), utilizing 

time smoothing via the FFT. Figure 3 represents an example of 

SCF estimation using the FAM algorithm for three signal types, 

UMTS, GSM, and LTE, along with AWGN. As illustrated in 

the Figure 3, each signal demonstrates unique cyclostationary 

properties, whereas AWGN lacks these characteristics, 

showing a single non-zero peak in SCF at the center of the 

frequency domain. 

 

 

  
(b) (a) 

  
(c) (b) 

Figure 3: Estimation of the SCF using the FAM algorithm for a) 

AWGN, b) GSM, c) UMTS, and d) LTE[48]. 

STFT & spectrogram: The short-time Fourier transform 

(STFT) and the spectrogram are closely related, with the 

spectrogram being derived from the magnitude of the STFT. 

Unlike separate time-domain or frequency-domain analyses, 

the spectrogram provides a combined view, enabling the 

association of maximum energy values with both temporal and 

frequency components [32, 50, 51]. Spectrogram computation 

involves segmenting the signal with a window function and 

applying the FFT to each segment  [12, 19, 27, 29, 45, 52-58]. 

As illustrated in Figure 4, the spectrogram effectively detects 

time-varying anomalies such as chirp signals, while also 

distinguishing different types of communication signals based 

on their time-frequency characteristics. The choice of frame 

length and the number of FFT points directly affects the trade-

off between time and frequency resolution. Increasing the FFT 

size improves frequency resolution but also raises 

computational complexity. To address this issue, 

[19]introduces a modified version of the spectrogram, called the 

Q-spectrogram. The Q-spectrogram is designed to optimize the 

representation of time and frequency information while 

reducing input complexity for CNN models. It is generated by 

condensing a standard spectrogram (e.g., 128 × 128 or other 

sizes) into a smaller, quarter-sized representation.  
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Figure 4: Illustrative example of the spectrogram for a chirp 

anomaly[59]. 

Wavelet & Scalogram: The wavelet transform is another 

representation for time-frequency analysis of received signals. 

Unlike the STFT, which uses a fixed-length window, the 

wavelet transform utilizes a base function, known as the mother 

wavelet, with varying scales and shifts as it moves across the 

signal This allows for the capture of time and frequency 

information at different resolutions, making wavelets 

particularly well-suited for analyzing non-stationary signals[60, 

61]. Since real-world signals are typically discrete, the Discrete 

Wavelet Transform (DWT) is commonly used for analysis. 

Complementing the wavelet transform, the scalogram 

provides a time-frequency representation of the received signal 

samples. Specifically, it is derived by calculating the squared 

magnitude of the CWT. Ujan et al.[62] used deep learning 

models for identifying types of interference in satellite-to-

ground real-time communication within the DVB-S2 standard 

with the benefit of scalogram. Figure 5 illustrates examples of 

scalograms for signals with interference. As shown, this 

transform is particularly effective in distinguishing different 

types of interference, especially chirp-type interference [46, 

63]. 
 

 
 

(b) (a) 

  
(d) (c) 

Figure 5: Scalogram representation of received signals in satellite 

communication based on the DVB-S2 standard, illustrating a) signal 

without the interference, b) Signal with single-tone interference, c) 

signal with multi-tone interference, and d) signal with chirp 

interference [46]. 

Constellation: The constellation diagram allows for the 

visualization of the scatter of I/Q samples in the received signal, 

and is commonly used for modulation classification and 

anomaly detection [37, 43, 44]. For example, Figure 6 presents 

constellation diagrams for samples of various anomalies.  

According to this figure, signal points in single-tone and binary 

code anomaly are symmetrically distributed around the unit 

circle, whereas multi-tone and frequency band noise anomaly 

exhibit more irregular patterns. These characteristics enable the 

identification of deceptive anomaly based on the dispersion of 

signal points around the circle's center [28]. While the 

constellation diagram provides valuable insights, its 

effectiveness in classification diminishes at low SNR levels.  

 

  
(b) (a) 

  
(d) (c) 

Figure 6: Representation of Anomaly Types: a) Random Binary Code 

Anomaly, b) Single-Tone Anomaly, c) Multi-Tone Anomaly, and d) 

Partial Frequency Band Noise anomaly [28]. 

WVD: The Wigner-Ville distribution (WVD) is a second-

order time-frequency distribution that maps a signal from the 

time domain to the energy density plane[28, 64]. The Wigner 

distribution of a signal y(t) is calculated based on the Fourier 

transform of its instantaneous autocorrelation function, as 

shown in the Equation 12:  

*

2 2
( , ) y t y t

y
WVD t F

 
 


     

           
   12 

The resulting Fourier transform is real-valued in the 

Hermitian space, and therefore, cross-terms appear in the 

output. In fact, the Wigner distribution generates cross-terms 

between the positive and negative frequencies of the  main 

signal. To discard these cross-terms, the Wigner-Ville 

distribution and its modified version, the Smooth Pseudo 

Wigner-Ville Distribution (SPWVD) [65], are introduced. 

Instead of computing the Wigner-Ville distribution directly for 
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the signal, the Wigner-Ville distribution of the corresponding 

analytic signal is calculated. The analytic signal corresponds to 

the main signal but contains only non-negative frequencies. 

Using this analytic signal helps remove some of the external 

cross-terms. 

