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Higher-order moments of Markov switching bilinear
models: theory and empirical evidence
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Abstract. In this paper, we consider a Markov-switching bilinear process (MS-BL) that exhibits rich
dynamic behavior and plays an important role in modeling non-Gaussian data characterized by structural
breaks. In such models, the parameters depend on an unobservable (hidden) Markov chain with a finite
state space. Although numerous recent studies have focused on the statistical aspects of Markov-switching
models, systematic investigations of the probabilistic properties of this class of nonlinear models remain
relatively scarce. So, we derive conditions for stationarity and compute the moments of the process up to
the third order. Our analysis reveals that the conditions ensuring local stationarity within each regime
of the observed process are neither sufficient nor necessary. Furthermore, we show that the second-order
structure of the process is analogous to that of a Markov-switching ARMA (MS-ARMA) model with an
additional uncorrelated white noise component. Therefore, the examination of higher-order moments
becomes essential to distinguish between (locally) linear and nonlinear models. To illustrate the practical
relevance of our theoretical results, we conduct Monte Carlo simulation studies and apply the proposed
model to the exchange rate of the Algerian Dinar against the Euro. The empirical findings indicate
that the proposed approach provides a better fit and demonstrates superior performance compared to
alternative models.

Keywords: Higher-order moments; Markov-switching bilinear models; Stationarity.

1 Motivations

Markov-switching (MS) time series models proposed by Hamilton (1989) have recently received a growing
interest in several areas of statistics because of their ability to describe adequately various financial time
series and continue to gain more popularity, especially to model empirical macroeconomics and dynamic
econometrics time series (X;) Z = {0,£1,£2,...}. The advantages of MS models are multiple, for
instance, among others:

(i) MS models are nonlinear models (even locally) because linear models are not, in general, always suit-
able for use.

(ii) Higher flexibility in capturing the persistence and/or asymmetric effect in datasets.

(iii) In modeling time series which exhibit smooth or abrupt structure which occur frequently or occa-
sionally depending on the transition probability of the chain.

So, there exist various different ways to model such a series exhibiting break changes through a finite
number of "regimes”. A rather general model is given by

telo

XI :f:Yt (Xf*llvel*jao<i§P70<j§ Q)+ela
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for some measurable function f depending on some finite state Markov chain (s;), that control the
change of regimes and some innovation process (e;),. However, in literature, some locally (given s;)
linear or nonlinear models (determined by f) were investigated in order to study the probabilistic and
statistical properties of such models. Indeed, the stationary ARMA models in which the parameters are
allowed to change through time according to Markov chain denoted by MS —ARMA have, got considerable
attention recently. For instance, Yang (2000), Francq and Zakoian (2001), Stelzer (2009), Lee (2005), Yao
and Attali (2000), Boubacar and Rabehasaina (2020) and the references therein, are references aims to
describe the probabilistic and/or statistical properties of MS —ARMA models. Namely, conditions assuring
the strict stationarity, ergodicity, the existence of higher-order moments and spectral representation. On
the other hand, to develop some appropriate statistical methods and their asymptotic inference. Francq
and Zakoian (2005), Bauwen et al. (2010), Alemohammad et al. (2020), Bibi and Ghezal (2015) and Wee
et al. (2022) have proposed a MS — GARCH model. So, the probabilistic structure, as in MS — ARMA
models were investigated and some procedures for estimating and forecasting the MS_GARCH model
was studied. Recently, Bibi and Ghezal (2015) and Bibi and Hamdi (2025) and have introduced a new
class of MS—bilinear (MS — BL for short) model where several probabilistic properties were studied and
explicit conditions ensuring the existence of a strictly stationary solution of such a model to belong in
L, are given. Moreover, it is also known that some bilinear processes have properties that are similar
to those of an autoregressive conditionally heteroscedastic (ARCH) model, which plays important role in
financial mathematics see subsection 3.1.

In this paper, a process (X;), defined on some probability space (Q,3,P) is called MS —BL(p,q,P,Q) if it
generated by the following stochastic difference equation:

P q 0 P

X, =ao(s)+ Zai(sl)Xt,i + ;)bj(st)etfj + Z Zcij(s,)X,,ie,,j. (1)

i=1 j= j=li=1

In (1), the functions a;(s;), b;(s;) and c;;(s;) depend upon a Markov chain (s;), that controls the dynamics
of X; and is subject to the following assumption:

The Markov chain (s;), is irreducible and aperiodic with a finite state space S={1,...,d}, the n—step
transition probability matrix, that determines the evolution in S is given by

P = (pl(;l))/(i,j)eSxS’

(m _ p (st = j|s;—n = i), so by Chapman-Kolmogorov Equations P") = P". The one-step transition

where p; ]

d
probability matrix P := (p;;j) where p;;j := pgy = P(s; = jlsi—1 =1i) for i,j €S, such that ¥ p;; =1, for
j=1

all i. The stationary distribution of the Markov chain (s;), will be denoted by = (7(1),...,w(d))’ that
solves the equation P'Il = IT where (i) = P(so =1i), i = 1,...,d. The chain (s;), is said to be independent
if pijj=m(j) foralliesS.

