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Abstract. This paper investigates new properties and applications of the system signature and its
dynamic counterpart, which serve as effective tools for analyzing stochastic ordering and aging properties
in both coherent and used systems. For coherent systems with exchangeable components, the system
signature offers a more powerful comparative framework than the traditional structure function. In
the context of used systems with different exchangeable components, we propose an alternative to the
dynamic signature that is simpler to implement and often preferable to the standard dynamic signature.
This alternative also proves useful in scenarios where the traditional dynamic signature is inapplicable.
Additionally, by examining all 28 coherent systems of order n < 4, we establish a unique property of
series systems: under both identical and non-identical independent component lifetimes, series systems
are the only ones that are decreasing failure rate (DFR) closed. The results extend several existing
findings related to system signatures and their dynamic versions. Illustrative examples are provided to
demonstrate the practical relevance of the theoretical results.

Keywords: Coherent systems, Dynamic signature, DFR, IFR, Signature, Stochastic ordering, Used systems.

1 Introduction

One of the most important problems in system reliability analysis is comparison among systems. The most
common tools to compare the coherent systems are structure and reliability functions, system signatures,
and distortion functions. Assume that the systems are coherent (see, Barlow and Proschan (1975) for
details on coherent systems) and suppose that the component lifetimes of the system are independent
and identically distributed (IID) or they are exchangeable (EXC) random variables, defined in the next
section. This paper is concerned to some more properties and applications of the signatures in system
comparisons. Let Ti,...,T, and T = ¢(Ty,...,T,) be the component lifetimes and the system lifetime,
respectively. ¢ refers to the structure of the system. When 7;’s are continuous and IID random variables,
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the following well-known and important result is obtained by Samaniego (1985)

P(T>t)= is,-P(T,-:,, >1), (1)
i=1

where T, is the i-th ordered components lifetime, and s; = P(T = T;,). The probability vector s =
($1,-..,5,) is called the system signature.

Using the system signature, many researchers have studied various aspects of system reliability. In
fact, the identity (1) was first proved by Kochar et al. (1999). Navarro et al. (2005) claimed that this
equation holds true if 7;’s have an absolutely continuous exchangeable joint distribution. Samaniego
(2007) published a book on the system signatures and their applications. Also Naqvi et al. (2022) have
done a review and bibliometric analysis on system signatures. Navarro et al. (2008) showed that (1) holds
true if 7;’s be continuous (or discrete) weakly exchangeable random variables and also P(7; = Tj) = 0 for
all i # j (that is 7;’s have no tie). It seems that the strongest result is given by Marichal et al. (2011).
They proved that (1) holds true if and only if for i = 1,...,n, the following binary random variables are
exchangeable

x,-(;)—{é ;2; 2)

Navarro et al. (2011) investigated the signatures of coherent systems with heterogeneous and indepen-
dent components. Rao and Naqvi (2023) studied the stochastic comparisons of coherent systems with
heterogeneous and dependent components having proportional reversed failure rates. In the EXC case,
a necessary and sufficient condition for comparing two systems was given by Navarro and Rubio (2011).
For more details and an extensive study on comparisons of coherent systems see Navarro (2018) and
references therein.

Remark 1. The system signature has the following interesting and important property. It should be noted
that in all cases where the Equation (1) holds true (except when the component lifetimes are continuous
and IID random variables), the signature is not necessarily defined by s; = P(T = T.,). But in these cases,
the value of s; used in (1), is exactly determined by s; = P(T = T;.,) when T;’s are continuous and IID
random variables. Therefore in all cases, the system signature s = (sy,...,8,) remains as a probability
vector. For further clarification, consider T = min{Ty, max(T»,T3)}, where T;’s are continuous and IID. We
haves=(1/3,2/3,0) and P(T =T;,,) = s;. Now suppose T;’s are discrete and IID with common distribution
Binomial(1,1/2). In this case we have

P(T:T1;3) ZI—P(T] = 1,T2=0,T3 = 1)—P(T| = 1,T2= 1,T3:0) :6/87&.?1 = 1/3

But one can easily verify that for

That is the mizture representation (1) holds true.

