Abd-Elhamid, H. F., El-Dakak, A. M., Saleh, O. K., Zeleňáková, M., Junakova, N., Alkhalaf, I., ... & Fathy, I. (2025). Assessment of drought risks in arid regions utilizing remote sensing data and the standardized precipitation index in the context of climate change. Earth Systems and Environment, 1–20. https://doi.org/10.1007/s41748-025-00678-z
Ahadi, M., Zeynali, B., Salahi, B., Shoja, F., Fazl Kazemi, A., Babaeian, I., & Kohi, M. (2025). Projection of future drought trends in Iran using the CMIP6 multi-model ensemble. Journal of Natural Environmental Hazards, 1-1. [In Persian] https://doi.org/10.22111/jneh.2025.50138.2075
Akinsanola, A. A., Kooperman, G. J., Pendergrass, A. G., Hannah, W. M., & Reed, K. A. (2020). Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations. Environmental Research Letters, 15(9), 1–12. https://doi.org/10.1088/1748-9326/abb397
Alemu, M. G., Wubneh, M. A., Worku, T. A., Womber, Z. R., & Chanie, K. M. (2023). Comparison of CMIP5 models for drought predictions and trend analysis over Mojo catchment, Awash Basin, Ethiopia. Scientific African, 22, e01891. https://doi.org/10.1016/j.sciaf.2023.e01891
Alijani, B. (2011). Spatial analysis of critical daily temperature and precipitation in Iran. Journal of Applied Researches in Geographical Sciences, 11(20), 1–29. [In Persian] http://jgs.khu.ac.ir/article-1-593-fa.html
Almazroui, M., Ashfaq, M., Islam, M. N., Rashid, I. U., Kamil, S., Abid, M. A., ... & Sylla, M. B. (2021). Assessment of CMIP6 performance and projected temperature and precipitation changes over South America. Earth Systems and Environment, 5(2), 155–181. https://doi.org/10.1007/s41748-021-00233-6
Ayugi, B., Dike, V., Ngoma, H., Babaousmail, H., Mumo, R., & Ongoma, V. (2021). Future changes in precipitation extremes over East Africa based on CMIP6 models. Water, 13(17), 2358. https://doi.org/10.3390/w13172358
Azizi, Q., Safarrad, T., Mohammadi, H., & Faraji Sabokbar, H. A. (2016). Evaluation and comparison of precipitation reanalysis data for use in Iran. Physical Geography Research Quarterly, 48(1), 33–49. [In Persian] https://doi.org/10.22059/jphgr.2016.57026
Babaeian, I., Rahmatinia, A. E., Entezari, A., Baaghideh, M., Aval, M. B., & Habibi, M. (2021). Future projection of drought vulnerability over northeast provinces of Iran during 2021-2100. Atmosphere, 12(12), 1704. https://doi.org/10.3390/atmos12121704
Bai, H., Xiao, D., Wang, B., Liu, D. L., Feng, P., & Tang, J. (2020). Multi-model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China Plain. International Journal of Climatology, 40, 21–39. https://doi.org/10.1002/joc.6674
Bayat-Afshary, N., Danesh-Yazdi, M., & Shakeri, F. (2025). Machine learning projections of Iran's water scarcity response to climate-land use synergies. Journal of Hydrology: Regional Studies, 61, 102638. https://doi.org/10.1016/j.ejrh.2025.102638
Bayatavrkeshi, M., Imteaz, M. A., Kisi, O., Farahani, M., Ghabaei, M., Al-Janabi, A. M. S., ... & Yaseen, Z. M. (2023). Drought trends projection under future climate change scenarios for Iran region. PLoS ONE, 18(11), e0290698. https://doi.org/10.1371/journal.pone.0290698
Behzadi, F., Javadi, S., Yousefi, H., Hashemy Shahdany, S. M., Moridi, A., Neshat, A., ... & Maghsoudi, R. (2024). Projections of meteorological drought severity-duration variations based on CMIP6. Scientific Reports, 14(1), 5027. https://doi.org/10.1038/s41598-024-55340-x
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., ... & Vuichard, N. (2020). Presentation and evaluation of the IPSL‐CM6A‐LR climate model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010. https://doi.org/10.1029/2019MS002010
Carrao, H., Barbosa, P., & Dos Santos, J. R. (2018). Drought assessment: A global overview. Global and Planetary Change, 164, 1–14. https://doi.org/10.1016/j.gloplacha.2018.03.012
Chen, Q., Zhao, T., Hua, L., Yu, J., Wang, Y., & Xu, C. (2023). Future drought changes in China projected by the CMIP6 models: Contributions from key factors. Journal of Meteorological Research, 37(4), 454–468. https://doi.org/10.1007/s13351-023-2169-8
Chen, Z., Zhou, T., Zhang, L., Chen, X., Zhang, W., & Jiang, J. (2020). Global land monsoon precipitation changes in CMIP6 projections. Geophysical Research Letters, 47(14), 1–9. https://doi.org/10.1029/2019GL086902
Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., & Anchukaitis, K. J. (2020). Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth's Future, 8(6), e2019EF001461. https://doi.org/10.1029/2019EF001461