The innovation process (e;), is assumed to be independent and identically distributed (i.i.d) with mean
0 and variance 0. In addition, we shall assume that e; and {(X;_1,s;),s <t} are independent.

As already pointed out by Bibi and Ghezal (2015), the MS — BL(p,q,P,Q) includes as special cases
several classes of interesting models having been investigated in the literature. It is worth noting that the
key difference between MS — BL and a threshold model is that the former assumes that the underlying
state process that gives rise to the nonlinear dynamics (regime switching) is latent, whereas threshold
models commonly allow the nonlinear effect to be driven by observable variables but assume the number
of thresholds and the threshold values to be unknown. Before we proceed, we will first introduce some
algebraic notations and definitions.
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Higher-order moments of Markov switching bilinear models 3

1.1 Algebraic notations and definitions

Some notations are used throughout the paper:

« For some specifications of the chain (s;),, i.e., constant (d = 1), independent and dependent chain,
in the sequel we shall indicate the corresponding models by C — BL, I — BL and D — BL respectively.

o Iy is the n x n identity matrix, I:= (I@f e EI(S>> , is the d—block matrix, and 14 (resp. 1 ()
sxds
is a d x d matrix (resp. d x 1 vector) whose components are matrix unity (resp. 1).

* O,y denotes the matrix of order k x I whose entries are zeros, for simplicity we set O 1= O p)
and Q(k) — O(k,l)'

e The spectral radius of a square matrix M is denoted by p (M), |.|| denotes any operator norm
on the set of m xn and m x 1 matrices, ® is the usual Kronecker product of matrices and M®" =
MIM®...QM, r—times. If (M(i),i € I) is n x n matrices sequence, we shall note for any integer [

j
and j, [IM(i) = M()M(1+1)...M(j) if I < j and I, otherwise.
i=l

o For any function f:S — #yxm(R), where #,«n(R) denotes the space of real n x m matrices, we
write

pufEr(l). pafr(1) P ey pl ()
P(f°r) = : : , PU(FOr) = : :
paf®(d).. paaf”(d) ). pbrer(a)
and
m(1) (1)
() = :
n(d)f* (d)

In the sequel, we will use the following result due to Francq and Zakoian (2005) stated in the next
lemma.

Lemma 1. 1. Fori>1, if (Z;), is an integrable random variable belonging to o (e;—s,s > i), then

d .
R(E{Z s =k} = Y E{Zy-ilsi—i = j} pLm())-
j=1

2. If f:S— Mpxn(R) and g:S — Mpux1(R), then for any k>0 and T > k,
E {f(Sz)f(SH)-«-f(St—kH)g(sz—k)|St—1<} = H{P(f)}kﬂ(g)~

Remark 1. [Independent switching]. For the model I —BL, then (P(f))* =P (f() (E {f(s,)})k71> and
IP(f)=[E{f(s:)},..., E{f(s:)}] where in the last equality, the matriz E{f(s;)} is duplicated d—times.

We arrange the rest of the paper in the following manner. In the next section, we give the Markovian
state-space representation, which is used to derive conditions for stationarity (in the strong and weak
sense) and a recursive formula for the higher-order moments. Section 3 is devoted to giving explicit
expressions of the second, third and fourth-order moments of some particular MS — BL models. Section 4
provides results of a Monte Carlo experiment and section 5 concludes the paper.
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2 DMarkovian representation of MS— BL and its properties

In the rest of the paper, we shall restrict ourselves to the case when b;(.) =0, j=1,...,q in (1), i.e.,
without moving average part

p 0 p

X = Zai(S;)Xtﬂ'—l- Z Zc,‘j(s,)Xt,,‘e,,j + ey, (2)
i=1 j=li=1

which denoted also hereafter MS — BL(p,0, p,Q). Because it is difficult to handle the product terms like

Xie—j, j >0, Liu (1992) when d = 1, introduced the so-called lower triangular model for which ¢;;(.) =0,

if i < j. So in this paper we extend the lower tridiagonal model to include a MS — BL one, i.e.,

p Q p
X; = Z a,'(s,)X,,,' + Z Z Cij (Sz)thiezfj +e;. (3)
i=1 j=li=j

The representation (3) has however the advantage to admit the state-space representation X; = H'Y, where

Y, =Ty (e)Y, 1 +nler), (4)
with T, (e;) = To(s:) +eI'1(s;) where the matrices Io(s;), I'1(s;) and the vectors n(e;), H are explicitly

given in Bibi and Ghezal (2015). Note that the representation (4) shows that the MS— BL(p,0,p,Q)
can be represented as a multidimensional first-order random coefficient Markov-switching Autoregressive
(MS — RCAR(1)) model, and hence the extended process Z, := (Y’,s,)’, is an aperiodic Markov chain
on (Z,%8(%)), where & = R* xS. This compact representation allows us to provide a necessary and
sufficient condition for the existence of strict stationery, ergodic, and 3; = 6 (¢,—p,s;—n,n > 0) —measurable