The concept of the dynamic signature of the system was first defined by Samaniego et al. (2009). It
is a common tool in comparisons among coherent used systems. They showed in the case of IID that

Sk

P(T:Tk:n|T >t,N(t) :r) = 2’75
Jj=r+1°J

= Wk,

fork=r+1,...,nand r=0,1,...,n—1. The probability vector w(,_,) = (Wri1,...,wy) is called the dynamic
signature of the system at time ¢. N(¢) is the number of failed components of the system up to time ¢ and
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Signature and dynamic signature 3

such a system is said to be a used system. Based on the dynamic signature, they obtained some ordering
results for comparing coherent used systems with IID components. Note that if » =0, the dynamic
signature reduces to the usual signature as }'}s; = 1.

Burkschat and Navarro (2013) considered dynamic signatures of coherent systems based on sequential
order statistics. Under some partial information about the failure status of the system lifetime, Mahmoudi
and Asadi (2011) defined the dynamic signature of coherent systems. Burkschat and Samaniego (2018)
examined the concepts of dynamic and conditional increasing failure rates properties in coherent systems.
Chahkandi et al. (2015) studied the signature of the repairable systems.

The remainder of this paper is organized as follows. For the sake of completeness, Section 2 provides
an extensive review of comparisons among coherent systems based on structure functions, reliability
functions, and system signatures. As a minor result, it is shown that, in the case of exchangeable
components (EXC), the system signature is a more powerful tool than the structure function. Section 3
focuses on comparisons of coherent used systems. Using the dynamic signature, new stochastic ordering
results are derived for comparing coherent used systems with different exchangeable components. A new,
simple alternative to the dynamic signature is proposed, which is particularly useful in cases where the
standard dynamic signature is not applicable. Due to its ease of use, this alternative should be considered
as a first option in such comparisons. Finally, Section 4 examines properties related to the preservation
of reliability aging classes in series systems.

Motivated by the result of Samaniego (1985) and by verifying the signatures of all 28 coherent systems
of order n <4, it is shown that when the lifetimes of the system components are either IID or independent
and not identical (INID), the series systems are only decreasing the failure rate (DFR) closed systems.
The increasing failure rate (IFR) closedness property of the series systems is also considered. Recall
that a random variable X with absolutely continuous distribution function F and density function f has
an IFR (DFR) distribution if its failure rate function h(t) = f(¢)/F(f) is increasing (decreasing) in ¢,
F(t) =1—F(t). Throughout the paper, when two systems are said to be ordered, it means that their
lifetimes are ordered stochastically. Recall that X is less than Y in the usual stochastic order and denote
it by X <q Y if Fx(t) < Fy(¢) for all 1 > 0.

2 Comparisons of coherent systems

The comparison of two systems can be done at a fixed point in time (static comparison) or during periods
of time (dynamic comparison). In order to present the main results of the paper given in the two next
sections, and for the sake of completeness, this section mainly deals with a review of the basic results
in the literature on comparisons among coherent systems. Some minor contributions are also included.
At a fixed point in time, and based on the system structure and reliability functions, we first consider
the comparison of two systems. In comparison among the systems with INID components, it is shown
that the structure and reliability functions are two equivalent tools. Finally the system signature is used
to compare two systems during of times. In the sequel, Lemma 1 shows in IID and EXC cases that the
system signature is a more powerful tool than the structure-function.
At a fixed point in time, assume that binary random states are as follows:

X — 1 if ith component is working
"7 1 0 otherwise,

and
1 if the system is working

0 otherwise.

¢(X)=¢(X1,...,X,,):{

Their reliabilities are also defined as:



105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

4 Mirjalili, A. and Khanjari Sadegh, M.

h(p) = h(p1;.-.,pn) = E(¢(X)) = P(¢(X) = 1).

¢ (x) is called the structure function of the system. In addition, the order of the system is defined as the
number of the system components n.

Definition 1. (Kochar et al., 1999) Let ¢1(x) and ¢2(x) be the structure functions of two systems of
order n. The second system is said to be better than the first one if

01(x) < da(x) Vxe{0,1}". (3)

If ¢1(x) = g2(x), Vx € {0,1}" two systems are obviously the same. Therefore (3) should be strictly hold at
least for one x. The second system is said to be more reliable than the first one if

hi(p) = E(¢1(X)) < ha(p) = E(2(X)) Vpe0,1]". (4)
Again the inequality should be strict at least for one p, otherwise two systems have the same reliability.