Elkouk, A., Amiraslani, F., & Ashraf, M. (2022). Drought risk assessment in Sub-Saharan Africa and South Asia: A comparative analysis. Environmental Science & Policy, 123, 58–68. https://doi.org/10.1016/j.envsci.2021.09.003
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Farahmand, A., & Agha Kouchak, A. (2015). A standardized approach for drought monitoring. Earth System Science Data, 7(1), 1–9. https://doi.org/10.5194/essd-7-1-2015
Ghaemi, A., Hashemi Monfared, S. A., Bahrpeyma, A., Mahmoudi, P., & Zounemat-Kermani, M. (2024). Spatiotemporal variation of projected drought characteristics in Iran under climate change scenarios using CMIP5-CORDEX product. Journal of Water and Climate Change, 15(3), 1054–1075. https://doi.org/10.2166/wcc.2024.468
Hamidianpour, M., & Shoja, F. (2022). An introduction to methods and techniques of climate and climate change modeling. Zahedan Press. [In Persian] https://doi.org/10.22034/jtd.2023.380876.2725
Kahil, M. T., Dinar, A., & Albiac, J. (2015). Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. Journal of Hydrology, 522, 95–109. https://doi.org/10.1016/j.jhydrol.2014.12.042
Kamangar, M., Ahmadi, M., Rabiei-Dastjerdi, H., & Hazbavi, Z. (2025). Ensemble modeling of extreme seasonal temperature trends in Iran under socio-economic scenarios. Natural Hazards, 121(2), 1265-1288. https://doi.org/10.1007/s11069-024-06830-8
Kawai, H., Yukimoto, S., Koshiro, T., Oshima, N., Tanaka, T., Yoshimura, H., & Nagasawa, R. (2019). Significant improvement of cloud representation in the global climate model MRI-ESM2. Geoscientific Model Development, 12(7), 2875–2897. https://doi.org/10.5194/gmd-12-2875-2019
Khan, A. J., Koch, M., & Tahir, A. A. (2020). Impacts of climate change on the water availability, seasonality and extremes in the Upper Indus Basin (UIB). Sustainability, 12(4), 1283. https://doi.org/10.3390/su12041283
Khazaei, M. R. (2025). Projected changes to drought characteristics in Tehran under CMIP6 SSP-RCP climate change scenarios. Heliyon, 11(2), e41811. https://doi.org/10.1016/j.heliyon.2025.e41811
Khoorani, A., Balaghi, S., & Mohammadi, F. (2024). Projecting drought trends and hot spots across Iran. Natural Hazards, 120(11), 9489–9502. https://doi.org/10.1007/s11069-024-06574-5
Khosravi, Y., & Ouarda, T. B. (2025). Drought risks are projected to increase in the future in central and southern regions of the Middle East. Communications Earth & Environment, 6(1), 384. https://doi.org/10.1038/s43247-025-02359-1
Lanen, H. A. J., Van Lanen, H. A. J., & Heggen, B. J. (2007). Drought and its relationship to climate change. Global and Planetary Change, 59(3–4), 157–168. https://doi.org/10.1016/j.gloplacha.2007.04.003
Li, S. Y., Miao, L. J., Jiang, Z. H., Wang, G. J., Gnyawali, K. R., Zhang, J., ... & Li, C. (2020). Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015-2099. Advances in Climate Change Research, 11(3), 210–217. https://doi.org/10.1016/j.accre.2020.09.003
Li, Z., Liu, T., Huang, Y., Peng, J., & Ling, Y. (2022). Evaluation of the CMIP6 precipitation simulations over global land. Earth's Future, 10(8), e2021EF002500. https://doi.org/10.1029/2021EF002500
Lu, J., Carbone, G. J., & Grego, J. M. (2019). Uncertainty and hotspots in 21st century projections of agricultural drought from CMIP5 models. Scientific Reports, 9(1), 4922. https://doi.org/10.1038/s41598-019-41196-z
Masoudian, A., & Kaviani, M. (2008). Climatology of Iran. University of Isfahan Press. [In Persian]
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., ... & Marotzke, J. (2018). A higher‐resolution version of the max planck institute earth system model (MPI‐ESM1. 2‐HR). Journal of Advances in Modeling Earth Systems, 10(7), 1383-1413. https://doi.org/10.1029/2017MS001217
Nasrollahi, N., AghaKouchak, A., Cheng, L., Damberg, L., Phillips, T. J., Miao, C., ... & Sorooshian, S. (2015). How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resources Research, 51(4), 2847–2864. https://doi.org/10.1002/2014WR016318
O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016
Oshima, N., Yukimoto, S., Deushi, M., Koshiro, T., Kawai, H., Tanaka, T. Y., & Yoshida, K. (2020). Global and Arctic effective radiative forcing of anthropogenic gases and aerosols in MRI-ESM2.0. Progress in Earth and Planetary Science, 7(1), 38. https://doi.org/10.1186/s40645-020-00348-w