(or causal) solutions for (3). These concepts are ensured under the strict negativeness of the Lyapunove
-1
‘ Hrst—i(ef*i) }
i=0

definition). However, it follows from Bibi and Ghezal (2015) that the unique strictly stationary and
ergodic solution of (4) is given by the first component of

o (k-1
Y, = Z {Hl"s[i(et,-)}n(e,k), a.s., (5)

k=0 \ i=0

exponent defined by y(I') := 12{ %E {log (the chosen of the norm is unimportant in this
>

k/
with the usual convention [] = 1, whenever k' < k.
i=k

Remark 2. For the process (X;), defined by X, = c11(s;)Xi—1€,—1 + e, the Lyapunov exponent is

-

7 (i) E {log (|c11(i)eol) }

i=1

s0 ﬁ \c“(i)|”(") < e Fllogleol} constitutes the necessary and sufficient condition for strict stationarity.and
erglozdlic solution. Note that when (e;), is Gaussian, the necessary and sufficient condition reduces to
ﬁ \cn(i)|”(i) < 1.88736. It is worth noting that this example shows the existence of explosive regimes (i.e.
l,|:clll(i)\ > 1 compared with the standard case) does not preclude the strict stationarity.

Recalling here (interested readers are advised to see Bibi and Ghezal (2015) for more details) that if
Oomt1 = E {6,2’"+1} =0, 00, =E {etzm} < +oo for any integer m, and if

Ay = p (B(T)) <1, (6)
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Higher-order moments of Markov switching bilinear models 5

where T®" := (I®"(i),1 <i < d) with T®"(.) = E{T'{"(e;)|s; = .}, then equation (4) has a unique strictly
stationary solution (¥,), given by (5) and the process (H'Y,), is also a unique, strictly stationary, causal
and ergodic solution of equation (3) which satisfies X*" € Ly,,.

Remark 3. For the model I — BL the condition for the existence a strictly stationary solution in L, is

d
that Ay = p (E{TE™}) <1 where E{TS™} = Y T9"(k)x (k).
k=1

2.1 Computation of the higher-order moments

Once the second-order stationarity condition is established, it is useful to compute the expectation and
some cumulants of the process (Y,),. A property which will be heavily used in the sequel, associated with
representation (4) is given in the following lemma.

Lemma 2. Consider the representation (4), then for any integer m >0, we have

X[®m le Staet [ ]7 (7)

where the matrices ‘Pgm) (si,er)'s are uniquely determined by T, (e;) and N (er) according to the following
TEeCUTsions

‘Pém) (s e0) =N (), ‘P(ll) (sr,e0) =Ty, (e;), and for any m >0,
W (51,e0) = m(er) @ (s1,e0) + Ty () @) (51,0

with the convention ‘Pgm) (si,e:) =0 when i>m ori<0 and Y° = ‘P(()O) (st,e) = 1.

Proof. The formula (7) for m =1 is given by (4). Assuming that (7) holds true for some m > 1, then we
have

Y = Y (T (@)Y oy +m(e) @ ¥ (sr,e) Y
i=0
=X {nte)e {1 ey f+ (Tule) 9 () (1 017
m+1 . ,
= {{ﬂ(é‘[) ®1Pl(m) (st,e,)}z?fl + {FS[ (e,) ®T§Ti (St,e[)}z?zl}
i=0
and the result follows. O

Now, we note U™ = (n(k)E{Xf®m|st :k} k= 1,..,d)/ , then
KE{YEs =k} = Y W () E{Y |5, =k} m (k)
=Y e Y E{Y s =} pam (i), (8)
i=0

where ‘I’Sm) (k)y=E {‘I’l(.m) (se,e0) |sr = k}, so U™ 2 IP’( plm )(k))Q(i), hence under the condition (6),

E{Y?™} =100 and U = (Iigon — P (2" <k>))*' {mZIJP’( " (1)) U }
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Example 1. Explicit formulae for some power m are addressed below

O, =
\p(”(k):{"v i=0,

! Io(k), i=1.
E(O)®2’ 1=0,
(k) ={ 1@ eIk +nM el k) +Tok) ©n@+Tiken®, i=1,
T2 (k) + 0T E2(k), i=2.

For m = 3, the non-zeros terms in ‘Pl@ (k), i=0,1,2 and 3 are

n(0)®3’ i=0,
i<°>®2®rok) +n(1)® 2®r1k) nQeryk)@n®+n@er (k) onM©®

+To(k) @1 + T (k) i=1,

¥ (k) =4 >®F®2( )+n >®F®2( )+n“ ® (Co(k) @ Ty (k) + Ty (k) @ To(k))

+To(k) ® To(k)+To(k) @M @T (k) + 1 (k) @ 1) @To(k)

+I' (k) ® 'y (k) i=2,
(T2 (k) +02r®2 (k)) @To(k) 4+ 03 (To(k) @ Ty (k) + Ty (k) @ To (k) @ Ty (k) i=3

where n =E{ein(e)}, i=0,1,.... The fourth—order moments is also useful to study which may be

deduced from the recursion (m).