It is claimed in Kochar et al. (1999) that the inequalities (3) and (4) are equivalent when X;’s are
independent (INID case). Note that in this case

Wp) =POX) =)= Y TIr0-p) %= Y TIn[I0-r).

x:¢(x)=1i=1 x:p(x)=li€ly i€0x

where 1y = {l <i<nlx; =1}, 0y = {1 <i<nlx; =0}. An argument for their claim is as follows. The
inequality (3) simply implies (4). Now suppose (4) holds true. If ¢(x) = ¢»(x) for all x obviously
hi(p) = ha(p) for all p which is a contradiction. Now suppose there exists a vector xo such that ¢;(x¢) =
1> ¢2(x0) =0. Put po =xXo then py; =1 for i € 1xg and 1 — py; =1 for i € 0. Note that Py (X=x) =P(X=
x|p =po) =0 for x # xp. It is easy to see that hj(pg) = 1 and hy(po) = 0 which is again a contradiction
and this shows that (4) implies (3).

The inequalities (3) and (4) are not necessarily equivalent if X;’s are IID that is p;=p, i=1,...,n.
See the following example.

Example 1. (Kochar et al., 1999). Suppose ¢;(x) = min{x;, max(xz,x3)} and ¢,(x) = min{x,, max(xj,x3)}
then ¢1(1,0,1) =1 > ¢2(1,0,1) =0 and ¢;(0,1,1) =0 < ¢(0,1,1) = 1 whereas hi(p) = 2p*> — p*> = ha(p),
for all 0 < p < 1. That is (4) does not imply (3).

Remark 2. Note that in INID case, the inequalities (3) and (4) are equivalent even if p € (0,1)". It is
because as the system components are independent, the reliability function h(p) is a multilinear, that is,
linear in each p; and therefore is a continuous function.

Now by using the system signature, the comparison of systems during of times is considered. The
first result is given by Kochar et al. (1999) as follows:
Let T) = ¢1(Xy,...,X,) and Th = ¢»(X1,...,X,) denote the lifetimes of two coherent systems where X; is the
lifetime of the ith component and X;’s are IID and continuous and suppose s; and s, are their signatures
respectively. If s; <y s, then T} <y Tr. If 81 <p, 83, then T1 <, T and if 81 <, 8, then T} <;, T5.
The converse of their results is not true, see Rychlik et al. (2018). (We also refer to Shaked and Shan-
thikumar (2007) for details on stochastic orders).

Example 2. Consider two coherent systems mentioned in Example 1 where s; = (1/3,2/3,0) =s; and
hence from (1), T} and T, are identically distributed. Note that these two systems could not be ordered
by using of their structure functions.
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Signature and dynamic signature 5

The comparison of coherent systems with EXC components is studied by Navarro et al. (2005).
Recall that the random variables Ti,..., T, are said to be exchangeable if P(Ty > t1,..., T, > ty) = P(Ty(1) >
t1y. .y Ty(n) > ty) for any permutation 7 = (x(1),...,7(n)) of numbers {1,...,n}.

The relationship between the signature and structure function of a system is obtained by Boland
(2001) or Marichal et al. (2011) as follows. In EXC case and for k=1,...,n

n

Y s=POM=1LX=0= ¥ 0655 (5)

1
i=n—k+1 x;Y x;=k (Z
Lemma 1. If ¢1(x) < ¢2(x) for all x € {0,1}" then s; <y s;.

Proof. From Equation (5) we see that if ¢;(x) < ¢2(x) for all x € {0,1}" then ¥ 1 s1; <YL, 4 82
for k=1,2,...,n, that is s; <y $».

In fact Lemma 1 shows that the system signature is a more stronger tool than the structure function.
This section is ended by reviewing the problem of comparison of coherent systems with different sizes.

Definition 2. (Boland and Samaniego, 2004), or (Samaniego, 2006). Let xr = (ry,...,rx) be a probability
vector and suppose Tj = ¢;(X1,...,X,), j=1,...,k are the lifetimes of k coherent systems with IID or EXC
components. If P(T =T;) =r; then T is said to be the lifetime of a mized-r system. Note that in general,
a mized system is not coherent, and the class of coherent systems is a subset of the mized systems. Let s;
be the signature of the jth coherent system, then s = ZI;':1 rjsj is defined as the signature of the mived-r
system.