FRFT: The fractional Fourier transform (FRFT) is an 

extension of the conventional Fourier transform that rotates the 

time-frequency plane by a specific angle. It represents a signal 

using a set of orthogonal bases and is particularly effective for 

detecting chirp signals. To do so, a parameter is adjusted until 

the transform aligns with the target chirp pattern. As illustrated 

in Figure 7, the energy of a chirp signal becomes concentrated 

at a specific value, while in non-chirp signals, the energy 

remains more dispersed[28]. 

 

 
 

(b) (a) 
Figure 7: Example of the FRFT representation for, a) chirp signal, b) 

non-chirp signal [28] 

D.  Combined features 

This approach enables the integration of features outlined in 

previous sections as input to deep learning models[54, 66]. 

Although this increases computational overhead, it can 

potentially improve the accuracy of anomaly detection. 

Suppressive anomaly, such as tone, multi-tone anomaly, and 

chirp anomaly, disrupt communication by transmitting high-

power signals, while deceptive anomaly mimic legitimate 

signals to exploit frequency bands. Liu et al. [28] proposed 

using constellation diagrams, WVD, and FRFT to detect and 

classify both types of anomalies. Their study shows that WVD 

is effective for suppressive anomalies, and FRFT is more suited 

for chirp anomalies, while constellation diagrams can detect 

both types. 

Ujan et al. [46] used 10 statistical and wavelet-based features 

to classify modulation schemes and detect signal of interest 

(SOI), continuous wave interference (CW), multiple continuous 

wave interference (MC), and chirp interference (CI). An 

example showing three wavelet coefficients across four levels 

for these classes is illustrated in Figure 8. These extracted 

features contribute significantly to distinguishing between 

different types of interference. 

 

 
 

Figure 8: Illustration of the wavelet level-4 coefficients for signals 

with and without interference. 

E.  Comparison of Pre-processing Techniques 

Table II provides a comparison of various pre-processing 

techniques in terms of anomaly detection performance, 

localization capability, and computational complexity. 

Sequence-based methods and statistical features are 

computationally efficient but lack time-frequency resolution. 

Time-frequency methods such as STFT and spectrogram offer 

improved anomaly detection and localization by preserving the 

temporal-spectral structure. While advanced transforms such as 

SPWVD, WVD, and FRFT provide higher resolution and are 

effective for chirp detection, they introduce greater 

computational complexity. 

The choice of pre-processing also affects the model 

architecture. Image-based features typically require deep 2D 

Convolutional Neural Networks (CNNs) for effective 

representation learning, increasing computational demands. In 

contrast, simpler features such as PSD or FFT can be processed 

with traditional machine learning methods, offering a more 

efficient and lightweight solution. Hence, details related to deep 

learning models will be discussed in the following section. 

 

TABLE II 

Comparison of Pre-processing Techniques for Spectrum Anomaly Detection 

References Pre-processing Capability Computational Complexity 

[40] 

S
eq

u
en

ce
s I/Q sequences for feature extraction Detection Low 

[41] FFT Detection Moderate (depends on FFT points) 

[13, 49] PSD Detection/Localization Moderate (depends on FFT points) 
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[46]  

S
ta

ti
st

ic
al

 Mean, standard deviation, skewness, Real-Signal 

Kurtosis, average power, and average power of 

the wavelet coefficients 

Detection Low 

[42] 
Pseudo-range, Carrier phase, Doppler shift, 

Signal strength 
Detection Low 

[32, 50, 51, 55] 

Im
ag

e-
b

as
ed

 STFT Detection/Localization Moderate (Depends on FFT size ) 

[12, 27, 29, 45, 52, 

53]  
Spectrogram Detection/Localization Moderate (Depends on FFT size ) 

[19] Q-spectrogram Detection Moderate (smaller size reduces complexity) 

[62, 63]  Scalogram Detection High (due to CWT computations) 

[65] SPWVD Detection High 

[54] 

C
o

m
b

in
ed

  

Spectrogram, PSD, raw constellation plots, and 

histogram 
Detection High 

[66] PSD, I/Q sequences Detection Moderate(depends on FFT points) 

[28] SPWVD, FRFT, constellation diagram Detection High 

[18] I/Q, amplitude/phas, FFT Detection Moderate (depends on FFT points) 

 

V. APPLICATION OF DEEP LEARNING FOR THE 

SPECTRUM ANOMALY DETECTION 

Research on spectrum anomaly can be classified into five 

main categories based on their application: reconstruction, 

recognition, classification, object detection, and segmentation 

approaches. In reconstruction-based approaches, where the 

nature of the anomaly is assumed to be unknown, the spectrum 

monitoring system can only detect the presence or absence of 

an anomaly and issue an alert. Some studies shift their objective 

to identifying known types of anomalies, which requires 

classification or recognition-based methods. In both 

classification and recognition approaches, the problem is 

addressed by predefining the number of known anomaly 

classes. Other studies also focus on the time-frequency 

occurrences of anomalies in addition to detecting their class. 

For this purpose, segmentation models or object detection 

models are employed, utilizing time-frequency representations. 

The following section provides a more detailed discussion of 

each approach. 

