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Abstract 

Drying is a vital preservation method in the food industry, reducing moisture content while maintaining 
product quality and extending shelf life. This process involves complex heat and mass transfer mechanisms, 
necessitating accurate predictive models. This study compares various modeling approaches, including 
regression models, semi-empirical, and artificial intelligence (AI)-based methods, to simulate the drying process 
of potato slices. Experimental drying trials were run at 40°C, 50°C, and 60°C, both with and without phase 
change materials (PCM) and infrared radiation (IR). AI models (ANN, SVM, and RF) were trained and validated 
using experimental data. Their performance was evaluated against conventional and semi-empirical models 
using R2, RMSE, MAE, and MBE. Results indicate that ANN achieved the highest predictive accuracy (R2= 
0.998, RMSE= 0.0656 g water g-1 dry matter), outperforming other models. SVM also demonstrated strong 
predictive capability, while RF performed slightly lower. Among semi-empirical models, the Midilli model 
provided the best fit but was less accurate than AI-based models. These findings highlight the superiority of AI-
driven approaches, particularly ANN, in optimizing drying processes for the food industry. 
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Introduction 

Drying is a widely used preservation 
technique used in the food and agricultural 
industries, aiming to reduce moisture content 
while preserving product quality and 
extending shelf life. The drying process is 
inherently complex, involving simultaneous 
heat and mass transfer, which makes 
mathematical modeling essential for 
optimizing drying conditions and improving 
energy efficiency. Over the years, researchers 
have developed various empirical, semi-
empirical, and theoretical models to explain 
the drying kinetics of different products. 
Empirical models, such as the Page, 
Henderson-Pabis, and Newton models, are 
popular because of their simplicity and ability 
to fit experimental data (Lopes, Santos, 
Rodrigues, Pinho, & Viegas, 2023; Simpson, 
Ramírez, Nuñez, Jaques, & Almonacid, 2017). 
In a study on thin-layer drying models for 
rapeseed, the Page model demonstrated the 
best performance, with an R2 value ranging 
from 0.9924 to 0.9966 and an RMSE between 

0.0169 and 0.0296 (Lee, Lee, Kim, Kim, & 
Han, 2016). However, these models lack a 
strong physical foundation and are limited to 
specific experimental conditions. Semi-
empirical models, including the Logarithmic 
and Wang-Singh models, attempt to bridge the 
gap between empirical and theoretical 
approaches by incorporating some physical 
principles while maintaining a simple 
mathematical form (Kutlu, İșcİ, & Demİrkol, 
2015). Semi-empirical modeling of thin-layer 
drying has been extensively studied. Ertekin 
and Firat (2017) provided a comprehensive 
review of these approaches, while 
Chukwunonye, Nnaemeka, Chijioke, and 
Obiora (2016); Mahesh, Rengaraju, and 
Selvakumarasamy (2024); Kumar, Kumar, 
Hota, and Pandey (2025); and Benseddik, 
Azzi, and Allaf (2018) explored specific 
applications across diverse agricultural 
products. For example, in one study, a semi-
empirical model based on Fick's second law 
was developed, achieving a coefficient of 
determination (R2) between 0.991 and 0.999, 
with a mean absolute error (MAE) ranging 
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from 0.008 to 0.032 (Kumar et al., 2025). 
Similarly, in another study on the thin-layer 
drying of pumpkin slices, various semi-
empirical models were tested, with the Midilli 
model showing the highest accuracy for 
predicting the moisture content of apple slices 
(Benseddik et al., 2018). However, semi-
empirical models are not universally 
applicable and require fitting to specific 
experimental conditions.  Mathematical 
models derived from Fick's second law of 
diffusion provide a more fundamental 
understanding of the drying process, assuming 
moisture movement occurs through internal 
diffusion. These models are commonly applied 
to food materials with homogeneous 
structures. For more complex structures, 
researchers have extended these models using 
numerical techniques and computational fluid 
dynamics (CFD) simulations to enhance 
accuracy (Pham, Shrivastava, & Karim, 2021). 
In recent years, Machine Learning (ML) and 
artificial intelligence (AI) models, such as 
Support Vector Machines (SVM), Artificial 
Neural Networks (ANN), and Random Forest 
(RF), have gained attention for predicting 
drying kinetics with high accuracy (Kaveh, 
Abbaspour-Gilandeh, & Emadi, 2020; Zhang, 
Wang, & Zhu, 2019). These models can 
capture complex nonlinear relationships 
between drying parameters without relying on 
explicit physical assumptions. Despite their 
advantages, the application of AI models 
presents several challenges. These models 
generally require large, diverse datasets to 
minimize the risk of overfitting and to promote 
generalizability. Furthermore, models such as 
artificial neural networks (ANNs) are often 
considered "black boxes," as they provide 
limited transparency regarding their internal 
decision-making processes. Effective 
hyperparameter tuning and rigorous validation 
procedures are also critical to enhance model 
robustness and ensure reliable performance in 
real-world scenarios. In another study, the 
drying kinetics of solid wastes were modeled 
using both artificial neural networks (ANN) 
and semi-empirical models, with ANN 
demonstrating the most accurate simulation 