Rahman, G., Jung, M. K., Kim, T. W., & Kwon, H. H. (2025). Drought impact, vulnerability, risk assessment, management and mitigation under climate change: A comprehensive review. KSCE Journal of Civil Engineering, 29(1), 100120. https://doi.org/10.1016/j.kscej.2024.100120
Razavi-Termeh, S. V., Sadeghi-Niaraki, A., Farhangi, F., Khiadani, M., Pirasteh, S., & Choi, S. M. (2024). Solving water scarcity challenges in arid regions: a novel approach employing human-based meta-heuristics and machine learning algorithm for groundwater potential mapping. Chemosphere, 363, 142859. https://doi.org/10.1016/j.chemosphere.2024.142859
Sellar, A. A., Walton, J., Jones, C. G., Wood, R., Abraham, N. L., Andrejczuk, M., ... & Griffiths, P. T. (2020). Implementation of UK Earth system models for CMIP6. Journal of Advances in Modeling Earth Systems, 12(4), e2019MS001946. https://doi.org/10.1029/2019MS001946
Sentman, L. T., Dunne, J. P., Stouffer, R. J., Krasting, J. P., Toggweiler, J. R., & Broccoli, A. J. (2018). The mechanistic role of the Central American Seaway in a GFDL Earth System Model. Part 1: Impacts on global ocean mean state and circulation. Paleoceanography and Paleoclimatology, 33(7), 840–859. https://doi.org/10.1029/2018PA003364
Shoja, F., Hamidianpour, M., & Barahooie, D. (2025). Forecasting climate change effects on drought using the decadal climate prediction project in arid and semi-arid regions of southeastern Iran. Natural Hazards, 1–28. https://doi.org/10.1007/s11069-025-07405-x
Silva, L. F. (2003). Drought monitoring using remote sensing and GIS: A case study of Brazil. Journal of Environmental Management, 68(1), 1–12. https://doi.org/10.1016/S0301-4797(02)00080-4
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
Wang, B., Jin, C., & Liu, J. (2020). Understanding future change of global monsoons projected by CMIP6 models. Journal of Climate, 33(15), 6471–6489. https://doi.org/10.1175/JCLI-D-19-0993.1
Wehner, M. (2013). Very extreme seasonal precipitation in the NARCCAP ensemble: Model performance and projections. Climate Dynamics, 40(1), 59–80. https://doi.org/10.1007/s00382-012-1393-1
Whipple, W. (1966). Droughts: Their occurrence and effects. Journal of Water Resources Planning and Management, 92(3), 25–38. https://doi.org/10.1061/JYCEAJ.0001450
World Bank Group. (2016). Climate change and water resources in Iran. https://www.worldbank.org/en/country/iran/publication/climate-change-water-resources-iran
You, Q., Cai, Z., Wu, F., Jiang, Z., Pepin, N., & Shen, S. S. (2021). Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Climate Dynamics, 57(1), 17–35. https://doi.org/10.1007/s00382-021-05691-2
Yousefi, H., Ahani, A., Moridi, A., & Razavi, S. (2024). The future of droughts in Iran according to CMIP6 projections. Hydrological Sciences Journal, 69(7), 951–970. https://doi.org/10.1080/02626667.2024.2348720
Zarrin, A., & Dadashi-Roudbari, A. (2021). Drought risk management in a changing climate: The role of national policies and the Drought Management Plan (DMP). Journal of Water and Sustainable Development, 8(1), 107–112. [In Persian] https://jwsd.um.ac.ir/article_40281.html
Zarrin, A., Dadashi-Roudbari, A., & Kadkhoda, E. (2022). Drought projection in the Urmia Lake basin under SSP Scenarios until the end of the 21st Century. Iranian Journal of Soil and Water Research, 53(7), 1499–1516. [In Persian] https://doi.org/10.22059/ijswr.2022.343700.669278
Zhai, J., Mondal, S. K., Fischer, T., Wang, Y., Su, B., Huang, J., ... Uddin, M. J. (2020). Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research, 246, 105111. https://doi.org/10.1016/j.atmosres.2020.105111
Zhang, Y., & Yao, S. (2012). Drought risk assessment: A new methodology. Hydrology and Earth System Sciences, 16(9), 2803–2811. https://doi.org/10.5194/hess-16-2803-2012
Zhao, T., & Dai, A. (2022). CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. Journal of Climate, 35(3), 897–921. https://doi.org/10.1175/JCLI-D-21-0442.1
Zhou, H., Zheng, Y., & Guo, Z. (2021). Extreme weather events and their impact on water resources: A review. Water, 13(4), 521. https://doi.org/10.3390/w13040521
Zhu, S., Ge, F., Fan, Y., Zhang, L., Sielmann, F., Fraedrich, K., & Zhi, X. (2020). Conspicuous temperature extremes over Southeast Asia: seasonal variations under 1.5 C and 2 C global warming. Climatic Change, 160(3), 343–360. https://doi.org/10.1007/s10584-019-02640-1