Note here that the recursion U™ demonstrates the dependence of the m — rh moment terms on the
(m— 1)th—moment. Provided that the (m — 1)th—moment.converges, and the summation in (8) is also

stable, this term will converge. Moreover, we note that the matrices ‘Pl(»m> (k) are not zero for any k € S.

3 Case studies
In this section we examine the following particular cases of MS— BL models (3), i.e.,

(Superdiagonal model): X, =a(s)X;_je;_x+e, 0<k<l, (MS-SBL) )
(Diagonal model): Xe=al(s)X—rer—x +er, 0<k, (MS-DBL)

where for the sake of generality it is assumed that (e;), is i.i.d., Gaussian sequence, and we set o, = E {e] }.
So, the even moments of (¢;), up to eight order are o, = 02, 04 = 3022, Og = 15623, and og = 1050‘5‘ while
all the odd moments are equal to zero. The above models was studied in non switching framework
(i.e., d = 1) by, among others, Gabr (1988) and Martin (1999) who gave some general discussions on
the properties of such models including stationarity and moments properties. Moreover, Grange and
Anderson (1978) studied the superdiagonal in detail and showed that this series might be mistaken as
a white noise. In the following we give an explicit expression of the higher-order moments of the above
models. Let us consider

(i) =E{(X — 1) Xi—i — 1)} = ux (i) — 2, (10)
W (iy)) = E{(Xe — ) Xrmi — 1) (Xo—j — ) } = px (i, ) — p L (i) + pe () + px (i = )} + 247, (11)

where u = E{X;}, ux () = E{X;X;—;} and ux (i,j) = E {X,X, X ]} In this illustration, the autocorrela-
tions of (X?) noted p> (i) = (K2 (i) — 2(0))/Var{X?} where Ko (i =E{X?X2,}, it be use as a power



192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

Higher-order moments of Markov switching bilinear models 7

criterion for bilinear model identification, which often replaced by a standardized third central moments,
ie.,

:E{(Xt =) (Xe—i — 1) (X—j — }/{Va’"{Xt}}S/z

= {ux (i) — s {ax () + pax (i) + e = )Y+ 203} /370

The last moment has several features with respect to p, (i). For instance, the coefficients of skewness
of (X;), may be derived from p3(i,j). Moreover, if (X?), is generated by a (locally) linear model then
P2 (i) can be nonzero whereas p3(i, j) will be zero for all lags i and j. Also p3(i,j) should provide more
information about the model under study than the autocorrelation of (X?) , - Note that from Gabr (1988),
the following symmetry relations hold yx (i,7) = vx (j,i) =y (—i,j—i) =yx (i— j,—j ) where i, j € Z. So,
it is sufficient to calculate ¥ (i, j) for 0 <i < j. In the sequel we shall note for any i > 1, a’ = (da'(j), j € S)

and [1P® () = PR ().
j=1

3.1 Superdiagonal model

Note that the MS—SBL model may be written as X; = a(s;)X;_xe;_xrm+er,2 <k, 1 <m<k—1, which is con-
ditionally heteroscedastic (but not a MS—ARCH model). Indeed, for k =2, let A, (1) =E{n(l )X |32},
[ €8S, then we have

h(l) = oa*()m (1) E {th i |Sia} 47 (

= 02a’( ZE{X ols, =1y Si- 2} zz' n(l') +x(l)o
= od’ ()X ZZI{S =1 11/ n (') +x(l)os

So, h = Z}izl h (1) is given by h, = {lIP’(Z) (O'Zaz) Z,_Z}th_z + 0, where Z, = (1{&:1}, ...,I{S[:d})/, this show
that MS —SBL is an ARCH model. From the discussion in subsection 2.1, it can be shown that a sufficient
condition for the strict stationarity solution in L,,, is that p (IP’(") (szaz’”)) <l,m>1.

Lemma 3. [First and second-order moments| For the MS —SBL, assume that p (]P’(k) (Gzaz)) <1, which

ensures the second-order stationarity, then we have

1. poy (k) =E{X,} =0, E{X,e}} =0, E{X?e,} =0, E{X?¢}} =0, E{X,e;} = 02, E{X,¢} } = 0y,

~1
2. by (k) = E{X?} =1p,, (k) where pa) (k) = (I(d) —P® (62a2)> (o),

- - - -1
3. H) (k) =E{X?e]} =101, (k) where iy (k) = 03P (a?) (1(d> —p® (Gzaz)) 1 (02) +11(04).

4. 1x (i) = P2y (k) iy -
Proof. The proof is straightforward and hence omitted. O

The nullity of y(i) for i > 0, shows that the MS— SBL appears as a sequence of weak white noise
(0—dependent). So, in order to provide more informations, we need to investigate some moments of
order greater than 2.
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8 Abdelouahab Bibi

Lemma 4. Under the condition of Lemma 3, all the third-order moments ¥(i, j) of the MS —SBL, are
equal to zero except i =k —m and j =k for which we have

Pelk—m k) = 1B (@) B0 (03) (1~ B (027) ) T1(02).