results (Perazzini, Freire, & Freire, 2013). 
Similarly, another study examined the thin-
layer drying of tea leaves using various semi-
empirical and AI-based models. The results 
showed that multilayer perceptron networks 
achieved the highest accuracy (Fathi, 
Roshanak, Rahimmalek, & Goli, 2016). This 
study aims to compare different mathematical 
models, including semi-empirical, regression, 
and AI-based methods, for simulating the 
drying kinetics of potato slices. The novelty of 
this research lies in the comparative analysis 
of AI-based methods (ANN, SVM, RF) and 
traditional models under varying drying 
conditions, demonstrating the superior 
predictive capability of AI in optimizing 
drying processes. By highlighting the strengths 
and limitations of each modeling approach, 
this study contributes to the growing body of 
knowledge on drying process optimization, 
with potential applications in food 
preservation, quality control, and energy-
efficient drying technologies. 

 

Materials and Methods 

Sample preparation 

Fresh potatoes (Solanum tuberosum L.) 
were procured daily from local markets to 
ensure consistent freshness and quality. The 
tubers were washed under running tap water, 
manually peeled, and sliced to a uniform 
thickness of 1.00± 0.05 mm using a precision 
slicer. Each experiment utilized approximately 
60 g of fresh potato sample, with the initial 
mass measured using a high-precision balance 
(A&D GR-202, readability: 0.001 g). Initial 
moisture content (wet basis) was determined 
via oven-drying method by placing about 10 g 
of each sample in a forced convection oven 
(BMS55, Fan Azma Gostar, Iran) at 105 °C for 
24 hours, following AOAC method 934.06 
(AOAC International, 2000). 

 
Solar dryer 

The solar dryer used in this study was a 
custom-built hybrid system designed to 
provide controlled drying conditions for 
agricultural samples. It consisted of a 
compound parabolic collector (CPC), a 



Raesi et al., Comparative Modeling of Drying Kinetics for Potato Slices …     ? 

temperature regulation unit, an equalizing 
chamber, a forced convection fan, a heating 

channel, a diffuser, and a drying chamber, as 
illustrated in Figure 1.  

 
Fig.1. Schematic of the drying system 

 

The CPC collector had an effective aperture 
area of 2.4 m2 and a concentration ratio of 2.5. 
It was equipped with matte black-coated 
aluminum absorber tubes to enhance solar heat 
absorption. Polished stainless-steel reflectors, 
each 0.4 cm thick, were used to concentrate 
incident solar radiation onto the absorber 
tubes. The entire collector was installed at a 
45-degree angle, matching the latitude (30° N) 
of the experimental site located at Shiraz 
University, to maximize solar gain throughout 
the day (Duffie, Beckman, & Blair, 2020). 
Solar energy served as the primary heat 
source, while a 1.5 kW auxiliary electric 
heater provided supplemental heating during 
periods of reduced solar radiation. The heater 
was activated when solar energy alone was 
insufficient to maintain the set drying 
temperature and was installed downstream of 
the air flow path to avoid interfering with solar 
collection. 

Airflow was managed by a motorized 
damper controlled via a stepper motor 
(Ts310n247, torque: 6.5 kg·cm), which 
adjusted airflow based on target temperature 
input. Air circulated through the system using 
a centrifugal fan (Techtop, 0.4 kW, Italy), 
which delivered a consistent airflow of 2 
meters per second, measured at the fan inlet 
using a Testo 435 anemometer with an 
accuracy of ±0.03 m s-1. 

An equalizing chamber, constructed from 
particle board and measuring 30 × 50 × 70 cm, 

was installed after the heating section to 
stabilize and distribute air evenly before 
entering the drying chamber. Inside the drying 
chamber, a mesh drying tray (25 × 25 cm, 
galvanized sheet metal) held the potato slices, 
and an IR lamp (250 W, Philips) was 
positioned 30 cm above the tray surface to 
provide additional thermal radiation during 
selected treatments. 

Real-time mass loss during drying was 
tracked using a load cell (model L6D, Class 
C3, 3 kg capacity), installed beneath the 
drying tray. The load cell was connected to a 
data acquisition system that logged mass data 
at 30-second intervals, enabling accurate 
monitoring of drying progress. Drying 
continued until the samples reached a final 
moisture content of approximately 10% on a 
dry basis. 

Phase change materials were used in select 
experiments to investigate their thermal 
storage effect. A total of 1500 g of paraffin 
wax (melting point approximately 56°C and 
latent heat of about 190 kJ kg-1) was melted 
and divided into ten aluminum containers, 
each holding 150 g. These containers were 
placed uniformly at the base of the drying 
chamber beneath the drying tray to absorb and 
release thermal energy, helping to stabilize 
temperature fluctuations during the drying 
cycle. 

 
Temperature control system 
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A temperature controller (XMT-803, 
China) automatically regulated the drying 
chamber’s temperature. The system included 
an SSR relay (25DA, CRYDOM) and a PT100 
sensor (±0.1°C accuracy). Ten temperature 
sensors were installed throughout the setup, 
while an SHT15 sensor (±0.05% RH, ±0.1°C 
accuracy) measured humidity changes before 
and after the drying chamber. Air velocity was 
set at 2 m s-1 at the fan inlet (182 cm2 cross-
sectional area) and monitored using a Testo 
435 anemometer (±0.03 m s-1 accuracy). 