A.  Classification & Recognition-Based Anomaly Detection 

Deep learning models can be used to classify types of 

spectrum anomalies.  According to Figure 9, for multi-class 

classification tasks, the input is classified into one of the 

predefined classes. Some studies in this approach have 

introduced specific CNN-based models. For example, Morales 

Ferre et al. [27]  proposed a lightweight CNN to classify types 

of jammers and legitimate signals within satellite-based Global 

Navigation Satellite Systems (GNSS). Their CNN processes 

grayscale spectrograms and consists of convolutional layers, 

pooling, and a fully connected layer for classification. The 

proposed algorithm achieved a classification accuracy of 

91.36% on the test dataset. Similarly, Davaslioglu et al. [40]  

designed the DeepWiFi protocol for jamming detection in 

multi-hop wireless networks. It uses deep CNNs and 

feedforward neural networks (FNNs) and achieves over 98% 

accuracy, much higher than traditional methods like SVM with 

66%. This helps users avoid interference, improving 

transmission speeds and data security. Xu et al. [41] applied the 

Spectrum Learning Anomaly Detection (SLAD) system  based 

on CNNs, to detect normal communication, abnormal data, or 

interference in the 5G-Unlicensed spectrum (5G-U). The SLAD 

system applies FFT transformations to I/Q samples and 

achieves a classification accuracy of 97.6%. Kulin et al.[18] 

used CNNs and three data representations including IQ, 

amplitude/phase, and frequency domain for interference 

detection and modulation recognition. The framework achieves 

up to 86% accuracy in modulation recognition under high SNR 

and 98-99% in interference detection. 
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Figure 9: Illustrating the Application of Deep Learning Models in Classifying Intentional Interference 

Some other studies in anomaly detection concentrate on 

employing well-known architectures that have been 

successfully applied in computer vision tasks. In this regard, 

Bhatti et al. [19] used several well-known CNN architectures, 

including Visual Geometry Group (VGG) [67] and Residual 

Networks (ResNet) [68], and SqueezeNet [69], to classify 10 

signal types (e.g., LTE, WiFi, radar, filter bank multicarrier) 

and their respective interferences and noise.The VGG  model is 

known for its deep but computationally heavy structure, ResNet 

introduces skip connections to ease training, and SqueezeNet 

achieves comparable accuracy with significantly fewer 

parameters. Using Q-spectrograms as input, they showed that 

ResNet18 and SqueezeNet outperformed traditional methods in 

terms of both speed and accuracy.  

Swinney et al.[54] utilized unsupervised learning techniques 

to address the challenge of GNSS jamming signal detection and 

clustering. Their approach involved leveraging graphical 

representations of radio frequency signals, including 

spectrograms, power spectral density, raw constellation plots, 

and histograms. They used the VGG-16 model with transfer 

learning for feature extraction, which enhanced the accuracy 

and efficiency of k-means clustering. Experiments with 

different initialization methods confirmed the advantage of 

CNN features, while also reducing processing time, making the 

approach suitable for early warning systems. Similarly, Jiang et 

al. [53] proposed a VGG-16-based framework for GNSS 

interference classification using federated and transfer learning. 

Time–frequency spectrograms were used as input, enabling 

decentralized training with improved privacy and faster 

convergence. Results showed that the untrained VGG-16 model 

achieved 96.7% accuracy, outperforming conventional CNNs 

by 8%. Steiner et al.  [52] used five ResNet models (ResNet-18 

to ResNet-152) to classify seven types of GNSS jamming 

signals based on spectrogram images. The best performance 

was achieved with ResNet-152 (accuracy of  94%), while 

ResNet-18 offered a good trade-off between accuracy (91.4%) 

and speed.  

In recent years, a growing number of studies in the field of 

anomaly detection have adopted architectures designed to 

process sequential data. These architectures offer significant 

advantages, such as the ability to model long-range 

dependencies and to selectively focus on the most informative 

aspects of the input, thereby enhancing the accuracy and 

robustness of anomaly detection systems. For example, Reda et 

al.[42] developed a deep learning method for detecting GNSS 

jamming using time-series features from RINEX data. After 

PCA and Bayesian Optimization for feature selection, they 

trained LSTM-based models. The BiLSTM-A model, enhanced 

with an Attention Mechanism to focus on key time steps, 

achieved 98.08% accuracy in detecting chirp and CW jamming. 

Results highlight the effectiveness of attention-based RNNs in 

GNSS interference detection. 

Table III provides a comprehensive comparison of key 

methods in spectrum anomaly detection and classification, 

highlighting their accuracy, strengths, and limitations. Based on 

this comparison, several practical implications can be 

identified: 

Speed vs. Accuracy Trade-offs: Lightweight models such as 

ResNet-18 and SqueezeNet provide faster inference times, 

making them suitable for real-time or resource-constrained 

applications. In contrast, deeper architectures like ResNet-152 

offer higher accuracy but require significantly more 

computational resources, which may restrict their use in 

latency-sensitive environments. 

Pre-processing-Impact of Input Representation: Models 

operating on raw or time-series data, including BiLSTM-based 

architectures, typically require larger, high-quality datasets and 

longer training durations to achieve optimal performance. 

Generalization: Protocol-specific models (e.g., DeepWiFi) 

or domain-focused approaches targeting only GNSS signals 

may have limited generalization capability when applied 

beyond their original context, necessitating domain adaptation 

or retraining. 

Robustness: Approaches that incorporate spectral 

transformations (e.g., spectrograms, FFT) and attention 

mechanisms generally exhibit greater robustness against noise 

and variability, which are common in real-world signal 

environments. 
 

TABLE III 

Comparison of Deep Learning Models for Spectrum Anomaly Classification 

Reference Model Pre-processing 
Accuracy 

(%) 
Strengths Limitations 

Morales Ferre et 

al. [27]   
CNN  Grayscale Spectrogram 91.36 Good accuracy, simple model 

Limited 

generalization 

Davaslioglu et al. 