For a system of order n, an equivalent system of order n+1 is introduced by Samaniego (2006) as
follows.

Let T be the lifetime of a coherent or a mixed system of order n with IID components having common
distribution F and with signature s = (si,...,s,). Then T =% T* where T* is the lifetime of a mixed
system of order n+ 1 with IID components which have the same distribution F and its signature is
s* = (s],...,8,,1) with

st = (= Dsiat =it Dsi ;g
n+1
Assume that sg = 5,1 =0. s* is of order n+ 1 and is the equivalent of s.

For a system of order k, an equivalent system of order n(> k) can be defined. Note that the above
result also holds true for EXC components, also note that the equivalent systems belong in general to
the class of mixed systems and all comparison results among the coherent systems also hold true for the
mixed systems.

An extended result for coherent systems consisting of EXC components, is given by Navarro et al.
(2008) as follows.

Let T1 = ¢1(Y1,..., Yy, ) and Tr = 92 (Z1,. .., Z,, ) be the lifetimes of two systems where ¥;’s and Z;’s are subsets
of the EXC random variables {Xi,...,X,} and suppose s|(n) and s;(n) are their equivalent signatures of
order n, respectively.

(a) If sy(n) <y s2(n), then T} <y T>.

(b) If s1(n) <prsa(n) and Xip <pr Xit1m, i=1,...,n—1, then T} <p, T.
(c) If s1(n) <;ps2(n) and Xip <jp Xig1:n, i=1,...,n—1, then Ty <), T5.

For an extensive study on the existence and comparisons of equivalent systems with IID components
refer to Lindqvist et al. (2016). It is pointed out there, within the class of mixed systems, one can always
find equivalent mixed systems of larger sizes, but not necessary if the size is decreased.
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3 Comparisons of used systems

This section begins by considering the comparison of coherent used systems, extends some existing results,
and then proposes an alternative for equivalent dynamic signature. Its properties and applications are
illustrated. The following result is given in Samaniego et al. (2009).

Let s; and sy be the signatures of two coherent systems of order n and with IID components having
common continuous distribution F and let Ty = ¢1(Xi,...,X,) and Th = ¢(X1,...,X,) be their lifetimes,
respectively. Suppose T} > 1, Tr >t, Ni(t) =r; and Na(t) =ry. Let wi = (Wi 1,...,Wiu—p) and wy =

W2 l,---sWan_r,) be their dynamic signatures. Also assume that w and w are their equivalent versions
) ot 1 2

of order n. If w!") <, wi" then
(T —t|Ty >t,N\(t) =r1) <o (B —t|Th > 1,Na(t) = 12).

As defined in Section 1, N(¢) is the number of failed components of the system up to time ¢.
Samaniego et al. (2009) also provide the following expression:

P(T —t >x|T > t,N(t) ZWW e (X

||M:
=
=
S
<3
=
~
—
=
Na¥

where F;.,_ A¢(x) is the reliability function of the ith order statistic in a random sample of size n—r from

Fi(x)= <x(+)t) for x > 0.

Note that N(z) is distributed as Binomial(n,F(¢)) and N(¢) = r is equivalent to X;., < < X41.;. Therefore
P(Xjy—t>x|N(t)=r)=0,fori=1,...,r and for i=r—+1,...,n, we have

(VR (@)X () ()~ P (F(o+x)

PXin—t>x|N(t)=r) =

- ¥ (n_.r>(ﬁ(x))’(l—E(X))""‘j

j=n—it1 \ J
= P(Binomial(n—r, F;(x)) >n—i+1). (6)

Now suppose T = ¢(Xj,...,X,) is the lifetime of a system with EXC components. For this system, the
following equation is given by Sadegh (2016)
n
P(T—t>xT>t,N(t)=r)= Y wiP(Xp—1>x|IN(1)=r)
k=r+1

=Y W P(Xien —t > 2N(1) = 0). (7)
k=1

Based on the Equation (7), the next theorem extends part (a) of Theorem 2.6 in Samaniego et al.

(2009), to the systems with different components.