 
Experimental design 

The experiments were conducted to assess 
the combined effects of air temperature, 
infrared (IR), and phase change materials 
(PCM) integration on the drying behavior of 
potato slices. A factorial design with three 
variables was used, including three levels of 
air temperature (40°C, 50°C, and 60°C), two 
levels of IR radiation (with and without a 250-
watt IR lamp), and two levels of PCM use 
(with and without PCM). This resulted in 12 
distinct treatment combinations. Each 
treatment was replicated three times following 
a completely randomized design, resulting in 
36 experimental runs in total. Drying 
continued until the samples reached a final 
moisture content of approximately 10% on a 
dry basis, as determined by the stabilization of 
mass readings. The resulting data were 
analyzed using analysis of variance (ANOVA) 
with a significance level of 0.05. When 
significant differences were detected, means 
were separated using Tukey’s honest 
significant difference (HSD) test. All statistical 
analyses were performed using SPSS version 
25. 

 
Mathematical modeling 

In this study, three categories of models 
were developed to simulate the drying kinetics 
of potato slices: (1) machine learning (ML) 
models, (2) regression models (linear and non-
linear), and (3) empirical and semi-empirical 
models.  

 
Machine learning (ML) methods 

To model and predict the drying kinetics of 

potato slices, three supervised machine 
learning algorithms were employed: Support 
Vector Machine (SVM), Artificial Neural 
Network (ANN), and Random Forest (RF). 
These models were selected for their proven 
ability to capture complex, nonlinear 
relationships between input variables and 
target outputs, especially in regression tasks 
related to food processing and drying kinetics. 

In this study, the following input features 
were used for all ML models: drying 
temperature (°C), drying time (s), presence of 
infrared (IR) radiation (binary: 0= absent, 1= 
present), and presence of PCM (binary: 0= 
absent, 1= present). The target output variable 
for prediction was the moisture content of the 
potato slices, expressed on a dry basis. 

 
Model assumptions 

• The drying process was conceptualized as 
a functional mapping from a set of input 
features, namely drying temperature, 
time, presence of IR radiation, and 
presence of PCM, to the corresponding 
moisture content. Although moisture 
content naturally evolves in a continuous, 
time-dependent manner, each observation 
in the dataset was treated as an 
independent instance for the purposes of 
supervised learning. This approach 
enables the models to estimate moisture 
content at any given time point based 
solely on current experimental conditions, 
without incorporating sequential 
dependencies. 

• Temporal dynamics were not explicitly 
modeled; instead, the machine learning 
models operated under the assumption 
that the moisture content at each time step 
could be predicted independently of 
previous values. This simplification 
facilitates the use of standard regression 
models and reduces computational 
complexity, while still achieving high 
predictive accuracy within the controlled 
experimental setup. 

• External environmental factors, such as 
variations in ambient humidity or solar 
radiation, were considered negligible or 
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effectively controlled. This assumption is 
supported by the presence of an 
automated temperature control system 
and an auxiliary electric heater, which 
together maintained stable thermal 
conditions across all experiments. 

ANN was chosen for its ability to model 
complex patterns through multiple hidden 
layers. The network architecture comprised 
three hidden layers with 64, 32, and 16 
neurons, respectively. The hidden layers 
utilized the Rectified Linear Unit (ReLU) 
activation function, while the output layer 
employed a linear activation function. The 
model was trained with the Adam optimizer, 
employing a learning rate of 0.001 and a batch 
size of 32. The selected network architecture 
was determined based on practical constraints 
related to dataset size and model performance. 
Given the limited number of experimental 
samples, deeper architectures with more layers 
or neurons were avoided to reduce the risk of 
overfitting. Consequently, a relatively shallow 
configuration was adopted. The final 
architecture (64–32–16) was established 
through an iterative trial-and-error process, 
during which various configurations were 
evaluated and validated. This particular setup 
achieved an effective balance between model 
complexity and generalization capability, as 
evidenced by cross-validation performance. 

SVM was selected for its robustness in 
high-dimensional spaces. It effectively 
captures nonlinear relationships through kernel 
functions. A radial basis function (RBF) kernel 
was employed, with hyperparameters 
including a regularization parameter (C) of 
100, an epsilon value of 0.01 to define the 
regression margin, and a gamma value of 0.1. 

RF was included as an ensemble learning 
method to enhance generalization and reduce 
variance. The model was trained using 100 
decision trees, with a minimum of two samples 
per split to prevent overfitting. 

Prior to model training, all input features, 
including temperature, drying time, infrared 
radiation, and the presence of PCM, were 
standardized to ensure optimal model 

performance. Standardization was performed 
using the transformation Equation (1) to center 
the data around zero with unit variance 
(Kelleher, 2019): 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝜇

𝜎
                                                (1) 

where X represents the original feature 
value, μ denotes the mean, and σ represents the 
standard deviation of the feature. 