Proof. Tt is easy to see that yx(0,0) =0. For i =k —m, j =k, we have

T (D) E{X: XX —iom|s: =1} = (D) a (1) E{Xi_iimer—iomX |5 =1}
=1P* " (@)U,

where
U = (E{Xi—trmr—tsmXPilSi—psm = 1} w (1), 1 = 1,..,d) = P (%) E{X}|s; = u}m (u) ,u = 1,...d)".

So,

Lemma 5. For the MS — SBL, we have under the condition p (]P’(k) (621a21)> <1,1>1.

Lo ppy (k) = E{X/} =14 ) (k) Ip—o1y where

-1 .
By () = (1 =B (oma ) ) (L, Glog-oPY) (0™ iy (0)+ I 00)

2.ty (k) =E{(Xe:)"} = lE(r) (k) where E(r) (k)= 02+1 (ZI[Z]I C?PX (0, a®) Ko (k)> » [x] is the integer
part of x.

Proof. 1. For the first assertion, we have for any integer r > 1,
_ef+z Cl l (sr) tl ket km€r -

So if r =21 +1, then due to Gaussianity of (e;),, the expectation of the first term is 0 and because
if i is even integer, r —i is odd and vice versa. Therefore the expectation of the second sum is also
0. In contrast if r = 2[ say, then

. . . . !
E{x¥|s = j}a(p =E{e¥ls =i} a()+ L, Cia® () E (X s = j} () 0210
. [ i i d i
=oun()+Yy, ,Cua ()Y, E {th—lk|st—k =u} Puj )7 (u) 02i03(1—i).

By passing to vectorial representation the results follows. In particular,

Hay (k) =E{X'} =1 (I(d) -p® (04a4)) o (6022P(k) (a®) K, (K) +H(G4)) :

2. The proof of the second assertion is similar and is omitted.
O

Now, we carry out a second-order analysis of the squares (¥; = X? ) of MS —SBL which providing an
alternate differentiation technique characterizing the processes 0—dependent
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Higher-order moments of Markov switching bilinear models 9

Lemma 6. For the second-order stationary MS — SBL, consider the process Y, :X,2 and assume (to
facilitate the exposition) that k =2,m =1 and for any j >0, we set

()= (FWE{XY, jlss =u}u=1,..d),
then under the condition p (]P<2) (0'2612)) < 1 we have

ty (D=9 (a)—P (62"2))71 P(o2)p, (2) fi=1 ’
P? (0pa?) p, (n—2)+ P (0p) p, (2) if j=n>2
and hence ¥ (j) =11, (J) — 13 (2) for any j>0.
Proof. The first part is obtained from the Lemma 5. For the second, 7 (u) E {Y;Y;—1|s; = u, } = a® (u) 70 (u) E{X* ,X? ,

e i|si =ul+oom (u)E{X? (|s; = u}, so

2 2
By (1) = P(02a )HY (1)+P(a )H(z) (2).
The third one is immediate. O

Remark 4. According to Brockwell and Davies (1987) Section 3.2, it follows that if (X;), is a is
qg—dependent and (e;), is i.i.d. then for any measurable functions of (X;), is q—dependent. So, since
because W (j) # 0 implies that the process (Y;), is not an 0—dependent and hence (X;), is fare from an
MA(1) process.

The next corollary we summarize some results listed above when (s;), is independent sequence noted
hereafter I —SBL. The proof of this corollary is omitted as it consists of straightforward, but tedious
algebra.

Corollary 1. [Switching-independent case] Set @ = E{a(s;)} and A = a?>0s, then, for the I —SBL, we
have:

1. n=0.
2. i(i)=02(1-2)"" 8},

3 W (i,7) =03 a1 =2)"" Spikm iy

-1 _ _ -1
4 E{X[} = <Gzz + _)_:1 C3i02i0y_ya*E {X121}> (1 — 0oy 2’) Ofr—1}.

20
=y =0,
(1 — Gzaz) (1 — G4a2) s
5. i) — 20342 .
w(J) 2% =1,
(1 — 62a2)
oraly (n—2), j=n>2.

Remark 5. The results of the fifth assertion of above corollary shows clearly that when (s;), is an
independent sequence, the process (X,z)t associated to k=2 and m =1 has the same covariance structure
of an MS—ARMA(2,1), with an independent sequence (s),, i.e.,

Zi =0(s)+ai(si)Zi—1 +aa(se)Z—r +b(sr)er—1 + e with aj(.) =0. (12)
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Indeed, the covariance structure of (12) is given by vz (j) =11, () — U2 where

1, =1 (1 P2 @) ()

and
(1B (@) (11 (0?) +28%) (0a2) , + (%) +11(62)) =0,
B, =9 () ~P@) " (POI(02) +P(@)p, ), i=1,
P(az)p, (n—2)+P" (@), j=n>1,

which is reduces in I —SBL to ¥z (j) = z(j) — u3 where uyz = (1—a3) " @ and

—\ -1 —
or(1-a3) (1+87). j=0,
Y2 (j) = b2 (1—a3)"", j=1,

Comparing ¥z (j) and that given in fifth assertion of corollary 1, it can be shown that for ® = (1 —a)p ) (k),
@ = 0ya? and b2 = 1+ 0442, vz (j) and vy (j) coincide. This finding excludes the I — SBL to being a weak
white noise. (0—dependent). Moreover, the results of parts 1,2 and 3 of the above Corollary are identical
to the results given by Gabr (1988) when d = 1. Furthermore, it is easy to see that the results in part 4
of Corollary 1 are in agreement with the results given by Martin (1999).