Theorem 1. Let Ty = ¢1(Xy,...,X,) and To = ¢2(Y1,...,Y,) be the lifetimes of two coherent systems with
EXC components. Suppose Ty >t, Ty >t, Ni(t) =r1 and Na(t) =rp. Let wi, wa, WY’) and W(Z") are defined
as before. Ifw(ln) <g wg) and (Xim —tIN1 (1) = 0) <y (Yin —t|Na2(t) =0) fori=1,...,n then

(T —t|Ty > t,Ni(t) =1r1) <g (T —t|Th > t,N2(t) = 1p).
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Proof. 1t is known that if X <y Y then Eg(X) < Eg(Y) for any increasing function g. Let w(ln) and wg")
be the probability vectors of two discrete random variables X and Y, respectively. Note that X < Y as

w§"> <g wg">. Now in view of the second equality of Equation (7) we have

Elg(X)] = Y W\ P(Xn —1 > x|N1 (1) = 0) = P(Ty —t > x|Ty > 1,Ny (1) = ry)
1

IN

n
Eg(Y) = Z ng;zp(xk:n —1 >x|N1 (t) = 0)
k=1

WP (Yen —1 > 2N (1) = 0)

A
D=

~
Il
=

P(Th—t > x|Th > t,N2(t) = rp).

Here is an example that satisfies the conditions of the Theorem 1.

Example 3. Let T} = ¢;(X),Xz,X3) = min{X;,max(X,,X3)} and suppose T» = ¢ (Y¥;,Y>,¥3) = max¥;. We
consider two following cases.

(i) IID case: Suppose X;’s and Y;’s are independent and distributed as F(x) = ¢=** and G(x) = e~ 9%,
respectively and A > 0. Assume that Ni(t) = Na(¢) =1, T1 >t and T» > t. Now these two systems are

satisfying the conditions of Theorem 1 as we have:

s; =(1/3,2/3,0), s, = (0,0,1) and therefore w; = (1,0) and w, = (0,1).

Also w?) =(2/3,1/3,0) and w?) =(0,1/3,2/3). Obviously wgs) <g wf) and

F(x)=Fx)=e?<G(x)=Gx) =%

It is known that the Binomial distribution B(n,p) is stochastically increasing in p. Therefore from
Equation (6), we have P(X;., —t > x|N;(¢) = 0) < P(Yiy —t > x|N2(t) = 0) for i = 1,2,3. Tt implies that

(T =171 > 1, N1 (1) = 1) <g (T —t|T2 > £, N2 (1) = 1).

For more clarity, we compare their survival functions as follows. From structures of these two systems
we have

2P(X) > t+x,Xo >t+x,X3<t)
2P(X; > t,X, > 1,X3 <t)
[P(X) >t+x))?
[P(X; >1)]?
o~ 2A(t+x)

= —— =8
e—2Mt

P(Ti—t>x|Ty >t,Ni(t) =1) =

—2Ax

Now for the second system we have

6P(X; >t+x,1<Xp <t+x,X3<t)+3P(X) >t+x,X2 >1+x,X3 <t)
3P(X) >1,X, >1,X3<1)
66—9(t+x)<e—9t _ e—9(t+x)) +36—29(t+x)
3e—20t

P(L—t>xIh>t,N (1) =1) =

— 2679x _ 6729x'
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It is easy to see that
E—ZAx < 26—0)5 o e—29x

)

as A > 0.

(ii) EXC case: Let F(x1,x2,x3) = e~ Li%i—A3 and G(y1,y2,y3) = e~ L1033 where A > 6 and X33 =
max(x],X2,%3). Again assume that Ny(t) =N,(t) =1, T} >t and T» > t. We now verify the conditions of
Theorem 1.
Ifi=1, then
P(X1:3 —t > X‘Nl(t) = O) = P(X1;3 > l+x)/P(X1;3 > t)
=F(t+x,t+x,t+x)/F(t,t,1)
— 673173x7/'k(t+x)/e73zflt — ef3x77Lx
< 673x76x
=PY13—1t > x|N2(t) =0).
That is (X1.3 —#|N1(t) =0) <y (Y13 —t|N2(t) = 0). If i =2, then from exchangeability of X;’s we have

F(t4x,t+x1+x)+3P1t <Xy <t+x,X2 >t+x,X3 >1+x)
Ft,1,1)

eI L 3(F (1 14 x,1 +x) — F(t +x,0 +x,14x))
e—3t—lt

P(X2;3 —t >x|N1 (l‘) = 0) =

33t —2x=A(1+x) _ 9 ,—3t=3x—A(1+x)
_ e 873t716t _ e—lx—ZX(:S _ Ze_x)
< 676x72x(3 _ 267}6)

=P(Ya3—1>x|N>(1) = 0).

