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Abstract. In this paper, we consider a Markov-switching bilinear process (MS-BL) that exhibits rich6

dynamic behavior and plays an important role in modeling non-Gaussian data characterized by structural7

breaks. In such models, the parameters depend on an unobservable (hidden) Markov chain with a finite8

state space. Although numerous recent studies have focused on the statistical aspects of Markov-switching9

models, systematic investigations of the probabilistic properties of this class of nonlinear models remain10

relatively scarce. So, we derive conditions for stationarity and compute the moments of the process up to11

the third order. Our analysis reveals that the conditions ensuring local stationarity within each regime12

of the observed process are neither sufficient nor necessary. Furthermore, we show that the second-order13

structure of the process is analogous to that of a Markov-switching ARMA (MS-ARMA) model with an14

additional uncorrelated white noise component. Therefore, the examination of higher-order moments15

becomes essential to distinguish between (locally) linear and nonlinear models. To illustrate the practical16

relevance of our theoretical results, we conduct Monte Carlo simulation studies and apply the proposed17

model to the exchange rate of the Algerian Dinar against the Euro. The empirical findings indicate18

that the proposed approach provides a better fit and demonstrates superior performance compared to19

alternative models.20

Keywords: Higher-order moments; Markov-switching bilinear models; Stationarity.21
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1 Motivations23

Markov-switching (MS) time series models proposed by Hamilton (1989) have recently received a growing24

interest in several areas of statistics because of their ability to describe adequately various financial time25

series and continue to gain more popularity, especially to model empirical macroeconomics and dynamic26

econometrics time series (Xt)t∈Z, Z= {0,±1,±2, ...}. The advantages of MS models are multiple, for27

instance, among others:28

(i) MS models are nonlinear models (even locally) because linear models are not, in general, always suit-29

able for use.30

(ii) Higher flexibility in capturing the persistence and/or asymmetric effect in datasets.31

(iii) In modeling time series which exhibit smooth or abrupt structure which occur frequently or occa-32

sionally depending on the transition probability of the chain.33

So, there exist various different ways to model such a series exhibiting break changes through a finite34

number of ”regimes”. A rather general model is given by35

Xt = fst (Xt−i,et− j,0 < i ≤ P,0 < j ≤ Q)+ et ,36
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for some measurable function f. depending on some finite state Markov chain (st)t that control the37

change of regimes and some innovation process (et)t . However, in literature, some locally (given st)38

linear or nonlinear models (determined by f.) were investigated in order to study the probabilistic and39

statistical properties of such models. Indeed, the stationary ARMA models in which the parameters are40

allowed to change through time according to Markov chain denoted by MS−ARMA have, got considerable41

attention recently. For instance, Yang (2000), Francq and Zakoïan (2001), Stelzer (2009), Lee (2005), Yao42

and Attali (2000), Boubacar and Rabehasaina (2020) and the references therein, are references aims to43

describe the probabilistic and/or statistical properties of MS−ARMA models. Namely, conditions assuring44

the strict stationarity, ergodicity, the existence of higher-order moments and spectral representation. On45

the other hand, to develop some appropriate statistical methods and their asymptotic inference. Francq46

and Zakoïan (2005), Bauwen et al. (2010), Alemohammad et al. (2020), Bibi and Ghezal (2015) and Wee47

et al. (2022) have proposed a MS−GARCH model. So, the probabilistic structure, as in MS−ARMA48

models were investigated and some procedures for estimating and forecasting the MS_GARCH model49

was studied. Recently, Bibi and Ghezal (2015) and Bibi and Hamdi (2025) and have introduced a new50

class of MS−bilinear (MS−BL for short) model where several probabilistic properties were studied and51

explicit conditions ensuring the existence of a strictly stationary solution of such a model to belong in52

L2 are given. Moreover, it is also known that some bilinear processes have properties that are similar53

to those of an autoregressive conditionally heteroscedastic (ARCH) model, which plays important role in54

financial mathematics see subsection 3.1.55

In this paper, a process (Xt)t defined on some probability space (Ω,ℑ,P) is called MS−BL(p,q,P,Q) if it56

generated by the following stochastic difference equation:57

Xt = a0 (st)+
p

∑
i=1

ai(st)Xt−i +
q

∑
j=0

b j(st)et− j +
Q

∑
j=1

P

∑
i=1

ci j(st)Xt−iet− j. (1)58

In (1), the functions ai(st), b j(st) and ci j(st) depend upon a Markov chain (st)t that controls the dynamics59

of Xt and is subject to the following assumption:60

The Markov chain (st)t is irreducible and aperiodic with a finite state space S= {1, ...,d}, the n−step61

transition probability matrix, that determines the evolution in S is given by62

P(n) =
(

p(n)i j

)′

(i, j)∈S×S
,63

where p(n)i j = P(st = j|st−n = i), so by Chapman-Kolmogorov Equations P(n) = Pn. The one-step transition64

probability matrix P := (pi j) where pi j := p(1)i j = P(st = j|st−1 = i) for i, j ∈ S, such that
d
∑
j=1

pi j = 1, for65

all i. The stationary distribution of the Markov chain (st)t will be denoted by Π= (π(1), ...,π(d))′ that66

solves the equation P′Π = Π where π(i) = P(s0 = i), i = 1, ...,d. The chain (st)t is said to be independent67

if pi j = π ( j) for all i ∈ S.68

The innovation process (et)t is assumed to be independent and identically distributed (i.i.d) with mean69

0 and variance σ2. In addition, we shall assume that et and {(Xs−1,st) ,s ≤ t} are independent.70

As already pointed out by Bibi and Ghezal (2015), the MS−BL(p,q,P,Q) includes as special cases71

several classes of interesting models having been investigated in the literature. It is worth noting that the72

key difference between MS−BL and a threshold model is that the former assumes that the underlying73

state process that gives rise to the nonlinear dynamics (regime switching) is latent, whereas threshold74

models commonly allow the nonlinear effect to be driven by observable variables but assume the number75

of thresholds and the threshold values to be unknown. Before we proceed, we will first introduce some76

algebraic notations and definitions.77
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Higher-order moments of Markov switching bilinear models 3

1.1 Algebraic notations and definitions78

Some notations are used throughout the paper:79

• For some specifications of the chain (st)t , i.e., constant (d = 1), independent and dependent chain,80

in the sequel we shall indicate the corresponding models by C−BL, I−BL and D−BL respectively.81

• I(n) is the n×n identity matrix, I :=
(

I(s)
... . . .

...I(s)
)

s×ds
, is the d−block matrix, and 1(d) (resp. 1 (d))82

is a d ×d matrix (resp. d ×1 vector) whose components are matrix unity (resp. 1).83

• O(k,l) denotes the matrix of order k× l whose entries are zeros, for simplicity we set O(k) := O(k,k)84

and O(k) := O(k,1).85

• The spectral radius of a square matrix M is denoted by ρ (M), ∥.∥ denotes any operator norm86

on the set of m× n and m× 1 matrices, ⊗ is the usual Kronecker product of matrices and M⊗r =87

M⊗M⊗ ...⊗M, r− times. If (M(i), i ∈ I) is n×n matrices sequence, we shall note for any integer l88

and j,
j

∏
i=l

M(i) = M(l)M(l +1) . . .M( j) if l ≤ j and I(n) otherwise.89

• For any function f : S → Mn×m(R), where Mn×m(R) denotes the space of real n×m matrices, we90

write91

P( f⊗r) =

 p11 f⊗r(1).. pd1 f⊗r(1)
...