To ensure robust model performance and 
generalization, the dataset was split into a 
training set (80%) and a test set (20%). 
Furthermore, ten-fold cross-validation was 
performed on the training set, where it was 
randomly partitioned into ten subsets. Each 
model was trained on nine subsets and verified 
on the remaining one, with this process 
repeated ten times. The final performance was 
averaged across all iterations, and the best 
hyperparameters were selected during this 
process. Model performance was subsequently 
tested on the test set to evaluate its 
generalization capability, reducing the risk of 
overfitting and providing a reliable accuracy 
estimate. 

Model performance was assessed using 
multiple statistical metrics: the coefficient of 
determination (R2) indicates how well the 
predicted values align with actual values; 
RMSE (g water g-1 dry matter) quantifies the 
average value of prediction errors; mean 
absolute error (MAE, g water g-1 dry matter) 
measures the total discrepancies between 
predicted and observed values; and mean bias 
error (MBE, g water g-1 dry matter) evaluates 
any systematic over- or underestimation. 
Lower RMSE and MAE values signify higher 
accuracy, while an R2 value closer to one 
indicates a stronger model fit. The complete 
workflow of the ML models is summarized in 
Figure 2, which demonstrates the steps 
involved from gathering and preparing data to 
choosing a model and assessing its 
performance. By integrating these ML 
techniques, this study aimed to develop 
accurate and reliable predictive models for 
drying kinetics. 
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Fig. 2. The workflow of ML models for drying kinetics 

 

Linear and non-Linear regression 

Linear regression assumes a direct linear 
relationship between the dependent variable 
(moisture content) and the independent 
variables (time, temperature, PCM, and IR). In 
contrast, non-linear regression uses an 
exponential equation to model the relationship 
between moisture content and the independent 
variables, capturing more complex patterns in 
the data. 

 
Empirical and semi-empirical models 

Empirical models are based solely on 
experimental data fitting without requiring a 
strong physical foundation. These models are 
developed by analyzing experimental drying 

data and identifying the mathematical 
equations that best describe moisture loss. In 
this study, commonly used models, such as 
Newton, Page, Modified Page, Two-Term, 
Exponential Two-Term, Logarithmic, Midilli, 
and Approximation of Diffusion, were applied 
to represent the moisture ratio as a function of 
drying duration. 

 

Results and Discussion 

Drying rate 

The drying rate of potato slices was 
calculated under different operating conditions 
(Figures 3 to 5).  

 

 
Fig. 3. Drying rate vs. time under different conditions at 40°C 
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Fig. 4. Drying rate vs. time under different conditions at 50°C 

 

 
Fig. 5. Drying rate vs. time under different conditions at 60°C 

 
The average slope of each drying curve is 

presented in Table (1), from which the 
following insights were derived: 

 
1. Effect of Temperature on Drying rate: 

As temperature increases from 40°C to 
60°C, the slope of the drying curves rises, 
indicating a higher drying rate. This trend 
is expected, as higher temperatures 
enhance moisture evaporation from the 
sample surface. Specifically, under no 
PCM & no IR conditions, the slope 
increases from 0.006249 at 40°C to 

0.00817 at 60°C. Similarly, under PCM & 
IR conditions, the slope rises from 
0.009217 at 40°C to 0.01671 at 60°C. 
These results confirm that increasing 
temperature significantly accelerates the 
drying process. 

2. Effect of PCM: PCM serves as a thermal 
stabilizer, reducing temperature 
fluctuations and influencing the drying 
rate. In most cases: with PCM but without 
IR, the drying rate is slightly higher than 
without PCM. For example, at 60°C, the 
slope is 0.009267 with PCM compared to 
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0.00817 without PCM. Previous studies 
confirm the effectiveness of PCM in 
improving drying performance. 
Rakshamuthu et al. (2021) reported that 
PCM increased the drying rate of 
gooseberries in a solar dryer. Similarly, 
other researchers illustrated that PCM 
enhances dryer efficiency (Atia, Teggar, 
& Laouer, 2024; Poonia, Singh, & Jain, 
2022; Madhankumar, Viswanathan, Wu, 
& Taipabu, 2023). With both PCM and IR 
combined, the drying rate is higher than 
when PCM is absent. At 60°C, the slope is 
0.01671 with PCM & IR, compared to 
0.014512 without PCM & IR. These 
findings suggest that PCM is more 
effective when combined with IR, leading 
to a more efficient drying process. 

3. Effect of IR radiation: At all temperature 
settings, the addition of IR significantly 
increases the drying rate. For example, at 
40°C without PCM, the slope increases 
from 0.006249 (without IR) to 0.011295 
(with IR). Similarly, at 60°C without 
PCM, the slope rises from 0.00817 
(without IR) to 0.014512 (with IR). This 
increase is attributed to the deeper 
penetration of infrared energy into the 
samples, accelerating moisture 

evaporation. However, a significant 
difference observed at 50°C can be 
attributed to the pronounced effect of 
infrared (IR) radiation at this temperature. 
At 40°C, although IR has a positive 
impact, the lower thermal potential of the 
drying air limits its effectiveness, and 
therefore, no sharp increase is observed in 
the IR curves. At 60°C, despite the high 
thermal potential of the air, the influence 
of IR appears to be limited, likely due to 
increased internal moisture diffusion 
resistance within the potato slices, which 
restricts further enhancement of the drying 
rate. 