[40]   
CNN + FNN Raw Signal >98 High accuracy, improves throughput Network-specific 

Bhatti et al. [19] 
ResNet18, 

SqueezeNet 
Q-spectrogram ~95 

Efficient input size, fast inference, 

robust in multi-signal environments 

Potential loss of 

fine spectral details 

Xu et al. [41] CNN FFT-normalized I/Q 97.6 Robust in noisy industrial settings 
Not evaluated on 

other spectra 
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Kulin et al.[18] CNN  

Raw spectrum (IQ, 

amplitude/phase, frequency 

domain) 

98-99%  

End-to-end learning from raw data, 

multiple representations improve 

performance 

Needs high SNR 

for best results 

Swinney et al.[54] 
VGG-16+ 
Unsupervised 

Various RF signal 
representations 

- 
Improved clustering, efficient, suitable 
for early warning 

Binary 
classification only 

Steiner et al.  [52] 
ResNet (18 to 152 
layers) 

Spectrogram 91.4 - 94 Accurate, diverse jamming types 
Trade-off speed vs. 
accuracy 

Reda et al.[42] 
BiLSTM + 

Attention 
Time-series RINEX 98.08 

High accuracy, temporal dependency 

capture 

Computationally 

intensive 

Jiang et al. [53] VGG-16 Spectrogram 96.7 

High accuracy, privacy-preserving, 

decentralized training, fast 

convergence  

Computationally 
intensive 

B.  Object Detection-Based Anomaly Detection 

Object detection tasks focus on predicting both the class and 

approximate location of an object within input data. Notable 

models in this domain include Region-based Convolutional 

Neural Network (R-CNN) [70], Fast R-CNN[71], Faster R- 

CNN [72], and the You Only Look Once (YOLO) family [73-

75]. Object detection models are also applicable to spectrum 

anomaly detection tasks, enabling simultaneous detection and 

localization of spectrum anomalies. Advanced architectures, 

such as those introduced by Qin et al. [55] demonstrate the 

effectiveness of deep learning-based interference monitoring 

systems.  According to Figure 10, their proposed deep learning 

architecture employs a CSPDarknet-based backbone network 

for feature extraction, spatial pyramid pooling for feature 

integration, and PANet to enhance multi-scale object detection. 

El-Haryqy et al. [63] introduced a novel approach for joint radio 

frequency interference detection and automatic modulation 

recognition  using Mask R-CNN. Unlike traditional object 

detection methods that rely only on bounding boxes, this 

approach leverages instance segmentation to generate precise 

pixel-level masks for each type of interference and modulation, 

enabling more accurate and detailed recognition.  Kim et al. 

[51] proposed an object detection-based approach for wideband 

anomaly detection using STFT spectrograms of LTE and 5G 

signals. Unlike prior narrowband-focused studies, this work 

targets wideband signals. Using models like YOLOv11 and RT-

DETR, they achieved up to 93.7% accuracy. 

 
Figure 10: Illustrating the Application of Deep Learning Models in spectrum anomaly detection. The model's architecture, as well as its inputs 

and outputs, belong to [55]. 

 
Figure 11: Illustrating the Application of Deep Learning Models in reconstruction-Based spectrum anomaly detection. 
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C.  Reconstruction-based Anomaly Detection 

Autoencoders (AEs) are a widely used deep learning model 

in reconstruction-based approaches and are particularly 

effective for anomaly detection tasks [76]. In these tasks, the 

model learns to compress input data into a lower-dimensional 

latent space while preserving its essential features and then 

reconstructs the data back to its original size. As shown in 

Figure 11, an autoencoder consists of three main components: 

the encoder, the bottleneck, and the decoder. The encoder 

transforms the input data into a compact representation in the 

bottleneck by reducing its dimensionality, learning patterns 

from the training samples without prior knowledge of the data 

distribution. The bottleneck represents the compressed latent 

space, where the most significant features of the data are 

retained. The decoder then reconstructs the original data by 

learning the inverse transformation from the compact 

representation during training. This process enables the model 

to effectively capture intrinsic patterns in the data, making it 

particularly well-suited for identifying anomalies [15, 45, 77]. 

Let y denote the selected input points within a range of 

length 𝑤. The encoding and decoding processes of the 

autoencoder are formally represented by Equations (13) and 

(14), respectively [15]: 

 ,
:

y
t w t

Z E 


   13 

 ,:y Zt w t D     14 

Where 𝑍 represents the learned representation of the input 

within the bottleneck, while 𝑦̂ denotes the reconstruction of  y. 

The encoder and decoder components are denoted by 𝐸 and 𝐷, 

respectively, and are parameterized by ∅ and 𝜃. During the 

training process, the parameters of both components are 

optimized by minimizing a loss function that quantifies the 

reconstruction error between the original data and its 

reconstruction, as specified in Equation (15) [15, 45, 77]: 

     * *, arg min
,

, , ,Err y D E y 
 

    15 

For anomaly detection tasks, the autoencoder is trained 

exclusively on normal data. This training process enables the 

autoencoder to learn the inherent patterns of the normal data 

effectively, resulting in a significantly lower reconstruction 

error for normal samples. However, when anomalous data is 

presented, the reconstruction error increases noticeably. By 

defining an appropriate threshold, these anomalies can be 

identified. This threshold, often referred to as the anomaly score 

(𝐴𝑆𝑤) is computed using Equation (16): 