...
p1d f⊗r(d).. pdd f⊗r(d)

 , P(n)( f⊗r) =


p(n)11 f⊗r(1).. p(n)d1 f⊗r(1)

...
...

p(n)1d f⊗r(d).. p(n)dd f⊗r(d)

92

and93

Π( f⊗r) =

 π(1) f⊗r(1)
...

π(d) f⊗r(d)

 .94

In the sequel, we will use the following result due to Francq and Zakoïan (2005) stated in the next95

lemma.96

Lemma 1. 1. For i ≥ 1, if (Zt−i)t is an integrable random variable belonging to σ (et−s,s ≥ i), then97

π(k)E {Zt−i|st = k}=
d

∑
j=1

E {Zt−i|st−i = j} p(i)jk π( j).98

2. If f : S→ Mn×n(R) and g : S→ Mn×1(R), then for any k > 0 and τ > k,99

E
{

f (st) f (st−1)... f (st−k+1)g(st−k)|st−k
}
= I{P( f )}k Π(g).100

Remark 1. [Independent switching]. For the model I −BL, then (P( f ))k = P
(

f (.)(E { f (st)})k−1
)

and101

IP( f ) = [E { f (st)} , ...,E { f (st)}] where in the last equality, the matrix E { f (st)} is duplicated d−times.102

We arrange the rest of the paper in the following manner. In the next section, we give the Markovian103

state-space representation, which is used to derive conditions for stationarity (in the strong and weak104

sense) and a recursive formula for the higher-order moments. Section 3 is devoted to giving explicit105

expressions of the second, third and fourth-order moments of some particular MS−BL models. Section 4106

provides results of a Monte Carlo experiment and section 5 concludes the paper.107
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2 Markovian representation of MS−BL and its properties108

In the rest of the paper, we shall restrict ourselves to the case when b j(.) = 0, j = 1, ...,q in (1), i.e.,109

without moving average part110

Xt =
p

∑
i=1

ai(st)Xt−i +
Q

∑
j=1

p

∑
i=1

ci j(st)Xt−iet− j + et , (2)111

which denoted also hereafter MS−BL(p,0, p,Q). Because it is difficult to handle the product terms like112

Xtet− j, j > 0, Liu (1992) when d = 1, introduced the so-called lower triangular model for which ci j (.) = 0,113

if i < j. So in this paper we extend the lower tridiagonal model to include a MS−BL one, i.e.,114

Xt =
p

∑
i=1

ai(st)Xt−i +
Q

∑
j=1

p

∑
i= j

ci j(st)Xt−iet− j + et . (3)115

The representation (3) has however the advantage to admit the state-space representation Xt =H ′Y t where116

Y t = Γst (et)Y t−1 +η(et), (4)117

with Γst (et) = Γ0(st)+ etΓ1(st) where the matrices Γ0(st), Γ1(st) and the vectors η(et), H are explicitly118

given in Bibi and Ghezal (2015). Note that the representation (4) shows that the MS−BL(p,0, p,Q)119

can be represented as a multidimensional first-order random coefficient Markov-switching Autoregressive120

(MS−RCAR(1)) model, and hence the extended process Zt := (Y ′
t ,st)

′, is an aperiodic Markov chain121

on (Z ,B (Z )), where Z = Rs ×S. This compact representation allows us to provide a necessary and122

sufficient condition for the existence of strict stationery, ergodic, and ℑt = σ (et−n,st−n,n ≥ 0)−measurable123

(or causal) solutions for (3). These concepts are ensured under the strict negativeness of the Lyapunove124

exponent defined by γ (Γ) := inf
t≥1

1
t E

{
log

∥∥∥∥t−1
∏
i=0

Γst−i(et−i)

∥∥∥∥} (the chosen of the norm is unimportant in this125

definition). However, it follows from Bibi and Ghezal (2015) that the unique strictly stationary and126

ergodic solution of (4) is given by the first component of127

Y t =
∞

∑
k=0

{
k−1

∏
i=0

Γst−i(et−i)

}
η(et−k), a.s., (5)128

with the usual convention
k′

∏
i=k

= 1, whenever k′ < k.129

Remark 2. For the process (Xt)t defined by Xt = c11(st)Xt−1et−1 + et , the Lyapunov exponent is130

d

∑
i=1

π (i)E {log(|c11(i)e0|)} ,131

so
d
∏
i=1

|c11(i)|π(i) < e−E{log|e0|} constitutes the necessary and sufficient condition for strict stationarity.and132

ergodic solution. Note that when (et)t is Gaussian, the necessary and sufficient condition reduces to133

d
∏
i=1

|c11(i)|π(i) < 1.88736. It is worth noting that this example shows the existence of explosive regimes (i.e.134

,|c11(i)|> 1 compared with the standard case) does not preclude the strict stationarity.135

Recalling here (interested readers are advised to see Bibi and Ghezal (2015) for more details) that if136

σ2m+1 = E
{

e2m+1
t

}
= 0, σ2m = E

{
e2m

t
}

<+∞ for any integer m, and if137

λ(m) := ρ
(
P
(
Γ⊗m))< 1, (6)138
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where Γ⊗m := (Γ⊗m(i),1 ≤ i ≤ d) with Γ⊗m(.) = E
{

Γ⊗m
st (et)|st = .

}
, then equation (4) has a unique strictly139

stationary solution (Y t)t given by (5) and the process (H ′Y t)t is also a unique, strictly stationary, causal140

and ergodic solution of equation (3) which satisfies X2m
t ∈ L2m.141

Remark 3. For the model I −BL the condition for the existence a strictly stationary solution in Lm is142

that λ(m) := ρ
(
E
{

Γ⊗m
st

})
< 1 where E

{
Γ⊗m

st

}
=

d

∑
k=1

Γ⊗m(k)π (k).143

2.1 Computation of the higher-order moments144

Once the second-order stationarity condition is established, it is useful to compute the expectation and145

some cumulants of the process (Y t)t . A property which will be heavily used in the sequel, associated with146

representation (4) is given in the following lemma.147

Lemma 2. Consider the representation (4), then for any integer m ≥ 0, we have148

Y⊗m
t =

m

∑
i=0

Ψ(m)
i (st ,et)Y⊗i

t−1, (7)149

where the matrices Ψ(m)
i (st ,et)

′ s are uniquely determined by Γst (et) and η(et) according to the following150

recursions151

Ψ(m)
0 (st ,et) = η⊗m(et), Ψ(1)

1 (st ,et) = Γst (et), and for any m > 0,152

Ψ(m+1)
i (st ,et) = η(et)⊗Ψ(m)

i (st ,et)+Γst (et)⊗Ψ(m)
i−1 (st ,et) ,153

with the convention Ψ(m)
i (st ,et) = 0 when i > m or i < 0 and Y⊗0

t = Ψ(0)
0 (st ,et) = 1.154

Proof. The formula (7) for m = 1 is given by (4). Assuming that (7) holds true for some m ≥ 1, then we155

have156

Y⊗(m+1)
t =

m

∑
i=0

(
Γst (et)Y t−1 +η(et)

)
⊗Ψ(m)

i (st ,et)Y⊗i
t−1157

=
m

∑
i=0

{
η(et)⊗

{
Ψ(m)

i (st ,et)Y⊗i
t−1

}
+
(

Γst (et)⊗Ψ(m)
i (st ,et)

)(
Y t−1 ⊗Y⊗i

t−1
)}

158

=
m+1

∑
i=0

{{
η(et)⊗Ψ(m)

i (st ,et)
}

Y⊗i
t−1 +

{
Γst (et)⊗Ψ(m)

i−1 (st ,et)
}

Y⊗i
t−1

}
159

and the result follows.160

Now, we note U (m) =
(
π (k)E

{
Y ′⊗m

t |st = k
}

,k = 1, ..,d
)′ , then161

π (k)E
{

Y⊗m
t |st = k

}
=

m

∑
i=0

Ψ(m)
i (k)E

{
Y⊗i

t−1|st = k
}

π (k)162

=
m

∑
i=0

Ψ(m)
i (k)∑d

j=1 E
{

Y⊗i
t−1|st−1 = j

}
p jkπ ( j) , (8)163

where Ψ(m)
i (k) = E

{
Ψ(m)

i (st ,et) |st = k
}

, so U (m) =
m
∑

i=0
P
(

Ψ(m)
i (k)

)
U (i), hence under the condition (6),164

E
{

Y⊗m
t

}
= IU (m) and U (m) =

(
I(dsm)−P

(
Ψ(m)

m (k)
))−1

{
m−1
∑

i=0
P
(

Ψ(m)
i (k)

)
U (i)

}
.165
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Example 1. Explicit formulae for some power m are addressed below166

Ψ(1)
i (k) =

{
η(0), i = 0,
Γ0 (k) , i = 1.