4. Comparison of PCM and IR effects: IR 
has a stronger impact on the drying rate 
compared to PCM, as seen in the larger 
differences in slope between IR and non-
IR conditions. The combination of PCM 
and IR yields the highest drying rate. For 
example, at 60°C, the highest slope 
(0.01671) is observed under PCM & IR 
conditions. 

For optimal drying performance, a 
combination of IR and PCM is recommended, 
as it maximizes the drying rate while 
maintaining thermal stability. 

 
Table 1- Slopes of drying rate curves under different conditions 

Experiment Slope of curves 

40C PCM & IR 0.009217 

40C PCM & No IR 0.006651 

40C No PCM & No IR 0.006249 

40C No PCM & IR 0.011295 

50C PCM & IR 0.014438 

50C PCM & No IR 0.007337 

50C No PCM & No IR 0.006689 

50C No PCM & IR 0.013814 

60C PCM & IR 0.01671 

60C PCM & No IR 0.009267 

60C No PCM & No IR 0.00817 

60C No PCM & IR 0.014512 

 
Mathematical modeling 

After developing the ML, empirical, and 
semi-empirical models, validation was 
conducted, yielding the following results. 

 
One-way analysis of variance for model performance 

To statistically validate the differences in 
predictive performance among the developed 
models, an ANOVA was conducted using the 
RMSE values obtained under different drying 
conditions (temperature, presence of PCM, 
and IR application). The models compared 
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included the ANN, SVM, RF, Non-linear 
Regression, and the best-performing Semi-
Empirical model (Midilli). The tested null 
hypothesis was that there are no significant 

differences in mean RMSE across the different 
modeling approaches. The results of the 
ANOVA are presented in Table 2. 

 
Table 2- One-way ANOVA results comparing model RMSE across drying conditions 

Source of Variation SS Df MS F p-value 

Between groups 0.379 4 0.0948 12.51 0.0004 

Within groups 0.076 10 0.0076   

Total 0.455 14    

 
The ANOVA results reveal a statistically 

significant difference in RMSE among the 
different modeling approaches (F = 12.51, p < 
0.001). Post-hoc comparisons using Tukey's 
HSD test further indicated that the ANN 
model’s performance (lowest RMSE) was 
significantly better than that of the semi-
empirical and regression-based models. 
Although SVM and RF also performed well, 
only ANN showed statistically significant 
superiority in prediction accuracy across all 
tested conditions. These findings validate that 
the enhanced prediction accuracy of the ANN 
model is not merely a product of chance; 
instead, it signifies a statistically significant 
improvement in model performance. 

 
Artificial neural network (ANN) model 

The comparison between actual and 
predicted moisture content using the ANN 
model is shown in Figure 6. The performance 
metrics for the ANN model were evaluated for 
both training and test sets. For the training set, 
the R2, RMSE, MAE, and SMBE were 
calculated as 0.999, 0.0583 g water g-

1 dry matter, 0.0251 g water g-1 dry matter, and 
0.005 g water g-1 dry matter, respectively. For 
the test set, the corresponding values were 
0.998, 0.0656 g water g-1 dry matter, 
0.03409 g water g-1 dry matter, and 
0.0091 g water g-1 dry matter. These results 
demonstrate the ANN model’s strong 
predictive accuracy and generalization 
capability. Since |SMBE| ≤ 0.1, the model 
demonstrates excellent predictive accuracy. 
Additionally, Figure 7 presents the residuals 
versus fitted values, confirming the model's 
reliability. Several studies have reported 
similar high accuracy in moisture content 

prediction using ANN models. For instance, 
another research simulated the thin-layer 
drying of apple slices using convective and 
microwave drying methods, achieving R2 
values of 0.993 and 0.9991, respectively, 
underscoring the strong predictive capability 
of ANN models (Rasooli Sharabiani, Kaveh, 
Abdi, Szymanek, & Tanaś, 2021). Similarly, 
Sabzevari, Behroozi‐Khazaei, and Darvishi 
(2021) employed an ANN architecture of 3-5-
5-1 to model the drying of banana slices in a 
thin layer, successfully predicting moisture 
content. In another study, the impact of a novel 
vortex/swirling flow generator on fluidization 
streams in a fluidized bed dryer was 
investigated. ANN modeling was used to 
optimize the drying process for paddy, 
achieving an R2 of 0.999 and an RMSE of 
0.111, demonstrating the model's effectiveness 
(Chokphoemphun, Hongkong, & 
Chokphoemphun, 2024). Another study 
investigated the drying rate of Citrus medica 
under freeze-drying conditions, considering 
different slice thicknesses (3 mm, 5 mm, and 7 
mm) and cabin pressures (0.008 mbar, 0.010 
mbar, and 0.012 mbar). A feedforward 
multilayer perceptron ANN was employed to 
estimate the moisture content, mass loss ratio 
(MR), and rate of drying. The ANN model 
achieved an R2 of 0.998 and an RMSE of 
0.010574, demonstrating its high precision and 
reliability in characterizing the freeze-drying 
process (Topal, Şahin, & Vela, 2024). 