Example 2. Consider d =2, the entries of the transition matrix P are p;; = o, px»n = 3, the ergodic
distribution is then 7 (1) = (1 — &) /(2— ¢ — ). The kurtosis (in terms of a(1) and a(2)) of MS— SBL are
shown in the Figure 1. The kurtosis of MS — SBL in above figure are strictly positive and hence their
distributions are leptokurtic i.e., the tails are thicker than normal one. Note here that all calculations
thereafter have been performed with native code under MATLAB’15 computation language.

Figure 1: Kurtosis of the two-state MS—SBL. Left dependent D — SBL and right 7 —SBL with o = 0.75 and 8 = 0.95.
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3.2 Diagonal model

Lemma 7. [ Second-order moments] If (X;), is generated by a MS— DBL, then under the condition
p (]P’(k> (Ggaz)) < 1 we have

1. ﬁ(l) (k) = E{X[e[} = 02,

2wy (k) = E{X,} = 1p1) (k) where ) (k) =P (a) I (02),

—1
P®) (42) (1 ®) (G502 )) (03) +1(cs), j=0,
4ty () =1 PO (a)p® (ZGz)H(Gz), j=k,
P (@) PR (a2) ) (k) j=n>k
Proof. The proof is straightforward and hence omitted. O

Note that in standard case (d = 1) the process (X;), is an k—dependent and hence y(j) =0 for all j #k,
in contrast here y(j) # 0 for all j. This finding could be used as a sufficient condition for testing the
Markovianity switching with dependent chain. Similar results stated in Lemma 5 for MS — SBL may be
given in MS — DBL one.

Lemma 8. For the MS — DBL and under the condition p (P(k) (O',a’)) <1, we have

1. ﬁ(,) (k) =F {(Xtet)r} — lE(r) (k) where

~ 7! 51=1 i i
i, (0= (1o~ B¥(0, a)) (TE G oy B9 (@) iy, (0 +T1(030).

l (H(GZIZ) +Z C2n62 (n— l)]P)(k> ( QZi) E(Qi) (k)> , = 21’1,

2' :u(r) (k):E{Xt}:lH(r) (k): { lz::lzlc‘%fl,]l P( )( (nf) 21 l)u(2 1) (k) r:2n_1

Proof. For any integer r > 1, we have (X;e;)" = €2 + Y1, Cld' (s;) (Xi_rer—x) €2, s0
E{ (Xeer)" s 7]} E{e,z’|s —]} Z C2’ 2’ {(Xt_ke,_k)2i|5, :j}ﬂ(j) O(r—i)

=0y, T Z sz 2 ZZZlE{(Xt—ket—k)2i|st—k:“}p,(”) (u) G2

~ _ k r [5]-1 i k) (20T
and thus K, (k) = (I(d> ~PY( 6a )) <H(Gzr) +Y:5 Cr 62(,_,-)IP’( ) (a )E(Zi) (k)) Therefore
E{(Xie;)} = lﬁm (k).
For the second assertion, we have X/ = e/ + ¥, Cla' (s;) (X,—xe,—1) e}, so if r =2n, we get w (1) E {xs; =1}
=oun(l)+ ¥ C%,’;O'z(n,,»)a% (HE {(Xt,ke,,k)zi s, = l} 7 (l). Hence
i=1

Bigy (0 =T(00) + Y, G5, oy P (@) Hiz ()
i=1
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otherwise,
n—1
2i (k) 2i—1
H(Zn—l) (k) I:Z()CM 1 %2(r— ,)P ( )‘u(21 1) (k)
SO E{Xr}*ll'l ( )I{r 2n}+1” ( )I{r=2n—1}' O

All the third-order moments of the MS — DBL are summarized in the following lemma

Lemma 9 ( Third-order moments ). If (X;), is generated by a MS— DBL, then under the condition of
Lemma 8, the non centred third-order moments are

362/.L()(k)+ P(a ) (3)() i=j=0,
{3c4u +P® (6543 )u< )(k)}+]I”<k) (O_Q)H(l) (k), i=0,j=k,

P(a ){]P(k(n ) (202) B, )+ oo, (0k(1—1))}

o +PU (o2) ) (K) i=0,j=nkn>2

Ky (i) =

P® (@) { P (30202) i) (K >+n<o4>}, i=j=k,
462P2“( )g< )( ), i=k,j =2k,
262P2 ( )P 2) (62)"1(1) (k)v :k,j:nk,nZ?)
P® (@) P (0) t (k(n 1)), i= Ik j=nkl>2n>3,

and hence ¥y (i,j) may be expressed from (11).