167

168

Ψ(2)
i (k) =


η(0)⊗2, i = 0,
η(0)⊗Γ0(k)+η(1)⊗Γ1(k)+Γ0(k)⊗η(0)+Γ1(k)⊗η(1), i = 1,
Γ⊗2

0 (k)+σ2Γ⊗2
1 (k), i = 2.

169

For m = 3, the non-zeros terms in Ψ(3)
i (k), i = 0,1,2 and 3 are170

Ψ(3)
i (k) =



η(0)⊗3, i = 0,
η(0)⊗2 ⊗Γ0k)+η(1)⊗2 ⊗Γ1k)+η(0)⊗Γ0(k)⊗η(0)+η(0)⊗Γ1(k)⊗η(1)(0)

+Γ0(k)⊗η(0)+Γ1(k)⊗η(1), i = 1,
η(0)⊗Γ⊗2

0 (k)+η(2)⊗Γ⊗2
1 (k)+η(1)⊗ (Γ0(k)⊗Γ1(k)+Γ1(k)⊗Γ0(k))

+Γ0(k)⊗η(0)⊗Γ0(k)+Γ0(k)⊗η(1)⊗Γ1(k)+Γ1(k)⊗η(1)⊗Γ0(k)
+Γ1(k)⊗η(2)⊗Γ1(k) i = 2,(
Γ⊗2

0 (k)+σ2Γ⊗2
1 (k)

)
⊗Γ0(k)+σ2 (Γ0(k)⊗Γ1(k)+Γ1(k)⊗Γ0(k))⊗Γ1 (k) , i = 3

171

where η(i) = E
{

ei
tη(et)

}
, i = 0,1, ..... The fourth−order moments is also useful to study which may be172

deduced from the recursion U (m).173

Note here that the recursion U (m) demonstrates the dependence of the m− th moment terms on the174

(m− 1)th−moment. Provided that the (m− 1)th−moment.converges, and the summation in (8) is also175

stable, this term will converge. Moreover, we note that the matrices Ψ(m)
i (k) are not zero for any k ∈ S.176

3 Case studies177

In this section we examine the following particular cases of MS−BL models (3), i.e.,178 {
(Superdiagonal model): Xt = a(st)Xt−let−k + et , 0 < k < l, (MS-SBL)
(Diagonal model): Xt = a(st)Xt−ket−k + et , 0 < k, (MS-DBL) (9)179

where for the sake of generality it is assumed that (et)t is i.i.d., Gaussian sequence, and we set σr = E {er
t }.180

So, the even moments of (et)t up to eight order are σ2 = σ2, σ4 = 3σ2
2 , σ6 = 15σ3

2 , and σ8 = 105σ4
2 while181

all the odd moments are equal to zero. The above models was studied in non switching framework182

(i.e., d = 1) by, among others, Gabr (1988) and Martin (1999) who gave some general discussions on183

the properties of such models including stationarity and moments properties. Moreover, Grange and184

Anderson (1978) studied the superdiagonal in detail and showed that this series might be mistaken as185

a white noise. In the following we give an explicit expression of the higher-order moments of the above186

models. Let us consider187

γX (i) = E {(Xt −µ)(Xt−i −µ)}= µX (i)−µ2, (10)188

γX (i, j) = E
{
(Xt −µ)(Xt−i −µ)(Xt− j −µ)

}
= µX (i, j)−µ {µX (i)+µX ( j)+µX (i− j)}+2µ3, (11)189

where µ = E {Xt}, µX (i) = E {XtXt−i} and µX (i, j) = E
{

XtXt−iXt− j
}

. In this illustration, the autocorrela-190

tions of
(
X2

t
)

noted ρ2 (i) = (µ(2)(i)− µ2
X (0))/Var

{
X2

t
}

where µ(2)(i) = E
{

X2
t X2

t−i
}

, it be use as a power191
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criterion for bilinear model identification, which often replaced by a standardized third central moments,192

i.e.,193

ρ3(i, j) = E
{
(Xt −µ)(Xt−i −µ)(Xt− j −µ)

}
/{Var{Xt}}3/2

194

=
{

µX (i, j)−µ {µX ( j)+µX (i)+µX (i− j)}+2µ3}/γ3/2
X (0).195

The last moment has several features with respect to ρ2 (i). For instance, the coefficients of skewness196

of (Xt)t may be derived from ρ3(i, j). Moreover, if
(
X2

t
)

t is generated by a (locally) linear model then197

ρ2 (i) can be nonzero whereas ρ3(i, j) will be zero for all lags i and j. Also ρ3(i, j) should provide more198

information about the model under study than the autocorrelation of
(
X2

t
)

t . Note that from Gabr (1988),199

the following symmetry relations hold γX (i, j) = γX ( j, i) = γX (−i, j− i) = γX (i− j,− j ) where i, j ∈ Z. So,200

it is sufficient to calculate γX (i, j) for 0 ≤ i ≤ j. In the sequel we shall note for any i ≥ 1, ai =
(
ai( j), j ∈ S

)
201

and
i

∏
j=1

P(k) (.) = Pi(k) (.).202

3.1 Superdiagonal model203

Note that the MS−SBL model may be written as Xt = a(st)Xt−ket−k+m+et ,2≤ k,1≤m≤ k−1, which is con-204

ditionally heteroscedastic (but not a MS−ARCH model). Indeed, for k= 2, let ht (l) :=E
{

π (l)X2
t I{st=l}|ℑt−2

}
,205

l ∈ S, then we have206

ht (l) = σ2a2(l)π (l)E
{

X2
t−2I{st=l}|ℑt−2

}
+π (l)σ2207

= σ2a2(l)
d

∑
l′=1

E
{

X2
t−2I{st−2=l′}|ℑt−2

}
P(2)

ll′ π
(
l′
)
+π (l)σ2208

= σ2a2(l)X2
t−2

d

∑
l′=1

I{st−2=l′}P(2)
ll′ π

(
l′
)
+π (l)σ2.209

So, ht = ∑d
l=1 ht (l) is given by ht =

{
1P(2)

(
σ2a2

)
Zt−2

}
X2

t−2 +σ2 where Zt =
(
I{st=1}, ..., I{st=d}

)′, this show210

that MS−SBL is an ARCH model. From the discussion in subsection 2.1, it can be shown that a sufficient211

condition for the strict stationarity solution in L2m is that ρ
(
P(k)

(
σ2ma2m

))
< 1, m ≥ 1.212

Lemma 3. [First and second-order moments] For the MS−SBL, assume that ρ
(
P(k)