  
2
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w
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Determining an appropriate anomaly score in this method is a 

critical challenge. Feng et al. [50] proposed a novel approach 

for calculating the threshold in anomaly detection for wireless 

spectrum monitoring. They defined a dynamic thresholding 

method that traverses from the maximum reconstruction error 

of normal samples to the minimum error of anomaly samples, 

optimizing the threshold for improved performance .Their 

results showed that deep autoencoders significantly 

outperformed shallow networks and traditional methods, 

achieving 88.57% accuracy with a four-layer model at an SNR 

of 20 dB. Similarly, Rajendran et al. [13] employed a dynamic 

thresholding approach at the output of the Adversarial 

Autoencoders(AAE) model, where thresholds were adaptively 

adjusted using n-sigma rules based on the mean and standard 

deviation of the training data. This strategy ensured robust 

anomaly detection performance under diverse datasets and 

noise levels. 

Some studies have focused on enhancing the architecture of 

autoencoders to improve anomaly detection performance in 

wireless spectrum analysis. For instance, Zhou et al. [32] 

developed a modified Generative Adversarial Network (E-

GAN) using STFT-based spectrograms to detect and localize 

four jammer types, combining reconstruction error and 

discriminator loss for robust detection. Similarly, Toma et al. 

[58] employed deep generative models including Conditional 

GAN (C-GAN), Auxiliary Classifier GAN (AC-GAN), and 

Variational Autoencoder (VAE) on Stockwell-transformed 

spectrum data in mmWave systems. AC-GAN achieved the 

highest detection rate, while VAE offered faster computations, 

balancing accuracy and efficiency. Zeng et al.[66] presented an 

enhanced anomaly detection framework by integrating 

Autoencoder architecture with Denoising Diffusion 

Probabilistic Models (AE-DDPMs). By operating in a low-

dimensional latent space, the model improves efficiency and 

stability over traditional DDPMs. It avoids issues of adversarial 

training and achieves better low-SNR performance, 

outperforming E-GAN by 8 dB in the term of detection 

accuracy. The approach uses I/Q data and PSD features to 

detect various jamming signals, including AM, FM, tone, and 

chirp types. 

Traditional autoencoders face several limitations in 

spectrum anomaly detection. A significant issue is over-

recovery, where anomalous signals are reconstructed as normal, 

leading to reduced anomaly scores and impairing the model's 

ability to distinguish between normal and abnormal data. 

Additionally, traditional models often struggle to generalize in 

dynamic and noisy environments due to their inability to 

capture long-range dependencies and complex patterns in 

spectral data. These challenges are further compounded by their 

computational demands and susceptibility to errors in anomaly 

localization, which limits their effectiveness in practical 

applications.  To address these limitations, Huang et al. [29] 

proposed a novel architecture based on Masked Autoencoders 

(MAE). This approach leverages a masking mechanism and the 

Multi-Head Self-Attention (MHSA) framework to enhance the 

model's ability to focus on reconstructing critical features of 

normal data, improve anomaly detection and localization 

accuracy, and ensure robustness across diverse datasets and 

noise conditions.  

Additionally , Qi et al. [12] introduced the Unsupervised 

Deep Memory Autoencoders (UDMA) framework, which 

enhances traditional autoencoder methods using a teacher-



 

 

student architecture with memory modules and knowledge 

distillation. A teacher extracts features from normal signals, 

while two student networks (one memory-based) learn to 

replicate these outputs. Anomalies are detected based on 

discrepancies between teacher and students. UDMA achieved 

over 85% recall even under low SNR conditions. Similarly, 

Kuang et al.[65] introduced an Improved Memory-Augmented 

Autoencoder (IIMemAE) to detect abnormal signals. It 

integrates an encoder-decoder structure, a memory module for 

normal pattern storage, and a refined anomaly detection method 

(parametric Pauta criterion). The model achieved a high AUC 

of 95.49%, effectively handling imbalanced datasets and 

redundant spectrogram information. 

Another approach to capturing dependencies among data is 

the use of attention mechanisms, which are considered a type 

of memory-based architecture. In this context, Liu et al. [49] 

proposed an unsupervised VAE-based model with an adaptive 

attention mechanism to detect spectrum anomalies from one-

dimensional PSD data. The model suppresses noise floor 

effects and enhances signal features using learned thresholds 

and attention weights, and it outperformed E-GAN, especially 

in low ISR scenarios. 

The probability of detection at a fixed Probability of false 

alarm is commonly used as a performance metric for evaluating 

reconstruction-based spectrum anomaly detection methods. 

Accordingly, Table IV provides a comparative analysis of 

various approaches, highlighting their respective advantages 

and limitations. Based on this comparison, several practical 

implications can be identified: 

Detection Performance vs. Complexity: Recent autoencoder 

designs increasingly employ attention mechanisms and 

memory modules, yielding higher detection accuracy, 

especially under low SNR and imbalanced data. However, these 

gains come with greater computational cost and tuning 

requirements. 

Pre-processing-Impact of Input Representation: 

Employing advanced time-frequency representations, such as 

the SPWVD used by Kuang et al. [65]  or spectrograms as in 

Zhou et al. [32], facilitates the extraction of hidden signal 

patterns, thereby improving anomaly detection performance. 

Nonetheless, these approaches require computationally 

intensive pre-processing steps. Simpler input forms, for 

example, direct PSD inputs, reduce pre-processing overhead 

and enable faster implementations but may slightly 

compromise sensitivity to specific anomaly types. 