That is (X2;3 —t‘Nl(t) = 0) < (Y2;3 —I|N2(l) = O).
Similarly it can be shown that (X33 —¢|Ni(t) = 0) <y (Y33 —t|N2(t) = 0). Hence all conditions of the
Theorem 1 are satisfied and therefore

(T —1|Ty > 1t,N(t) = 1) <y (T —t|Tr > 1,N2(t) = 1).

For more clarity, we also obtain the corresponding survival functions to see that the above stochastic
ordering between these two systems in fact holds true. For the first system we have

2P(X) > t+x,Xy >t+x,X3<t)
2P(X) > 1,X, > 1,X3 <t)
_ F(t+x,t4x,0)—F(t+x,1+x,1)
N F(t,t,0) —F(t,1,1)
e 2(t+x)=A(t4x) _ ,—3t=2x—A(t+x) B e*)L)C*Z)C

P(Ti—t>x|Ty >t,Ni (1) =1) =

e~ 2=t _ p=3t—At
Now for the second system we have
6P(X) >t+x,t <Xp <t+x,X3 <t)+3P(X; >t+x,Xp >t+x,X3 <t)
3P(X; >t,X, >1,X3 <t)

6[F (t +x,t,0) — F(t +x,t,t) — F(t +x,t +x,0) + F(t +x,t +x,1)]
3[F(t>ta0)_F(tatat)}

P(Th—t>x|Th >t,N (1) =1) =




259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

Signature and dynamic signature 9
n 3[F(t+x,t +x,0) — F(t +x,t +x,1)]
3[_(t7t70)_F(t7tvt)}
_ O[F(t+x,1,0) — F(t+x,t,1)] = 3[F (1 +x,t +x,0) — F(t +xt+xt)]
a 3[F(1,1,0) = F(t,1,1)]

After algebraic simplifications, it can be shown that

P(Ty—1 > x|Ty > 1,Ny(1) = 1) = 2 *(170) _ =x(246)

As A > 0, it is easy to verify that

e*lebc < zefx(lJrQ) 7x(2+9).

—e

Therefore again we see that the stochastic ordering between these two used systems with EXC components
holds true.

3.1 A proposed dynamic signature

Let T = ¢(X1,...,Xy), T >t and N(f) = r. Also suppose W(,_,) = (Wr1,...,wy,) is the vector of dynamic

signature defined in Equation (2) and w is its corresponding usual equivalent dynamic signature which
is of order n. Here a simple modified dynamic signature w* for w'®) is proposed that have some useful

properties. For i =1,... n its coordinates are given below
« _J O iZr
Wi_{wi i>r. (8)
In EXC case and in view of (7), it is obvious that
n
P(T—t>x|T>1,N(t)=r) =Y wiP(Xjn—1>x|N(t) =r). (9)
k=1

(n)

Theorem 2. The results of Theorem 1 hold true if w(ln) and w,’, are replaced by wi and w}, respectively
and also (Xiy —tIN1(t) = r1) <g¢ Yin —t|N2(t) = r2) for i=min(r;,rn)+1,...,n.

Proof. From Equation (9) and in view of the first equality of Equation (7) we have

n
Eg(X) =Y Wi P(Xpn—1 >x|Ni (1) = r1) = P(Ty —t > x|Ty > 1,Ny (1) = ry)
1
n
<Eg(Y)=) whP(Xgn—1t>xINi(2) =r1)
k=1

n
Y, Wi P(Xiw—1 > xINi (1) = ry)
k=r1+1

n

= Z w3 1 P(Xen — 1 > x|N1 (£) = 1)
n

< Y Wi i P(Yen —1 > X|No (1) = 1)

Z Wik P(Yien —1 > x|Na(t) = r2) = P(Ta —t > x|Ty > 1,Na(t) = 1r2).

k=ry

We note that P(X;., —t > x|N(t) =r) =0, for i=1,...,r. This completes the proof of the theorem. O
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Remark 3. In comparisons of used systems, Theorem 1 is an extension of part (a) of Theorem 2.6 in
Samaniego et al. (2009). On the other hand the conditions of Theorem 2 are less and easier than those

of Theorem 1. In Theorem 2, we do not need to compute the usual equivalent dynamic signatures WE”)

and Wg"), which are usually obtained after lengthy computations on dynamic signatures. Also the number
of stochastic comparisons of conditional random variables in Theorem 2 is n—min(ri,r2) which is less
than that of Theorem 3.1, that is n. One may verify the possibility of happening the following situation:

") <y wg") but wi and w3 are not ordered.