(
σ2a2

))
< 1, which213

ensures the second-order stationarity, then we have214

1. µ(1) (k) = E {Xt}= 0, E
{

Xte2
t
}
= 0, E

{
X2

t et
}
= 0, E

{
X2

t e3
t
}
= 0, E {Xtet}= σ2, E

{
Xte3

t
}
= σ4,215

2. µ(2) (k) = E
{

X2
t
}
= 1µ

(2)
(k) where µ(2) (k) =

(
I(d)−P(k)

(
σ2a2

))−1
Π(σ2) ,216

3. µ̃(2) (k) = E
{

X2
t e2

t
}
= 1µ̃

(2)
(k) where µ̃(2) (k) = σ2

2P(k)
(
a2
)(

I(d)−P(k)
(
σ2a2

))−1
Π(σ2)+Π(σ4).217

4. γX (i) = µ(2) (k)δ{i=0}.218

Proof. The proof is straightforward and hence omitted.219

The nullity of γ(i) for i > 0, shows that the MS − SBL appears as a sequence of weak white noise220

(0−dependent). So, in order to provide more informations, we need to investigate some moments of221

order greater than 2.222
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Lemma 4. Under the condition of Lemma 3, all the third-order moments γ(i, j) of the MS−SBL, are223

equal to zero except i = k−m and j = k for which we have224

γX (k−m,k) = 1P(k−m) (a)P(m)(σ2)
(

I(d)−P(k) (σ2a2))−1
Π(σ2) .225

Proof. It is easy to see that γX (0,0) = 0. For i = k−m, j = k, we have226

π (l)E {XtXt−kXt−k+m|st = l}= π (l)a(l)E{Xt−k+met−k+mX2
t−k|st = l}227

= 1P(k−m) (a)U ,228

where229

U = (E
{

Xt−k+met−k+mX2
t−k|st−k+m = l

}
π (l) , l = 1, ..,d)′ = P(m)

(
σ2)E{X2

t |st = u}π (u) ,u = 1, ..,d)′.230

So,231

γX (k−m,k) = 1P(k−m) (a)P(m)(σ2)
(

I(d)−P(k) (σ2a2))−1
Π(σ2) .232

233

Lemma 5. For the MS−SBL, we have under the condition ρ
(
P(k)

(
σ2la2l

))
< 1, l ≥ 1.234

1. µ(r) (k) = E {X r
t }= 1µ

(r)
(k) I{r=2l} where235

µ
(2l)

(k) =
(

I(d)−P(k)
(

σ2la2l
))−1

(∑l−1
i=1 C2i

2lσ2(l−i)P(k) ( σ2ia2i)µ
(2i)

(k)+Π(σ2l)).236

2. µ̃(r) (k) =E {(Xtet)
r}= 1µ̃

(r)
(k) where µ̃

(r)
(k) = σ2r+1

(
∑
[ r

2 ]
i=1 C2i

r P(k)
(
σ2r a2i

)
µ
(2i)

(k)
)

, [x] is the integer237

part of x.238

Proof. 1. For the first assertion, we have for any integer r ≥ 1,239

X r
t = er

t +∑r
i=1 Ci

ra
i (st)X i

t−kei
t−k+mer−i

t .240

So if r = 2l +1, then due to Gaussianity of (et)t , the expectation of the first term is 0 and because241

if i is even integer, r− i is odd and vice versa. Therefore the expectation of the second sum is also242

0. In contrast if r = 2l say, then243

E
{

X2l
t |st = j

}
π ( j) = E

{
e2l

t |st = j
}

π ( j)+∑l
i=1 C2i

2la
2i ( j)E

{
X2i

t−k|st = j
}

π ( j)σ2iσ2(l−i)244

= σ2lπ ( j)+∑l
i=1 C2i

2la
2i ( j)∑d

u=1 E
{

X2i
t−k|st−k = u

}
p(k)u j π (u)σ2iσ2(l−i).245

By passing to vectorial representation the results follows. In particular,246

µ(4) (k) = E
{

X4
t
}
= 1

(
I(d)−P(k) (σ4a4))−1(

6σ2
2P(k) (a2)µ

(2)
(k)+Π(σ4)

)
.247

2. The proof of the second assertion is similar and is omitted.248

249

Now, we carry out a second-order analysis of the squares (Yt = X2
t ) of MS− SBL which providing an250

alternate differentiation technique characterizing the processes 0−dependent251

Correctted Proof



Higher-order moments of Markov switching bilinear models 9

Lemma 6. For the second-order stationary MS − SBL, consider the process Yt = X2
t and assume (to252

facilitate the exposition) that k = 2,m = 1 and for any j ≥ 0, we set253

µ
Y
( j) =

(
π (u)E

{
YtYt− j|st = u

}
,u = 1, ...d

)′
,254

then under the condition ρ
(
P(2)

(
σ2a2

))
< 1 we have255

µ
Y
( j) =


µ
(4)

(2) if j = 0(
I(d)−P

(
σ2a2

))−1P(σ2)µ
2
(2) if j = 1

P(2)
(
σ2a2

)
µ

Y
(n−2)+P(n) (σ2)µ

2
(2) if j ≥ n ≥ 2

,256

and hence γY ( j) = 1µ
Y
( j)−µ2

2 (2) for any j ≥ 0.257

Proof. The first part is obtained from the Lemma 5. For the second, π (u)E {YtYt−1|st = u,}= a2 (u)π (u)E{X2
t−2X2

t−1258

e2
t−1|st = u}+σ2π (u)E

{
X2

t−1|st = u
}

, so259

µ
Y
(1) = P

(
σ2a2)µ

Y
(1)+P

(
a2)µ

(2)
(2) .260

The third one is immediate.261

Remark 4. According to Brockwell and Davies (1987) Section 3.2, it follows that if (Xt)t is a is262

q−dependent and (et)t is i.i.d. then for any measurable functions of (Xt)t is q−dependent. So, since263

because γY ( j) ̸= 0 implies that the process (Yt)t is not an 0−dependent and hence (Xt)t is fare from an264

MA(1) process.265

The next corollary we summarize some results listed above when (st)t is independent sequence noted266

hereafter I − SBL. The proof of this corollary is omitted as it consists of straightforward, but tedious267

algebra.268

Corollary 1. [Switching-independent case] Set a = E {a(st)} and λ = a2σ2, then, for the I − SBL, we269

have:270

1. µ = 0.271

2. γX (i) = σ2 (1−λ )−1 δ{i=0}.272

3. γX (i, j) = σ2
2 a(1−λ )−1 δ{i=k−m, j=k}.273

4. E {X r
t }=

(
σ2l +

l−1
∑

i=1
C2i

2lσ2iσ2(l−i)a2iE
{

X2i
t
})(

1−σ2l a2l
)−1

δ{r=2l}.274

5. γY ( j) =



2σ2(
1−σ2a2

)(
1−σ4a2

)
,

j=0,

2σ3
2 a2(

1−σ2a2
)2 , j=1,

σ2a2γY (n−2) , j=n≥ 2.