Robustness to Noise and Interference Suppression Ratio 

(ISR) Conditions: Models integrating attention 

mechanisms[29] or memory modules [65] demonstrate 

enhanced capability to differentiate anomalies from noise, 

contributing to more stable performance in realistic 

environments characterized by low ISR. Similarly, the 

diffusion-based approach in AE-DDPM[66] exhibits superior 

noise resilience and greater stability compared to GAN-based 

models, owing to its probabilistic generative framework in the 

latent space. 

Thresholding Strategies and Anomaly Scoring: 

Determining optimal anomaly detection thresholds remains a 

fundamental challenge. Dynamic thresholding methods[13, 

50], leverage statistical properties of reconstruction errors (e.g., 

standard deviation or median error) derived from training data. 

More advanced models[29, 66], utilize hybrid scoring 

mechanisms combining reconstruction error with attention-

weighted metrics or learnable thresholds, enhancing 

adaptability to novel data distributions. 

Model Scalability and Real-World Applicability: 

Autoencoder variants like AAE or VAE feature modular 

architectures conducive to scalability and generalization across 

diverse datasets and operational contexts. Conversely, GAN- or 

diffusion-based models demand higher computational 

resources, posing challenges for real-time deployment and 

implementation on hardware with limited capabilities. 
 

TABLE IV 

Comparison of Deep Learning Models for Reconstruction-based Anomaly Detection

Reference Model  Pre-processing Pd /Recall(%) Strengths Limitations  

Feng et al. [50] Autoencoder  STFT  - Dynamic threshold  

Sensitive to threshold 

selection, requires 
fine tuning 

Rajendran et al. [13] AAE 
PSD of synthetic 

and real signals 

> 80% at a constant false alarm 

rate of 1% 
Dynamic threshold 

Model complexity, 

dependency on 

threshold parameters 

Zhou et al. [32] E-GAN Spectrogram  

75-95 at a constant false alarm 

rate of 0.01% 

Improved over Basic AE, 
Combines reconstruction and 

discriminator errors, detects 

multiple jammer types 

Sensitive to training 

data, training 
complexity 

85-98 at a constant false alarm 
rate of 0. 1% 

95-100 at a constant false alarm 

rate of 1% 

Close to at a constant false alarm 
rate of 10% 

Toma et al. [58] 

Conditional 

GANs and 
VAE + 

Stockwell 

Transform 

mmWave data 
with generalized 

state vectors 

- 
Improved over Basic AE, 
Balance between accuracy and 

speed, diverse models,  

Complexity and 

resource intensive 

Zeng et al.[66] AE-DDPM  
PSD + I/Q 

sequences 
- 

Improved over Basic AE, More 
stable, lower resource 

consumption 

Requires fine tuning, 

relatively new model 
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Huang et al. [29] MHSA Spectrogram 
87.99% at a constant false alarm 

rate of 5% 

Memory-Based Mechanism  

Enhanced ,Focus on important 

features 

Computational 

complexity 

Qi et al. [12] UDMA 
Spectral and 
time-frequency 

data 

Close to100 at a constant false 

alarm rate of 1% for the ISR>0dB 

Memory-Based Mechanism  
Enhanced ,Teacher-student 

architecture, robust to noise 

Model complexity, 
requires careful 

training 

Kuang et al.[65] IIMemAE SPWVD 
70-85 at a constant false alarm 

rate of 1% for the ISR>0dB [12] 

Memory-Based Mechanism  
Enhanced , Reduces redundant 

information, high performance 

on imbalanced data 

High complexity, 

heavy pre-processing 

Liu et al. [49] 

VAE + 

adaptive 

attention 
mechanism 

One-dimentional 

PSD  

Close to100 at a constant false 

alarm rate of 1% for the ISR>0dB 

Memory-Based Mechanism  

Enhanced , High sensitivity, 

superior performance in low 
ISR noise 

Model complexity 

D.  Segmentation-Based Anomaly Detection 

Segmentation is a process in which the input is divided into 

distinct regions, with each region representing an object or area 

whose components share similar characteristics. This approach 

not only identifies the presence of objects but also pinpoints 

their boundaries. In contrast to classification, which assigns a 

single label to an entire input (e.g., an image or a spectrogram), 

segmentation operates at a finer granularity by classifying each 

individual pixel or element of the input into one of the 

predefined classes. The input and output of a deep learning 

model for segmentation tasks typically have identical 

dimensions, ensuring that each element of the input is mapped 

to a corresponding classification in the output. Commonly, 

encoder-decoder architectures are utilized to address such tasks 

due to their ability to capture hierarchical features while 

maintaining spatial or spectral resolution. 

While object detection models estimate the approximate 

range of signals, segmentation methods provide more precise 

localization and classification of signals. For spectrum anomaly 

detection task, it is possible to use a hybrid approach based on 

reconstruction and segmentation. For example, Peng et al. [45] 

proposed a spatio-temporal framework that integrates CNNs 

and LSTM modules to predict spectrum data and identify 

anomalies. The proposed approach processes the historical 

spectrum data at multiple timescales (e.g., short-term, hourly, 

daily) using a sliding window technique and employs deep 

networks to learn spatio-temporal features. Although the 

primary task focuses on prediction, the framework indirectly 

resembles segmentation by mapping each frequency-time 

segment of the spectrum to either normal or anomaly. By 

combining aspects of reconstruction  and segmentation, this 

hybrid model achieves robust and precise anomaly detection, 

demonstrating superior performance in multi-signal, wideband 

spectrum sensing scenarios. 