"
Obuiously, in this case the proposed dynamic signature w* is not applicable and one should use w™.
But the converse of this case may also happen (see the following example when the system components

lifetimes are IID).

Therefore as the above discussed, among w™ and w* one should clearly first take w* into consideration,
particularly when w(® is not usable. See the following example.

Example 4. Let s; = (0,0,0,4/5,1/5) and s, = (0,0,3/5,1/5,1/5) be the signatures of two systems
consisting of different IID components and suppose Nj(t) =2 and N,(¢) = 3. From Equation (2), it implies
that w; = (0,4/5,1/5) and wy = (1/2,1/2). Also it is easy to see that the equivalent vectors of w; and
w are w'”) =0.01 x (0,24,34,30,12) and w3 = (1/5,1/5,1/5,1/5,1/5), respectively. Note that in view of
the usual stochastic order, Wgs) and Wgs) are not ordered. Therefore, regardless the system components
be common or not, for comparing of two mentioned used systems, part (a) of Theorem 2.6 in Samaniego
et al. (2009), and Theorem 1, both are not usable. Whereas,

wi = (0,0,0,4/5,1/5) <4 w5 =(0,0,0,1/2,1/2).

Hence, under the assumptions of Theorem 2, we have (T} —t|Ty >t,N;(t) =2) <y (Ta —t|Tr > t,N>(r) = 3).

4 Some unique aging properties of the series systems

The preservation of reliability aging classes under the formation of coherent systems is an important topic
in reliability studies. This section considers the preservation of IFR and DFR classes in series systems and
particularly shows that among the coherent systems with INID or IID components, the series systems are
only DFR closed systems. This result is mainly obtained based on the system signatures. For a detailed
study on the preservation of reliability aging classes under the formation of coherent systems refer to
Navarro et al. (2013).

Let T = ¢(Xi,...,X,) be the lifetime of a coherent system in which the component lifetimes X;’s are IID
and have a common absolutely continuous distribution F.

Definition 3. (Samaniego (1985)) A system is said to be IFR (DFR) closed if T has an IFR (DFR)
distribution whenever F is an IFR (DFR) distribution. A class of systems is IFR (DFR) closed if each
system in the class is IFR (DFR) closed.

Samaniego (1985) showed that a coherent system with lifetime 7 = ¢(Xj,...,X,) and with IID com-
ponents is IFR closed if and only if

1 . i

£ (= )5t ()
—1 )

Yo (Xieis18) ) (ril)xl

is increasing in x where s = (s1,...,s,) is the system signature.
It is well known that the class of k-out-of-n systems (i.e., systems that work when at least k of their

n components work) is IFR closed (see for example Barlow and Proschan (1975)).

Note that all coherent systems with IID components are not necessary IFR closed. For example, in the
system with lifetime 7 = max{X;, min(X»,X3)}, k(x) is not a monotone function.

k(x) = x € (0,00)
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Remark 4. [t is easy to see that the system is DFR closed if and only if k(x) is decreasing in x. Also
note that if a system be IFR and DFR closed both, then k(x) should be a constant function. That is, s; =0
fori=2,....n and therefore sy = 1. It means that, only the series systems are both IFR and DFR closed.
This result is also proved in Navarro et al. (2013). Note that only in a series system s = (1,0,...,0).

Remark 5. Using the signatures of all 28 coherent systems of order n <4 and verifying the monotonicity
of k(x), we observed that in each case it is not decreasing except for series systems in which obviously
we have k(x) =n. Based on this observation, we conjectured that the series systems are only DFR closed
systems. This unique property of the series systems is proved in the following lemma, for both IID and
INID cases. First see an example given in Barlow and Proschan (1975) which is needed in the sequel.

Example 5. Let T = max(X;,X;) where X; and X, are independent and X; is exponentially distributed
with parameter A;, i = 1,2. Then the failure rate function of T is not monotone if 4; # A, but T has an
IFR distribution if A; = A,.