Proof. The first part corresponding to i=j=0 may be derived through Lemmas 7 and 8. For the case:
i=j=k>0, then we have 7 (u) E {X, X2 ;|sy = u) } = 7 (u) a(u)E {X}> ke, klse =u}, sou (k,k) =P® (a)Q(k)
where the components of the vector U (k) are 7 (u) E {X3e,\s, = u} =1 (u) 04 +37 (k) 02a* (u)E { kez ilSt = u}

and we deduce that U (k) =II(cy)+ P® (3024 ),u<2) (k) hence the results follows. Similar methodology
can be used to obtain the expansion of the remainder cases. O

Lemma 10. For the MS — DBL consider the squared process Y; =X,2 and assume that p (]P’(k) (G4a4)) <1,

then we have

E(4)(k)’ Jj=0,
w, () ={ PY@){M(cs)+60Pk (a )H()(k)JerP()( Ny 0 PO (@), (), =k
PO (Gya?)u, (k(n— 1)) + ( ) (a?)pk(n- )>(202)+P<kn>(oz))g<2)(k), j=nk,n>2.

and hence ¥ () =1, (j ) — 2) for any j> 0.

Proof. The first part, for ] =0 may be deduced from the Lemma 8. The second part, for j =k, let
us define the vector u( () E{X?X2 s =j}, 1< <d) , then its is not difficult to see that
uy(k ) =P® ()W (k )—|—IP’( )( 02) U2 (k) where W (k) = (7 (j)E {Xe}|s; = j} ,1 §j§d)/. Tedious calcu-
lation shows that W (k) =II(og) 4 P*) (6(‘;4612)[.1,( 2 (k) + P >(62a )/,L(4) (k) and hence the results follow. The
third part, follow upon the observation that . (kn) = PO (a2 U +P(”k)(azg @ (k), where

Q = (ﬂ:(])E {XtZth—k(n—l)|Sf = ]} ) 1 S ] S d)/7

after some computations, we get U = oot (k(n—1)) + plk(n=1) (ZGZ)H(Z) (k) and hence the result follows.
O
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The following corollary correspond to independent switching MS — DBL, we stated the moments properties
without proofs. Details of the proof are of course available if it required.

Corollary 2. [Switching-independent case] For the I — DBL, we set A = 0,a2, then we have:

a O4 2

1-1

1. u=E{X,} = oya and Var(X) =0r +

2. (i) = A? 5{i:k}-

3d30, (T3 3 3 P
@(Cl 04_62>+Cl (66_262), l—]—07

a30'2 273 3 P L
= —pP — O =0,j=k
(I—Gzaz) ﬂ 03 ! ]
azn+]0-2n

3 wli,j) = m i=0,j=nkn=2,3,..

$f)(cr470'22+ai2 <G47622+2a72623)), i=j=k,,.

(] 762(,12
a’o3, i=k,j="2k,
0, otherwise

where B = a* (307 — 0206) + a2 (06 + 6204) + 204.

E{Xt4}_ .u(zz)a j=0
4w = @{os+601ahi) +0ra i)} + ooty — 1. =k,
ooy (k(n—1)) + (ZGZ?Jr 622) b+ 0.2;“(22) _“(22) if j=nk, n>2.
Remark 6. The results of second assertion of above corollary shows clearly that I—DBL is a k— dependent
process and hence it has the same covariance structure of an MS— MA(k) model, in other hand the result
of the fourth assertion clearly indicate that I — DBL is not an MS— MA(k).

Remark 7. The results obtained for MS— BL can be useful in modeling nonlinear time series, particularly
in the choice of the lags k and | of some simple bilinear models for which the innovation is Gaussian.
Note here that the results obtained in independent switching case are similar to standard ones (d =1)
when the parameters in moment properties are replaced by the moments of their coefficients. Despite the
difficulty and the complexity of computation, especially in dependent switching, the results obtained here
constitute an alternative for the study of nonlinear series.

Example 3. Consider the same distribution as in Example 2, then the kurtosis and the skewness of
MS — DBL are shown in the Figure 2 terms of a(1) and a(2)) of MS —SBL are shown in the Figure 1. The
kurtosis of MS— DBL in top panels of the Figure 2 are strictly positive and hence their distributions are
leptokurtic. The skewness of MS — DBL in bottom panels are negative for some values of a(1) and a(2)
and hence the distribution has a long tail to the left, i.e., mode>median>mean.

3.3 Simulation study

In order to examine the problems associated with the identification of a MS — BL model with the help of the
third or fourth order moment, we consider an MS —SBL (resp MS—DBL) with (e;), is a Gaussian sequence
A(0,1) and (s), is a 2—state Markov chain with p1; =0.75, p»» =0.95 and a(s;) € {—0.75,0.15}. Now we
simulate a series of length n = 1000, according to the models already mentioned, and calculate the second,
third and fourth order moments ¥ (i), %x (i, j), and % (i), i, j =1, ...,maxlag. We repeated the experiment
500 times and the mean values of ¥ (i), % (i, j) and %2 (i) are obtained. The simulation experiment has
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Figure 2: Kurtosis and skewness of the two state MS—DBL. The left of top panel displayed the kurtosis of D — DBL followed
by I —DBL. Bottom panel displayed the skewness of D — DBL in left followed by I — DBL.

been made in order to compare the difference between the theoretical values of ¥x (i), ¥x (i,7) and ¥y (i)
and those obtained via a Monte Carlo experiment. To avoid biased simulation’s intervention, we delete
first 100 observations to make sure the randomness of the model. The different plots of models according
to the variability of the chain (s;), are presented in Figure 3. In Figure 3, we can see that the graphic
associated to MS — SBL, presents more volatility than the MS — DBL. Moreover, it can also be observed
that there is a closed similarity between the C —. and I —. models.