275

Remark 5. The results of the fifth assertion of above corollary shows clearly that when (st)t is an276

independent sequence, the process
(
X2

t
)

t associated to k = 2 and m = 1 has the same covariance structure277

of an MS−ARMA(2,1), with an independent sequence (st)t , i.e.,278

Zt = ω (st)+a1(st)Zt−1 +a2(st)Zt−2 +b(st)et−1 + et with a1(.) = 0. (12)279

Correctted Proof



10 Abdelouahab Bibi

Indeed, the covariance structure of (12) is given by γZ ( j) = 1µ
Z
( j)−µ2

Z where280

µ
Z
= 1

(
I(d)−P(2) (a)

)−1
Π(ω)281

and282

µ
Z
( j) =


(

I(d)−P(2)
(
a2

2
))−1(

Π
(
ω2

)
+2P(2) (ωa2)µ

Z
+Π(σ2b)+Π(σ2)

)
, j = 0,(

I(d)−P(a)
)−1

(
P(b)Π(σ2)+P(ω)µ

Z

)
, j = 1,

P(a2)µ
Z
(n−2)+P(n) (ω)µ

Z
, j = n > 1,

283

which is reduces in I −SBL to γZ ( j) = µZ( j)−µ2
Z where µZ = (1−a2)

−1 ω and284

γZ ( j) =


σ2

(
1−a2

2

)−1
(1+b2), j = 0,

σ2b2 (1−a2)
−1 , j = 1,

a2γZ ( j−2) , j ≥ 2.

285

Comparing γZ ( j) and that given in fifth assertion of corollary 1, it can be shown that for ω = (1−a)µ(2) (k),286

a2 = σ2a2 and b2 = 1+σ4a2, γZ ( j) and γY ( j) coincide. This finding excludes the I −SBL to being a weak287

white noise. (0−dependent). Moreover, the results of parts 1,2 and 3 of the above Corollary are identical288

to the results given by Gabr (1988) when d = 1. Furthermore, it is easy to see that the results in part 4289

of Corollary 1 are in agreement with the results given by Martin (1999).290

Example 2. Consider d = 2, the entries of the transition matrix P are p11 = α, p22 = β , the ergodic291

distribution is then π (1) = (1−α)/(2−α −β ). The kurtosis (in terms of a(1) and a(2)) of MS−SBL are292

shown in the Figure 1. The kurtosis of MS− SBL in above figure are strictly positive and hence their293

distributions are leptokurtic i.e., the tails are thicker than normal one. Note here that all calculations294

thereafter have been performed with native code under MAT LAB’15 computation language.
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Figure 1: Kurtosis of the two-state MS−SBL. Left dependent D−SBL and right I −SBL with α = 0.75 and β = 0.95.

295
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3.2 Diagonal model296

Lemma 7. [ Second-order moments] If (Xt)t is generated by a MS −DBL, then under the condition297

ρ
(
P(k)

(
σ2a2

))
< 1 we have298

1. µ̃(1) (k) = E {Xtet}= σ2,299

2. µ(1) (k) = E {Xt}= 1µ(1) (k) where µ(1) (k) = P(k) (a)Π(σ2),300

3. µ̃(2) (k) = E
{

X2
t e2

t
}
= 1µ̃

(2)
(k) where µ̃

2
(k) =

(
I(d)−P(k)

(
σ2a2

))−1
Π(σ4) and µ(2) (k) = E

{
X2

t
}
=301

1µ
(2)

(k) where µ
(2)

(k) = P(k)
(
a2
)

µ̃
(2)

(k)+Π(σ2).302

4. µ
X
( j) =


P(k)(a2)

(
I(d)−P(k)

(
σ2a2

))−1
Π(σ4)+Π(σ2) , j = 0,

P(k) ( a)P(k) ( 2σ2)Π(σ2) , j = k,
P(k) (a)P(n−k) (σ2)µ

(1)
(k) , j = n > k.

303

Proof. The proof is straightforward and hence omitted.304

Note that in standard case (d = 1) the process (Xt)t is an k−dependent and hence γ ( j) = 0 for all j ̸= k,305

in contrast here γ ( j) ̸= 0 for all j. This finding could be used as a sufficient condition for testing the306

Markovianity switching with dependent chain. Similar results stated in Lemma 5 for MS−SBL may be307

given in MS−DBL one.308

Lemma 8. For the MS−DBL and under the condition ρ
(
P(k) (σrar)

)
< 1, we have309

1. µ̃(r) (k) = E {(Xtet)
r}= 1µ̃

(r)
(k) where310

µ̃
(r)

(k) =
(

I(d)−P(k)(σr ar)
)−1

(∑[ r
2 ]−1

i=1 C2i
r σ2(r−i)P(k) ( a2i) µ̃

(2i)
(k)+Π(σ2r)).311

2. µ(r) (k) = E {X r
t }= 1µ

(r)
(k) =

 1
(

Π(σ2n) +∑n
i=1 C2i

2nσ2(n−i)P(k)
(

a2i
)

µ̃
(2i)

(k)
)
, r = 2n,

1∑n
i=1 C2i−1

2n−1 P(k)
(
σ2(n−i) a2i−1

)
µ̃
(2i−1)

(k) , r = 2n−1.
312

Proof. For any integer r ≥ 1, we have (Xtet)
r = e2r

t +∑r
i=1 Ci

ra
i (st)(Xt−ket−k)

i e2r−i
t , so313

π ( j)E
{
(Xtet)

r |s j = j
}
= E

{
e2r

t |st = j
}

π ( j)+∑[ r
2 ]

i=1 C2i
r a2i ( j)E

{
(Xt−ket−k)

2i |st = j
}

π ( j)σ2(r−i)314

= σ2rπ ( j)+∑[ r
2 ]

i=1 C2i
r a2i ( j)∑d

u=1 E
{
(Xt−ket−k)

2i |st−k = u
}

p(k)u j π (u)σ2(r−i)315

and thus µ̃
(r)

(k) =
(

I(d)−P(k) ( σrar)
)−1

(
Π(σ2r)+∑

[ r
2 ]−1

i=1 C2i
r σ2(r−i)P(k)

(
a2i

)
µ̃
(2i)

(k)
)

. Therefore316

E {(Xtet)
r}= 1µ̃

(r)
(k) .317

For the second assertion, we have X r
t = er

t +∑r
i=1 Ci

ra
i (st)(Xt−ket−k)

i er−i
t , so if r = 2n, we get π (l)E

{
X2n

t |st = l
}

318

= σ2nπ (l)+
n
∑

i=1
C2i

2nσ2(n−i)a2i (l)E
{
(Xt−ket−k)

2i |st = l
}

π (l). Hence319

µ
(2n)

(k) = Π(σ2n)+
n

∑
i=1

C2i
2n σ2(r−i)P(k) ( a2i) µ̃

(2i)
(k)320
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otherwise,321

µ
(2n−1)

(k) =
n−1

∑
i=0

C2i−1
2n−1 σ2(r−i)P(k) ( a2i−1) µ̃

(2i−1)
(k) ,322

so E {X r
t }= 1µ(r) (k) I{r=2n}+1µ(r) (k) I{r=2n−1}.323

All the third-order moments of the MS−DBL are summarized in the following lemma324

Lemma 9 ( Third-order moments ). If (Xt)t is generated by a MS−DBL, then under the condition of325

Lemma 8, the non centred third-order moments are326

µ
X
(i, j) =



3σ2µ
(1)

(k)+ P
(
a3
)

µ̃
(3)

(k) , i = j = 0,

P(k)
(
a2
){

3σ4µ
(1)

(k)+P(k)
(
σ2a3

)
µ̃
(3)

(k)
}
+P(k) (σ2)µ

(1)
(k) , i = 0, j = k,

P
(
a2
){

P(k(n−1))
(
2σ2

2
)

µ
(1)

(k)+σ2µ
X
(0,k (n−1))

}
+P(nk) (σ2)µ

(1)
(k) , i = 0, j = nk,n ≥ 2

P(k) (a)
{
P(k)

(
3σ2a2

)
µ̃(2) (k)+Π(σ4)