VI. ANALYSIS OF SPECTRUM ANOMALY DETECTION 

APPROACHES 

A.  Comparison of Methods 

Table V provides a summary of research conducted on 

spectrum anomaly detection. In deep learning applications, it is 

crucial to first define the problem-solving approach, whether 

classification, segmentation, or object detection, and then select 

models that align with the chosen method. As highlighted in 

Table V, spectrum anomaly detection can be approached 

through various methodologies. Reconstruction-based method 

[12, 13, 29, 32, 49, 50, 58, 65, 66] approaches are predominant 

in the literature, as they enable models to identify and localize 

unknown anomalies. A significant challenge in these methods 

lies in selecting an optimal threshold. Consequently, as 

previously discussed, several studies have proposed dynamic 

thresholding techniques to address this issue. Alternatively, for 

classifying known anomalies such as tone, multi-tone, and 

chirp, methods based on object detection[51, 55], classification 

[18, 19, 27, 40-42, 46, 52-54, 62], recognition[28], or 

segmentation are more suitable. Among these, models for 

segmentation [45] and object detection [51, 55, 63] provide the 

benefit of enabling both localization and classification of 

anomalies simultaneously. 

From another perspective, classification and recognition-

based methods are more effective for detecting anomalies in 

narrowband spectrum sensing. Conversely,  segmentation, and 

object detection approaches are more appropriate for wideband 

spectrum sensing scenarios, where multiple communication 

signals and anomalies may occur simultaneously. 

Comparisons indicate that in spectrum anomaly detection 

across classification, reconstruction, and other approaches, 

models based on convolutional neural networks have 

dominated due to their effective feature extraction. Recently, 

memory-based models utilizing attention mechanisms have 

attracted significant interest because they better capture long-

term dependencies and complex temporal patterns in spectral 

data, leading to improved detection of subtle and dynamic 

anomalies. 
 

TABLE V 

Summary of Spectrum Anomaly Detection Studies Using Deep Learning 

Reference Year Approch Model Anomaly Dataset Avalibity 

Feng et al. [50] 2017 Reconstruction Deep Autoencoder Unknown  ✖Real  



 

 

Kulin et al.[18] 2018 Classification 
CNN with two convolutional layer, and two fully connected 

layer 
Known  

✔ Real[78] 

 

Davaslioglu et al. [40] 2019 Classification 
The features extracted from the denoising autoencoder are fed 

into the CNN and FNN 
Known  ✖Synthetic 

Morales Ferre et al. [27] 2019 Classification 
CNN with one convolutional layer, and one fully connected 

layer, and SVM 
Known  ✔Synthetic 

Rajendran et al. [13] 2019 Reconstruction Adversarial Autoencoders Unknown  ✖Synthetic 

Toma et al. [58] 2020 Reconstruction Conditional GAN, and Variational Autoencoder Unknown  ✖Real 

Ujan et al.[62] 2020 Classification 
Pretrained CNNs including AlexNet[65], GoogleNet[79], 

ResNet18[68], VGG16[67] 
Known  ✔ Real  

Ujan et al. [46] 2020 Classification Multilayer perceptron Known  ✔ Real  

Zhou et al. [32] 2021 Reconstruction Generative Adversarial Network Unknown  ✖ Synthetic 

Bhatti et al. [19] 2021 Classification VGG [67], ResNet[68] Known  ✖Real 

Qin et al. [55] 2022 Object detection 
Combined backbone-based CSPDarknet with Neck-based 

APNet 
Known  ✖ Synthetic 

Xu et al. [41] 2022 Classification CNN Known  ✖Real  

Kuang et al.[65] 2022 Reconstruction IMemAE Unknown  ✖ Synthetic 

Peng et al. [45] 2022 
Reconstruction 

and segmentation 
Combining CNNs and LSTM networks Known  ✖ Synthetic 

Huang et al. [29] 2023 Reconstruction Masked Autoencoders Unknown  ✖Real  

Swinney et al.[54] 2023 classification 
VGG-16 for the feature extraction,  

k-means for classification 
Known  ✔ Synthetic 

Zeng et al. [66] 2023 Reconstruction AE-DDPMs Unknown  ✖ Synthetic 

Liu et al. [28] 2023 Recognition DenseNet[80] Known  ✖ Synthetic 

Reda et al.[42] 2023 Classification BiLSTM-Attention Known  ✔ Real  

Qi, et al. [12] 2024 Reconstruction Unsupervised Deep Memory Autoencoders Unknown  ✖ Synthetic 

Jiang et al. [53] 2024 Classification CNN, VGG16[67] Known  ✔Synthetic [27] 

Steiner et al.  [52] 2024 Classification ResNet models Known  ✖Real  

El-Haryqy et al. [63] 2024 Object detection Mask R-CNN Known  [62] 

Liu et al. [49] 2024 Reconstruction VAE with Adaptive Attention Unknown  ✖Real  

Kim et al. [51] 2024 Object Detection YOLOv11, RT-DETR, CenterNet Known  ✔ Real+Synthetic 

B.  Current Challenges & Future Directions 

One of the critical challenges in applying deep learning 

models for spectrum anomaly detection is obtaining a diverse 

and high-quality dataset for effective model training. Table V 

presents a comparison of existing datasets based on two key 

factors: availability and the nature of the data (real or synthetic). 