Additionally, another research analyzed the 
drying kinetics of potato cubes in a fluidized 
bed dryer using ANN modeling. Their findings 
provided important understanding into the 
effectiveness of ANN techniques for 
predicting the drying characteristics of potato 
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products, further supporting the applicability 
of ANN in food drying processes (Azadbakht, 

Torshizi, Aghili, & Ziaratban, 2018). 

 

 
Fig. 6. Comparison of actual and predicted moisture content using the ANN model 
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Fig. 7. Residuals of the ANN model versus fitted moisture content 

 
Support vector machine (SVM) model 

The relationship between actual and 
predicted moisture content is presented in 
Figure 8. The statistical evaluation of the SVM 
model on the training dataset yielded an R2 of 
0.998, RMSE of 0.0702 g water g-1 dry matter, 
MAE of 0.0512 g water g-1 dry matter, and 
SMBE of 0.008 g water g-1 dry matter. For the 
evaluation dataset, the corresponding values 
were 0.996, 0.0882 g water g-1 dry matter, 
0.0603 g water g⁻¹ dry matter, and SMBE of 
0.010 g water g⁻¹ dry matter, respectively. 
These results indicate strong predictive 
performance of the SVM model. Additionally, 
the residuals plotted against the predicted 
moisture contents, as shown in Figure (9), 
further confirm the model's reliability. To 
evaluate whether the difference in predictive 
performance between the ANN and SVM 
models was statistically significant, an 
independent two-sample t-test was conducted 
using RMSE values obtained under different 
drying conditions. The results showed that the 

ANN model (mean RMSE = 0.0656 
0702 g water g⁻¹ dry matter) performed 
significantly better than the SVM model (mean 
RMSE = 0.0882 0702 g water g⁻¹ dry matter), 
with a t-value of –3.45 and a p-value of 0.0061 
(p < 0.01). This confirms that the superior 
performance of the ANN model is not due to 
random variation, but is statistically 
significant. This trend has been observed in 
previous studies, where SVM performs well 
but generally does not surpass ANN in 
predictive capability. For instance, another 
research, investigated the prediction of 
moisture content in mushrooms during drying 
using ANN and SVM models. Their results 
showed that ANN achieved an R² of 0.998 and 
a relative RMSE (rRMSE) of 3.958%, in 
contrast the corresponding values for SVM 
were 0.973% and 15.749%, respectively 
(Karaağaç, Ergün, Ağbulut, Gürel, & Ceylan, 
2021). These findings further support the 
superior accuracy of ANN over SVM in 
moisture content prediction. A similar study 
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developed predictive models for the pyrolytic 
conversion of Sargassum sp. (Red Sea 
seaweed) using ANN and SVM. Their study 
demonstrated that ANN outperformed SVM, 
yielding higher accuracy and lower error rates, 
further validating the effectiveness of ML 
techniques in forecasting pyrolytic conversion 

processes (Saleem & Ali, 2017). Another 
research investigated ML modeling for the 
drying of mushroom slices, where ANN 
outperformed the SVM method, confirming its 
higher predictive accuracy in drying 
applications (Fartash Naeimi, Khoshtaghaza, 
Selvi, Ungureanu, & Abbasi, 2024). 

 

 
Fig. 8. Comparison of actual and predicted moisture content using the SVM model 
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Fig. 9. Residuals of the SVM model versus predicted moisture content 

 

Random forest (RF) model 

The comparison of actual and predicted 
moisture content using the RF model is 
depicted in Figure 10, while Figure 11 presents 
the residuals of the RF model plotted against 
the predicted moisture content. Following the 
development of the RF model, the statistical 
metrics R2, RMSE, MAE, and SMBE for the 
training dataset were calculated as 0.991, 
0.153 g water g-1 dry matter, 0.1120 g water g-

1 dry matter, and 0.0020 g water g-1 dry matter, 
respectively. For the evaluation dataset, the 
corresponding values were 0.9853, 
0.1859 g water g-1 dry matter, 0.1397 g water g-

1 dry matter, and 0.0030 g water g-1 dry matter, 
respectively. Thus, the RF algorithm can be 
considered a reliable model for predicting 
moisture content in potato slices during 
drying; however, its predictive accuracy is 
generally lower than that of ANNs and SVMs. 
Despite this, RF remains a valuable 
benchmark for assessing the performance of 
various machine learning models under 

consistent conditions. For applications where 
predictive accuracy is paramount, ANNs are 
particularly recommended due to their superior 
performance. Their architecture, characterized 
by hidden layers, enables them to capture 
complex, non-linear relationships in the data, 
making them especially well-suited for 
modeling drying processes.  The thin-layer 
drying process of potato slices involves heat 
and mass transfer, which is strongly influenced 
by environmental conditions, temperature, and 
moisture. Compared to other methods, ANNs 
are better able to capture these dependencies. 
SVMs generally perform well in regression 
and classification tasks, especially with 
smaller datasets and optimized feature sets. 
Unlike RF, which relies on an ensemble of 
decision trees, SVM excels at finding optimal 
decision boundaries. As a result, when dealing 
with highly nonlinear data and minimal noise, 
SVM's performance can be comparable to that 
of ANN. However, RF tends to have lower 
accuracy in time-dependent predictions and 
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continuous datasets, such as moisture variation 
over time. This is because RF is inherently 
more suited for classification tasks rather than 
regression problems. Additionally, RF may 
struggle to capture subtle moisture variations, 
leading to less accurate predictions with higher 
fluctuations. In summary, ANNs perform best 

when trained on large and diverse datasets, as 
they can optimize their weights and 
architecture to extract complex features. SVMs 
are more effective for small to medium-sized 
datasets, while RF may underperform when 
dealing with a high number of input variables 
or time-dependent data. 