}
, i = j = k,

4σ2
2P2(k) (a)µ

(1)
(k) , i = k, j = 2k,

2σ2P2(k) (a)P(k(n−2)) (σ2)µ
(1)

(k) , i = k, j = nk,n ≥ 3

P(k) (a)P(k(l−1)) (σ2)µ
X
(k (n− l))) , i = lk, j = nk, l ≥ 2,n ≥ 3,

327

and hence γY (i, j) may be expressed from (11).328

Proof. The first part corresponding to i = j = 0 may be derived through Lemmas 7 and 8. For the case:329

i= j = k > 0, then we have π (u)E
{

XtX2
t−k|st = u)

}
= π (u)a(u)E

{
X3

t−ket−k|st = u
}

, so µ
X
(k,k)=P(k) (a)U(k)330

where the components of the vector U(k) are π (u)E
{

X3
t et |st = u

}
= π (u)σ4+3π (k)σ2a2(u)E

{
X2

t−ke2
t−k|st = u

}
331

and we deduce that U(k) =Π(σ4)+ P(k)
(
3σ2a2

)
µ̃(2)(k) hence the results follows. Similar methodology332

can be used to obtain the expansion of the remainder cases.333

Lemma 10. For the MS−DBL consider the squared process Yt = X2
t and assume that ρ

(
P(k) (σ4a4)

)
< 1,334

then we have335

µ
Y
( j)=


µ
(4)

(k) , j = 0,

P(k)(a2)
{

Π(σ6)+6σ4P(k)
(
a2
)

µ̃
(2)

(k)+σ2P(k)
(
a4
)

µ̃
(4)

(k)
}
+P(k) (σ2)µ

(2)
(k) , j = k,

P(k)(σ2a2)µ
Y
(k (n−1))+

(
P(k)(a2)P(k(n−1))

(
2σ2

2
)
+P(kn) (σ2)

)
µ
(2)

(k) , j = nk,n ≥ 2.

336

and hence γY ( j) = 1µ
Y
( j)−µ2

(2) for any j ≥ 0.337

Proof. The first part, for j = 0 may be deduced from the Lemma 8. The second part, for j = k, let338

us define the vector µ
Y
(k) =

(
π ( j)E

{
X2

t X2
t−k|st = j

}
,1 ≤ j ≤ d

)′, then its is not difficult to see that339

µY (k) = P(k)
(
a2
)

W (k)+P(k) (σ2)µ(2) (k) where W (k) =
(
π ( j)E

{
X4

t e2
t |st = j

}
,1 ≤ j ≤ d

)′. Tedious calcu-340

lation shows that W (k) =Π(σ6)+P(k)(6σ4a2)µ̃
(2)

(k)+P(k)(σ2a4)µ̃
(4)

(k) and hence the results follow. The341

third part, follow upon the observation that µ
Y
(kn) = P(k)(a2)U+P(nk)(σ2µ

(2)
(k), where342

U = (π ( j)E
{

X2
t X2

t−k(n−1)|st = j
}
,1 ≤ j ≤ d)′,343

after some computations, we get U = σ2µ
Y
(k(n−1))+P(k(n−1)) (2σ2)µ

(2)
(k) and hence the result follows.344

345
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The following corollary correspond to independent switching MS−DBL, we stated the moments properties346

without proofs. Details of the proof are of course available if it required.347

Corollary 2. [Switching-independent case] For the I −DBL, we set λ = σ2a2, then we have:348

1. µ = E {Xt}= σ2a and Var(X) = σ2 +
a2σ4

1−λ
−µ2.349

2. γX (i) = λ 2 δ{i=k}.350

3. γX (i, j) =



3a3σ4
(1−λ )

(
a2σ4 −σ2

)
+a3

(
σ6 −2σ3

2
)
, i = j = 0,

a3σ2(
1−σ2a2

) −β −2a3σ3
2 , i = 0, j = k

a2n+1σ2n
2(

1−σ2a2
)β , i = 0, j = nk,n = 2,3, ...

a(
1−σ2a2

) ( σ4 −σ2
2 +a2

(
σ4 −σ2

2 +2a2σ3
2

))
, i = j = k, , .

a3σ3
2 , i = k, j = 2k,

0, otherwise

351

where β = a4
(
3σ2

4 −σ2σ6
)
+a2 (σ6 +σ2σ4)+2σ4.352

4. γY ( j) =


E
{

X4
t
}
− µ2

(2), j = 0

a2
{

σ6 +6σ4a2µ̃(2)+σ2a4µ̃(4)

}
+σ2µ(2)−µ2

(2), j = k,

σ2a2γY (k (n−1))+
(

2σ2a2 +σ2
2

)
µ(2)+σ2a2µ2

(2) -µ2
(2) if j = nk, n ≥ 2.

353

Remark 6. The results of second assertion of above corollary shows clearly that I−DBL is a k−dependent354

process and hence it has the same covariance structure of an MS−MA(k) model, in other hand the result355

of the fourth assertion clearly indicate that I −DBL is not an MS−MA(k).356

Remark 7. The results obtained for MS−BL can be useful in modeling nonlinear time series, particularly357

in the choice of the lags k and l of some simple bilinear models for which the innovation is Gaussian.358

Note here that the results obtained in independent switching case are similar to standard ones (d = 1)359

when the parameters in moment properties are replaced by the moments of their coefficients. Despite the360

difficulty and the complexity of computation, especially in dependent switching, the results obtained here361

constitute an alternative for the study of nonlinear series.362

Example 3. Consider the same distribution as in Example 2, then the kurtosis and the skewness of363

MS−DBL are shown in the Figure 2 terms of a(1) and a(2)) of MS−SBL are shown in the Figure 1. The364

kurtosis of MS−DBL in top panels of the Figure 2 are strictly positive and hence their distributions are365

leptokurtic. The skewness of MS−DBL in bottom panels are negative for some values of a(1) and a(2)366

and hence the distribution has a long tail to the left, i.e., mode>median>mean.367

3.3 Simulation study368

In order to examine the problems associated with the identification of a MS−BL model with the help of the369

third or fourth order moment, we consider an MS−SBL (resp MS−DBL) with (et)t is a Gaussian sequence370

N (0,1) and (st)t is a 2−state Markov chain with p11 = 0.75, p22 = 0.95 and a(st)∈ {−0.75,0.15}. Now we371

simulate a series of length n = 1000, according to the models already mentioned, and calculate the second,372

third and fourth order moments γ̂X (i), γ̂X (i, j), and γ̂X2 (i), i, j = 1, ...,max lag. We repeated the experiment373

500 times and the mean values of γ̂X (i), γ̂X (i, j) and γ̂X2 (i) are obtained. The simulation experiment has374
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Figure 2: Kurtosis and skewness of the two state MS−DBL. The left of top panel displayed the kurtosis of D−DBL followed
by I −DBL. Bottom panel displayed the skewness of D−DBL in left followed by I −DBL.