Lemma 2. A coherent system with INID components is a DFR closed system if and only if it be series.

Proof. It is well-known that if 7= min(X;,...,X,) and X;’s are independent with hx,(r) as the failure
rate function of X; then hr(r) = Y] hx,(r) and therefore a series system is obviously both IFR and DFR
closed system. Now to prove the Lemma, we use induction on the values of n. For n =2 and from
Example 5, note that T can not be max(X;,X>), as its failure rate function is not monotone and therefore
T = min(X;,X). Now assume that the result of the Lemma holds true for the systems of order n— 1
that is if ¢(X,...,X,—1) is DFR when Xi,...,X,—; are DFR then ¢(X;,...,X,—1) = min(Xj,...,X,_1) or
equivalently its structure function is ¢ (xy,...,x,—1) = H’l'*lx,-.

Now suppose ¢(Xi,...,X,) is DFR when Xj,...,X, are DFR. One can consider the system of order n as a
system of order 2 in which the subsystem consisting of xy,...x,_; is its first component and x;, is the second.
We note that the main system of order n is DFR closed, therefore both subsystems @ (xi,...,x,—1,1)
and ¢(xy,...,%,—1,0), which are of order n— 1 should be DFR closed (otherwise one can easily give
the examples of some structures ¢(Xj,...,X,), such that when the substructures ¢ (Xi,...,X,—1,1) and
o(X1,...,X4-1,0) are not DFR closed then the main structure ¢(Xi,...,X,) is also not DFR closed).
Now by pivoting on component n and using induction assumption, we conclude that, both subsystems
O(x1,...,xy—1,1) and @(xy,...,x,-1,0), which are of order n— 1, have the series structures. On the other
hand, in view of the case where n =2, these two subsystems and component n are also in series. That is
O(x1,... . xy—1,1) = H’l’*lx,- x 1 and ¢(xy,...,x,—1,0) :H'l’*lx,- x 0. Therefore we have

n—1 n
O(x1,. . xn) =220 (X1, oy X1, 1)+ (1 — ) @ (1, .., X0—1,0) = x;, ¥ Hxﬁ—O = Hxi.
1 1

This completes the proof of the lemma. O

Note that Lemma 2 holds true in IID case. That is the series systems with ITD components are only
DFR closed systems. Therefore Lemma 2 extends a previous result in Lindqvist and Samaniego (2019)
for IID case.

Remark 6. Based on Lemma 2, one can similarly show that the series systems with INID components
are only IFR closed systems. Note that unlike the unique property of DFR closedness of the series systems
in both IID and INID cases, the class of IFR closed systems with IID components is not contained only
by the series systems, as mentioned before it also includes the k-out-of-n systems.

The result of the Lemma 2 and the mentioned property in Remark 6, extend the Proposition 2.1 in
Navarro et al. (2013) from IID to INID case. Proposition 2.5 in Navarro et al. (2013), gives a sufficient
condition for a coherent system with INID components to be IFR(DFR) closed. Therefore in view of
Remark 6, Lemma 2 presents a more stronger result than the Proposition 2.5 in Navarro et al. (2013).
Also for the systems with dependent components, some conditions are obtained in Navarro et al. (2013).
They showed that for different coherent systems, some aging classes are preserved.
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5 Concluding remarks

This paper presents new properties and applications of system signatures and dynamic signatures, which
are essential tools for analyzing the stochastic behavior and aging characteristics of coherent and used
systems. Following an extensive review in Section 2, we explored comparisons among coherent systems
and examined the relationships between the structure function, reliability function, and system signature.
The main contributions are presented in Sections 3 and 4. In Section 3, we investigate comparisons of
the residual lifetimes of coherent used systems. By introducing the concept of an equivalent dynamic
signature, we derive extended results for systems composed of different exchangeable components. Ad-
ditionally, we propose an alternative to the equivalent dynamic signature, which exhibits several useful
properties for comparing used systems.

Section 4 focuses on unique aging properties of series systems. Specifically, we study the relationship
between system signatures and the concepts of IFR and DFR closed systems. It is shown that, under
INID and ITID assumptions, series systems are only DFR closed, thereby extending existing results in the
literature. Illustrative examples are provided throughout the paper to clarify and support the theoretical
findings.
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