 

 
Fig. 10. Comparison of actual and predicted moisture content using the RF model 
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Fig. 11. Residuals of the RF model versus predicted moisture content 

 
Regression models 

Linear regression 

We developed superposition mathematical 
models for different drying conditions: with 
PCM & with IR, with PCM & without IR, 
without PCM & with IR, and without PCM & 
without IR (Equations (2) to (5) in Table 3). 
These models predict the moisture content of 
potato slices as a linear function of 
temperature and time. As expected, the 

moisture content decreases as time and 
temperature increase, which is a typical result 
of the drying process. However, the models 
exhibit lower R2 values and higher RMSE, 
MAE, and SMBE, indicating that they are less 
accurate compared to the AI models. 
Additionally, the predicted moisture content 
by the linear regression model versus the 
actual moisture content is shown in Figure 12. 

 
Table 3- Performance of linear regression models for different drying conditions 

Model Equation Eq. no R2 RMSE MAE MBE 

PCM & IR M. C = −0.4929 T − 1.5599 Time + 1.8464  (2) 0.7736 0.8877 0.6935 -0.3764 

PCM & No IR M. C = −0.4212 T − 1.5346 Time + 1.9308 (3) 0.94684 0.4019 0.3413 -0.1053 

No PCM & IR M. C = −0.1588 T − 1.6363 Time + 1.9496 (4) 0.9009 0.5021 0.4292 0.1419 

No PCM & No IR M. C = −0.2810 T − 1.2822 Time + 1.6125 (5) 0.7913 0.8964 0.6565 -0.4214 

Note: RMSE, MAE, and MBE values are in g water g-1 dry matter 
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Fig. 12. Comparison of actual and predicted moisture content using the linear regression model 

 

Non-linear regression 

Among the different equations tested, the 
exponential model provides the best prediction 
of the moisture content during the drying 
process. Equation (6) is defined as: 
𝑀. 𝐶 = 5.9893 exp(−0.0005 𝑇𝑖𝑚𝑒)

− 0.0111 log(𝑇 + 1)
+ 0.1219 𝑃𝐶𝑀
− 0.8198 𝐼𝑅 

(6) 

where, Time is the drying time (in seconds), 
T is the drying temperature (°C), PCM and IR 
can either be 0 or 1, where 0 represents 
experiments without PCM or IR, and 1 
represents experiments with PCM or IR. 

The evaluation of the model shows that it 
has R2, RMSE, MBE, and SMBE values of 
0.93, 0.4058 g water g-1 dry matter, 0.3173 
g water g-1 dry matter, and 0.0056 g water g-

1 dry matter, respectively. These results display 
better proficiency than the linear regression 
models, but still fall short of the accuracy 
achieved by the AI models (ANN, SVM, and 
RF). This nonlinear model combines the 
empirical Henderson model with linear 
regression, leading to a better prediction than 
either model alone. However, since it does not 
utilize AI techniques for modeling, its 
accuracy is lower than that of the AI models. 
Given that the absolute value of SMBE is 
below 0.1, the model’s accuracy is considered 
acceptable. The comparison between actual 
moisture content and the moisture content 
predicted by the non-linear regression model is 
presented in Figure 13. 
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Fig. 13. Comparison of actual and predicted moisture content using the non-linear regression model 

 

Semi-empirical models 

The coefficients and statistical parameters 
of each model are provided in Table 4. Among 
them, the Midilli and the Approximation of 
Diffusion models exhibit the lowest errors. 
However, the evaluation of the results from the 
empirical and semi-empirical models shows 
that their accuracy is lower compared to the AI 
and nonlinear regression models. Another 
study was conducted to examine the modeling 
of drying kinetics using two different methods: 
semi-empirical and ANN models. The results 
showed that when total experimental data were 
involved, ANN outperformed the Midilli 
model (Karakaplan, Goz, Tosun, & Yuceer, 
2019). ML models, particularly ANN, provide 
the most accurate predictions, significantly 

outperforming other models in terms of 
precision and error reduction. Nonlinear 
regression also proves superior to linear 
regression, as moisture content changes 
inherently exhibit nonlinearity. Among 
empirical models, the Midilli. model performs 
best, though with lower accuracy compared to 
ML models. While empirical models are 
useful for quick estimations, they lack the 
precision of ML approaches. For optimal 
predictions, ANN is recommended, but if 
computational efficiency is a concern, SVM 
serves as a viable alternative. Nonlinear 
regression offers better interpretability, and the 
Midilli model is suitable for fast empirical 
estimations. 