been made in order to compare the difference between the theoretical values of γX (i), γX (i, j) and γX2 (i)375

and those obtained via a Monte Carlo experiment. To avoid biased simulation’s intervention, we delete376

first 100 observations to make sure the randomness of the model. The different plots of models according377

to the variability of the chain (st)t are presented in Figure 3. In Figure 3, we can see that the graphic378

associated to MS−SBL, presents more volatility than the MS−DBL. Moreover, it can also be observed379

that there is a closed similarity between the C− . and I − . models.380

3.4 Second-order properties381

The sample γ̂X (s) up to lag 25, according to the variability of the chain (st)t are given in Figure 4. As382

expected theoretically, the covariances in all cases decay to zero as the lag increases, though the rate of383

decay in the case of the MS−DBL is slower. The results of the simulation of the second-order moment384

are given in Table 1.385

Observations of the series simulated from MS−SBL (resp. MS−DBL) are plotted in right (resp. left)386

side panel of Figure 3 for different specification of the chain (st)t . The covariance γX (h) of these series are387

shown in Table 1, for h ∈ {0,1,2,3,4,5} and their plots are in Figure 4. So, we can see that the covariance388

function are zero beyond 0 (resp. 1) for MS−SBL(resp. MS−DBL). This finding confirm the theoretical389

results summarized in Figure 4.390

3.5 Third-order properties391

Now, the third−order moments are concerned. The sample third-order moments γ̂X (0,s) up to lag 25,392

according to the variability of the chain (st)t are given in Figure 5. It can be observed that for the393

MS−SBL, γ̂X (0,s) are approximately zero, contrary to the MS−DBL, γ̂X (0,s) are not zero even beyond 1.394

This means that the white noise structure of MS−SBL is preserved by the third-order moment properties395

and the structure MA(1) of MS−DBL is violated. The results of simulation of the third-order moments396

are shown in Table 2 for MS−SBL when (st)t is an independent (resp. dependent) chain, and in Table 2 for397

MS−DBL with the same structure chain followed by their true values (results between parentheses). Table398

2 gives theoretical values (in the parenthesis) of γ (i, j) for different values of i, j and the corresponding399
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Figure 3: Displayed are in top panel C−DBL followed by C−SBL in second panel the I −DBL followed by I −SBL and in
the third D−DBL followed by D−SBL.

simulated values γ̂ (i, j) for MS−DBL.400

Observations of the first series simulated from MS− SBL is plotted in first panel of Figure 3. Its401

second-order γX (m) and third-order γX (i, j) moments are shown respectively in first column of Table 1402

and in Table 2 with (i, j) ∈ {0,1,2,3,4}×{0,1,2,3,4}. It can be seen that simulation results agree well403

with the results reported in in Figure 5 and with the theoretical results. Moreover, the order of γX (i, j)404

and γX (m) are quite different, we believe that the simple bilinear structure are not obvious and hence, an405

AIC criterion should be discussed further.406

Observations of this series (when (st)t is independent) simulated from MS−SBL is plotted in second407

panel of Figure 1. Its second-order γ̂X (m) and third-order γ̂X (i, j) moments are shown respectively in408

second block of Table 1 and in Table 2. In this case also the simulation results are quite closely with409

the theoretical results. Moreover, the values corresponding to the cell (0,0) are found to be absolutely410

dominant over other values. Since γX (2) is zero, we believe that γX (2,2) should be wrong message.411

3.6 Covariance analysis of squared MS−SBL and MS−DBL412

The purpose of this subsection is to carry out a second-order analysis on the squared MS− SBL and413

MS−DBL noted Yt = X2
t with the help of the Lemmas 6 and 10 to providing an alternate differentiation414

technique from their linear representations415

Observations of this series simulated from the squared version of MS − SBL and MS − DBL their416

covariance γ̂Y (m) is plotted in Figure 6. and there values are shown in Table 4.417

As a consequence of the results reported in Table 4 is that the second-order structure of white-noise418

for MS−SBL model (resp. MA(1) for MS−DBL) are not preserved by the process (Yt)t . So, the squared419

process maybe constituted a powerful alternative for the differentiation between linear and/or nonlinear420

models. In the other words, in view of Figure 6, it can be see that the monotony of γ̂X (h) is also preserved421

by γ̂X2(h) for h = 0,1, .... Note here that in spite the large values of γX2 (h) for C−DBL and I −DBL, the422

values of γX2 (h) corresponding to D−DBL are significantly relaxed.423
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Figure 4: From top to bottom: The covariance functions associated respectively to (.)−DBL followed in right side by
(.)−SBL

4 Application to investments424

In this section, we use our theoretical results to analyze certain series of asset returns via MS − BL425

models (9) aimed to predict the future values of such series. The resort to regime switching in asset426

returns and their pronounced implications for investments have been widely documented through several427

models according some accommodates features. (see Marcucci (2005) for more discussions). Based on428

the findings in this literature, we analyze the exchange rates of the Algerian Dinar against the single429

European currency (Euro) (EUR/DZD). We investigate some descriptive statistics and the impact of430

such series for the different regimes. Our base model is an MS−BL models (9) with two regimes are431

considered. We compare its implications to those of restricted models to determine the impact of regime432

switching models.433

4.1 Sample data and Preliminary Analysis434

The proposed models MS−SBL and MS−DBL are investigated to model the series of EUR/DZD already435

studied by Bibi (2021), observed from January 3, 2000 to September 29, 2011. Since there is some weeks436

comprise less than five observations (due to legal holidays), we remove the entire week with less than five437

available. So, the final length of the series is T = 3055 observations uniformly disturbed on 611 weeks.438

The elementary statistics are tabulated in Table (Stat) below which shows some description of the series439

EUR/DZD. The kurtosis is less than the normal value of 3 indicating that the distribution has lighter440

tails and a flatter peak than a normal distribution (platykurtic). The skewness is significantly negative,441

showing that the tail on the left side of the histogram is longer than the right, with most of the data442

clustered on the right side of the mean.443

Note: The Jbstat-test which has a χ2 distribution with 2 degrees of freedom under the null hypothesis444

of normally distributed errors. The 5% critical value is therefore 6.4795. The LM(12) statistic is the445

ARCHLM test up to the twelfth lag and under the null hypothesis of no ARCH effects it has a χ2 (q)446
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Table 1: The Monte Carlo simulations and theoretical values (in parenthesis) of γX (s) in different lags of MS-SBL and
MS-DBL model.

Lags\Models MS−SBL︷ ︸︸ ︷
C−SBL I −SBL D−SBL

MS−DBL︷ ︸︸ ︷
C−DBL I −DBL D−DBL

0
2.2878
(2.2857)

1.8946
(1.8957)

1.4419
(1.4269)

4.0592
(4.0946)

3.2296
(3.2639)

1.4608
(1.4594)

1
−0.0042
(0.0000)

−0.0022
(0.0000)

−0.0006
( 0.0000)

0.5219
( 0.5191)

0.4200
(0.4192)

0.1216
(0.0984)

2
0.0017
(0.0000)

−0.0068
(0.0000)

−0.0059
( 0.0000)

−0.0400
(0.0000)

−0.0249
(0.0000)

0.0053
(0.0045)

3
−0.0031
(0.0000)

−0.0038
( 0.0000)

−0.0038
(0.0000)

−0.0583
(0.0000)

−0.0498
(0.0000)

−0.0010
(0.0006)

4
−0.0095
(0.0000)

−0.0082
(0.0000 )

−0.0042
(0.0000)

−0.0453
(0.0000)

−0.0378.
(0.0000)

−0.0091
(0.0080)

5
−0.0026
(0.0000)

−0.0031
(0.0000)

−0.0036
(0.0000)

−0.0305
(0.0000)

−0.0315
(0.0000)