As illustrated, the majority of existing studies rely on 

synthetically generated datasets, primarily due to the low 

probability and random nature of real anomaly occurrences, 

which make it difficult to collect large-scale labeled real-world 

data. This limitation significantly hampers the empirical 

validation of detection algorithms. Even in the dataset 

introduced by Kim et al. [51] where real-world signals were 

captured, the anomalies themselves were synthetically injected 

into the data stream. Detailed of available datasets is provided 

in Table VI. As can be observed, the dataset introduced in [51] 

demonstrates remarkable scale and diversity, featuring IQ and 

spectrogram data across various LTE/5G bands, realistic 

Extended Typical Urban (ETU)  fading conditions, and a 

variety of anomalies such as tone, chirp, and pulse. Notably, 

one of its unique features is the inclusion of wideband signals, 

emphasizing a focus on wideband scenarios. In contrast, other 

datasets such as those by Swinney et al.  [54], Ujan et al. [46, 

62], and Morales Ferre et al. [27]primarily focus on narrowband 

GNSS or DVB-S2 signals and feature fewer anomaly types, 

often limited to CWI, MCWI, or chirp jammers. The dataset 

introduced by Kulin et al.[18], while offering broader frequency 

coverage and a larger sample volume, was not designed for 

localization tasks. 

This comparison underscores the need for future datasets to 

incorporate a broader range of anomaly types, alongside both 

narrowband and wideband communication signals, in order to 

better reflect the complexity of real-world spectrum 

environments. Specifically, the ability to distinguish between 

narrowband anomalies and legitimate narrowband 

communications, and similarly between wideband anomalies 

and wideband communications, represents a 

fundamentalchallenge for spectrum monitoring and awareness 

systems. Addressing this challenge requires datasets that 

capture both types of signals in realistic and dynamic 

environments. 

Future research can extend into the domain of wideband 

spectrum monitoring, where a variety of signals with differing 

bandwidths may coexist with spectral anomalies. In this 

context, segmentation-based and object detection methods can 

be explored to differentiate anomalies from legitimate signals 

and to localize them across a wideband range. 

Another limitation of current research is the lack of attention 

to post-detection analysis of anomaly behavior. Understanding 

characteristics such as periodicity, persistence, recurrence 

patterns,and amplitude variations,  can significantly contribute 

to a deeper understanding of anomaly nature, distinguishing 

between transient and persistent anomalies, and making more 

informed and effective decisions.  
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VI. CONCLUSION 

This paper provides a comprehensive review of the 

application of deep learning in spectrum anomaly detection, 

with an emphasis on pre-processing techniques and problem-

solving strategies. The analysis highlights that pre-processing 

methods, such as spectrograms, despite their computational 

cost, offer valuable time-frequency information that is essential 

for effective anomaly detection. Furthermore, the study 

underscores the versatility of deep learning approaches, 

including classification, object detection, reconstruction, and 

segmentation, which can be tailored to specific application 

requirements. Building on these findings, the paper emphasizes 

the need for future research to address several critical areas. 

Enhancing the efficiency of pre-processing methods, such as Q-

spectrogram, can further reduce computational demands while 

maintaining high-resolution outputs. Additionally, advancing 

deep learning models to better handle dynamic and low-SNR 

environments can improve their robustness in real-world 

scenarios.  
 

 

 

 

TABLE VI 

Comparison of Available Datasets for Deep Learning-Based Spectrum Anomaly Detection 

Kim et al. [51] 
Swinney et al. 

[54] 
Ujan et al.[62] Ujan et al. [46] 

Morales Ferre et 

al. [27] 
Kulin et al.[18] Characteristics 

IQ Data, Spectrogram 

Combined 
image views 

(Spectrogram, 

Histogram, etc.) 

Feature vector Scalogram image 
Spectrogram 

Image 

IQ, 

Amplitude/Phase, 
Frequency 

Data Type 

IQ Vectors  
Concat image 
(224×224) 

I/Q vector 
RGB Image 
(224×224) 

Grayscale  
(512×512) 

Vector (2×128), 
Time-Frequency 

Data Format Spectrogram: RGB 

Image (400×400) 

190,000 ~600 4,800 4,800 61,800 225,225 
Number of 

Samples 

SingleTone, Chirp, 

Pulse 

AM, FM,  

Chirp, Pulse, 

Narrow Band 
jamming 

CWI, MCWI, Chirp 
CWI, MCWI, 

 Chirp 

AM, FM,  
Chirp, Pulse, 

Narrow Band 

Technology 
interference 

(WiFi, BT, etc.) 
Anomaly Type 

19 LTE & 5G bands 

( 862 MHz to 3712 

MHz) 

GNSS 
DVB-S2 (Satellite, 

40 MHz sampling) 

DVB-S2 

(Satellite, 40 MHz 

sampling) 

GNSS L1 (~1.5 

GHz) 
ISM (2.4 GHz) Frequency Band 

ETU fading model,  

SNR= –10 to +10 dB, 
ISR= –10 to +10 dB 

AWGN,  

Fixed SNR, 
JSR=40–80 dB 

SNR ≈ 9dB,  

JSR = 5–8dB 

SNR ≈ 9 dB, 
AWGN = –140 

dBm, 

JSR = 5–8 dB 

SNR = 25–50 dB,  

JSR = 40–80 dB 

Random SNR, 

synthetic fading, 
channel models 

Conditions / 

Impairment 
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