 
Table 4- Coefficients of different semi-empirical models 

Model Coefficients R2 RMSE MAE MBE 

Newton k = 0.0005 0.8851 0.5283 0.4000 -0.0090 

Page k = 0.0009, n = 0.939 0.8863 0.5255 0.3972 -0.0045 

Henderson and Pabis a = 0.964, k = 0.0005 0.8868 0.5243 0.3994 -0.0198 

Logarithmic a = 0.945, k = 0.0006, c = 0.0325 0.8884 0.5209 0.3904 0.0000 

Two-term a = 0.9625, k1 = 0.0006, b = 0.0133, k2 = -0.0001 0.8885 0.5204 0.3904 0.0000 
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Midilli et al. (2002) a = 0.955, k = 0.0003, n = 1.09, b = 0.0000 0.8892 0.5186 0.3915 -0.0017 

Modified page k = 0.0008, n = 0.7159 0.8851 0.5283 0.4000 -0.0090 

Exponential a = 0.4923, k = 0.0008 0.8871 0.5238 0.3932 0.0022 

Approximation of diffusion A = 0.9675, k = 0.0006, b = -0.0435 0.8879 0.5220 0.3898 0.0107 

 

Conclusion 

This study systematically compared 
different modeling approaches to predict the 
drying kinetics of potato slices under various 
drying conditions. The results demonstrated 
that AI models, particularly ANN, exhibited 
the highest accuracy in predicting moisture 
content over time, outperforming both 
empirical and semi-empirical models. While 
conventional models such as the Midilli and 
Approximation of Diffusion models provided 
reasonable fits, they lacked the precision and 
adaptability of AI-based approaches. Among 
AI techniques, ANN achieved the best 
performance, followed by SVM and RF, 
confirming the capability of ML in capturing 
complex, non-linear drying dynamics. 
Additionally, the study revealed that the 
drying rate increases significantly with 
temperature, IR radiation, and the presence of 
PCM. IR had a stronger effect on enhancing 
drying efficiency compared to PCM alone. 
The combination of PCM and IR yielded the 
highest drying rate, making it the most 
effective drying condition. Overall, the 
findings emphasize the superiority of AI 

models for drying process optimization. For 
industrial applications, ANN is the 
recommended model due to its ability to 
generalize drying kinetics accurately. Future 
research could focus on integrating hybrid AI 
models with computational fluid dynamics 
(CFD) for further optimization and exploring 
the impact of different drying conditions on 
food quality attributes. 
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های مبتنی بر هوش  زمینی: روش های سیبکردن برشای سینتیک خشکسازی مقایسهمدل

 تجربی های تجربی و نیمه مصنوعی در مقایسه با روش

 
 1، علیرضا دهقانی*1، مهدی مرادی1رضا رئیسی
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 چکیده

نگهداری در صنعت غذا است که با کاهش رطوبت، کیفیت محصول را حفظ کرده و ماندگاری آن را افززیایش های حیاتی  کردن یکی از روشخشک
هززای ملت زز  بینی دقیقی نیاز دارد. در ایززن ملاهعززه، روشهای پیشهای پیچیده انتقال حرارت و جرم بوده و به مدلدهد. این فرآیند شامل مکانییممی

های کردن برشسازی فرآیند خشکبرای شبیه (AI) های مبتنی بر هوش مصنوعیتجربی، و روشهای نیمههای رگرسیون، مدلسازی شامل مدلمدل
 گراد، با و بدون اسززتفاده از مززواد ت ییززر فازدهنززدهدرجه سانتی ۶0و  ۵0، 40کردن در دماهای های خشکزمینی مورد مقایسه قرار گرفتند. آزمایشسیب

(PCM) و تابش مادون قرمی (IR) های هوش مصنوعی شامل شبکه عصبی مصنوعیانجام شد. مدل (ANN)ماشززین بززردار پشززتیبان ، (SVM)  و
تجربی از نظر ضریب های سنتی و نیمهها با مدلهای تجربی آموزش دیده و اعتبارسنجی شدند. عم کرد این مدلبا استفاده از داده (RF) جنگل تصادفی

مقایسه شد. نتایج نشان داد که   (MBE)و خلای میانگین بایاس  (MAE)، میانگین قدرمل ق خلا(RMSE)، ریشه میانگین مربع خلا R)2( تعیین
ها دارای بهترین عم کرد را داشته و از سززایر مززدل )RMSE= 0.0656, = 0.9982R(بینی بسیار بالا با دقت پیش  (ANN)شبکه عصبی مصنوعی

های تر داشززت. در میززان مززدلعم کززردی انززدکی ضززعی  RF کززهبینی مناسززبی نشززان داد، در حاهینیی قاب یت پیش  SVMدقت بیشتری است. روش
ها های مبتنی بر هوش مصنوعی دقززت کمتززری نشززان داد. ایززن یافتززهبهترین برازش را داشت، اما نسبت به مدل  (Midilli)  تجربی، مدل میدی ینیمه

 .سازدکردن در صنعت غذا برجسته میسازی فرآیند خشک، را در بهینهANNویژه های مبتنی بر هوش مصنوعی، بهبرتری روش
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