−0.0057
(0.0045)

distribution, where q is the number of lags. The Q2(12) statistic is the Ljung-Box test on the squared447

residuals of the conditional mean regression up to the twelfth order. Under the null hypothesis of no serial448

correlation, the test is also distributed as a χ2 (q) where q is the number of lags. Thus, for both tests449

the 5% critical value are 6.5597 (resp.31.4104). At a confidence level of 5% both skewness and kurtosis450

are significant, since the standard errors under the null of normality are 6/T = 0.0019 and 24/T = 0.0077451

respectively.452

The plot of the trajectory of EUR/DZD series followed by its second and third-order cumulants are given453

in the following Figure 7454

It is clear that the series displayed in Figure 7 exhibit a structural break changes. More precisely,455

from the results of Table 6 we can see that the descriptive statistics show that the negativity skewed,456

indicate that the most data points are clustered on the right side (higher values), with a few extreme457

low values stretching out to the left. So, we have mean < median < mode. Moreover, the positivity of458

the kurtosis shows that the data are Leptokurtic and hence the null hypothesis of normality is rejected.459

Additionally, the Jarque-Bera test statistics (Jbstat) is larger than the critical value (6.5597) which is460

significant of 1% level which confirm the rejection of null hypothesis. The plot of third-order cumulant461

displayed in Figure 7 performs the rejection.462

4.2 Fit MS−BL to daily EUR/DZD463

Based on the above description of EUR/DZD series, the MS−ARMA model did not reflect the behavior of464

such data, and hence MS−BL models may be called for modelling and forecasting this series. Indeed, for465

modelling purpose, we are firstly using a quasi-maximum likelihood (QML) procedure for fitting the series466

by MS−BL. Table 6 some goodness-of-fit statistics are reported according to C_BL. These statistics467

are used as model selection criteria. The Akaike information criterion (AIC) and the Schwarz criterion468

(BIC) (results not reported here) both indicate that the best model is the MS−DBL. Another property469

of MS −DBL models that emerges from Table 6 is the high persistence showed by small parameters470

estimates. The results of the parameter estimation followed by the mean squares errors (results between471

parentheses), according to C − SBL and C −DBL models are reported in the column (Parameters) of472

Table 6. The results gathered in (statistics column) of Table 6 are the elementary statistics associated473

with the adjusted series474
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Figure 5: Displayed are the sample third-order moments γ̂X (0,s) of the MS−DBL in left panel and of MS−SBL in right.

Table 4: The simulate values of γX2 for different values of lags for the MS-SBL and MS-DBL.
Models

Lags Squared MS−SBL︷ ︸︸ ︷
C−DBL I −DBL D−DBL

Squared MS−DBL︷ ︸︸ ︷
C−DBL I −DBL D−DBL

0 46.2211 19.4792 4.3941 405.3164 206.3111 40.9966
1 5.9235 3.4578 0.6353 222.7964 95.6614 18.5253
2 23.4193 8.2800 1.0314 113.4164 38.2723 7.6013
3 3.6595 1.7531 0.2424 56.5737 15.7618 4.0707
4 11.4029 3.4330 0.3205 32.3876 7.0561. 3.8038
5 1.8171 0.7900 0.0889 15.4928 3.3257 3.2314

This table shows the parameter estimates of adjusted EUR/DZD by MS−BL under d = 1 and their475

elementary statistics. The main observation is that the values of elementary statistics of the series476

adjusted by C −DBL model are better than C − SBL comparing with the original series. This is not477

surprising observation because the model C− SBL is a weak white noise whereas the EUR/DZD series478

is very far to be considered as a white noise. The second approach for modelling the EUR/DZD is by479

MS− BL under d = 2 with independent and dependent chain, are summarized in Table 7.480

In above Table 7 the column ”Matrix P” means the estimate of transition matrix of the chain. Now, a481

few comments can be made. Indeed, it is clear that the Table 7 demonstrates that the MS−DBL model482

applied to the EUR/DZD series performs as effectively as the applications to EUR/DZD concerning483

classification certainty for the mean. At least 96% of the fitted observations are considered with low484

uncertainty. In terms of variance, the model classify at most 95% of the observations as decisive. The485

MS −DBL with a greater number of states, applied to EUR/DZD is the least effective in classifying486

variance, with a percentage of ”decisive” between 99% and 100%. Regarding the skewness and the487

kurtosis are the same as for original data with non-significant difference The Jbstat-test is also significantly488
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Figure 6: Displayed are the γ̂Y (s) of the squared MS−DBL in left panel and of squared MS−SBL in right one.

Table 5: Elementary statistics of daily EUR/DZD series.

Statistics: Mean Std Skew Kur Jbstat LM (12) Q2 (12)
104∗Results 0.0088 0.0011 -0.0001 0.0002 0.0232 0.2688 5.8687

Table 6: The elementary statistics of adjusted MS−BL under d = 1.

Models Parameters

104∗Statistics︷ ︸︸ ︷
Mean Std skew kur Jbstat LM(12) Q2(12)

C−SBL
0.099
(0.045) 0.0088 0.0011 −0.0008 0.0004 0.0548 0.2720 0.8480

C−DBL
0.096
(0.031) 0.0089 0.0012 −0.0001 0.0003 0.0211 0.2697 1.6060

to reject the null. In end, the ARCH effect tests indicate clearly that no serial correlation up to the twelfth489

lag. Nonetheless, the model is indicated as good alternatives in terms of goodness− of− fit. According490

to the study, the MS−DBL with d > 2, is a reasonable choice for the application. This conclusion is491

obtained when accounting for both ”classification power” and goodness-of -fit.492
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Figure 7: Top panel: the EUR/DZD series. Bottom panels: the second (left) and third (right) order cumulant of EUR/DZD
series.

5 Conclusion493

In this paper, we propose a unified framework that enables the calculation of higher-order moments and494

the diagnostic analysis of an MS-BL(p,0,P,Q) model under both independent and dependent switching495

structures. As a crucial first step, we represent the model in a Markovian state-space form, which allows496

us to derive the conditions for the existence of strict stationary and ergodic solutions in Lp, p ≥ 1, under497

which explicit expressions for the first-, second-, and third-order moments are obtained. The second498

step of our framework focuses on analyzing specific cases of MS-BL(p,0,P,Q) models. More precisely, the499

first-order MS-SBL and MS-DBL models are examined in detail.500

For the MS-SBL model, the first- and second-order moments are derived under both (in-)dependent501

switching schemes, which exhibit structural similarities to those of an MS-MA(1) model. Consequently,502

studying the second-order structure of the squared process allows us to distinguish between MS-SBL503

and MS-MA(1) models. The same methodology is applied to the MS-DBL model. Our main theoretical504

contribution lies in demonstrating how this generalized formulation can be used to derive the first and505

second moments conditional on dependent regime switching. In contrast, for the MS-DBL model with506

independent regime switching, the first- and second-order moments coincide with those of the standard507

model and can be identified under covariance with the MS-MA(1) model. However, this equivalence508

does not extend to the third-order moment structure, which breaks this covariance-based similarity.509

Nonetheless, examining the covariance structure of squared processes can help resolve this ambiguity.510

In this study, we have made the following assumptions:511

(i) d = 2, since the implications of the transition matrix prevent us from considering higher-order models,512

even in cases such as d = 3 and m = 4 (in MS-SBL).513

(ii) A lower-triangular model is adopted to obtain a Markovian representation that simplifies the analytical514

derivations.515

(iii) The restriction to a model without a moving average component is justified by the fact that the516

stationarity and ergodicity conditions are independent of this part.517

(iv) Gaussian innovations are assumed to simplify otherwise cumbersome computations.518
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(v) The estimation of cumulants is known to be biased.519

These specifications introduce some limitations to our analysis. Nonetheless, the empirical results520

demonstrate that MS-DBL models significantly outperform standard BL models according to a broad521

range of elementary statistical criteria. This strong conclusion holds regardless of whether the differences522

in performance are statistically significant. We conclude that our theoretical findings are useful for model523

identification, and the tools we propose can be directly applied to investigate processes that exhibit524

structural changes.525
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