3.4 Second-order properties

The sample Px(s) up to lag 25, according to the variability of the chain (s;), are given in Figure 4. As
expected theoretically, the covariances in all cases decay to zero as the lag increases, though the rate of
decay in the case of the MS — DBL is slower. The results of the simulation of the second-order moment
are given in Table 1.

Observations of the series simulated from MS —SBL (resp. MS— DBL) are plotted in right (resp. left)
side panel of Figure 3 for different specification of the chain (s;),. The covariance yx (h) of these series are
shown in Table 1, for h € {0,1,2,3,4,5} and their plots are in Figure 4. So, we can see that the covariance
function are zero beyond 0 (resp. 1) for MS — SBL(resp. MS —DBL). This finding confirm the theoretical
results summarized in Figure 4.

3.5 Third-order properties

Now, the third—order moments are concerned. The sample third-order moments ¥ (0,s) up to lag 25,
according to the variability of the chain (s;), are given in Figure 5. It can be observed that for the
MS —SBL, ¥ (0,s) are approximately zero, contrary to the MS— DBL, % (0,s) are not zero even beyond 1.
This means that the white noise structure of MS — SBL is preserved by the third-order moment properties
and the structure MA (1) of MS— DBL is violated. The results of simulation of the third-order moments
are shown in Table 2 for MS—SBL when (s;), is an independent (resp. dependent) chain, and in Table 2 for
MS — DBL with the same structure chain followed by their true values (results between parentheses). Table
2 gives theoretical values (in the parenthesis) of y(i,j) for different values of i,j and the corresponding
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D-DBL: X; = a(s) X 1601+ € D-SBL: X, = a(s:) Xe 1601 + €

Figure 3: Displayed are in top panel C — DBL followed by C —SBL in second panel the I — DBL followed by I — SBL and in
the third D—DBL followed by D — SBL.

simulated values ¥ (i, j) for MS — DBL.

Observations of the first series simulated from MS — SBL is plotted in first panel of Figure 3. Its
second-order yx(m) and third-order yx(i, j) moments are shown respectively in first column of Table 1
and in Table 2 with (i,j) € {0,1,2,3,4} x {0,1,2,3,4}. It can be seen that simulation results agree well
with the results reported in in Figure 5 and with the theoretical results. Moreover, the order of ¥x (i, j)
and yx (m) are quite different, we believe that the simple bilinear structure are not obvious and hence, an
AIC criterion should be discussed further.

Observations of this series (when (s;), is independent) simulated from MS — SBL is plotted in second
panel of Figure 1. Its second-order Yy (m) and third-order ¥ (i,j) moments are shown respectively in
second block of Table 1 and in Table 2. In this case also the simulation results are quite closely with
the theoretical results. Moreover, the values corresponding to the cell (0,0) are found to be absolutely
dominant over other values. Since yx (2) is zero, we believe that yx (2,2) should be wrong message.

3.6 Covariance analysis of squared MS— SBL and MS— DBL

The purpose of this subsection is to carry out a second-order analysis on the squared MS — SBL and
MS — DBL noted ¥; = X? with the help of the Lemmas 6 and 10 to providing an alternate differentiation
technique from their linear representations

Observations of this series simulated from the squared version of MS — SBL and MS — DBL their
covariance % (m) is plotted in Figure 6. and there values are shown in Table 4.

As a consequence of the results reported in Table 4 is that the second-order structure of white-noise
for MS — SBL model (resp. MA(1) for MS — DBL) are not preserved by the process (¥;),. So, the squared
process maybe constituted a powerful alternative for the differentiation between linear and/or nonlinear
models. In the other words, in view of Figure 6, it can be see that the monotony of % (h) is also preserved
by ¥y2(h) for h=0,1,.... Note here that in spite the large values of ¥ (h) for C —DBL and I — DBL, the
values of yy2 (h) corresponding to D — DBL are significantly relaxed.



424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

445

446

16 Abdelouahab Bibi

5 4
|
\ 2
o Ht |
o H
-5 -2
0 3 10 15 20 25 0 5 10 15 20 25
sample ACF of C-DBL sample ACF of C-SBL
4 : 2 T
| |
211 1l
| |
ot o
52 -1
0 5] 10 15 20 25 0 5 10 15 20 25
sample ACF of I-DBL sample ACF of I-SBL.
2 2
t
1fl 1l
| |
o Ht o H
il =18
0 5 10 15 20 25 0 5 10 15 20 25
sample ACF of D-DBL sample ACF of D-SBL

Figure 4: From top to bottom: The covariance functions associated respectively to (.) — DBL followed in right side by
(.)—SBL

4 Application to investments

In this section, we use our theoretical results to analyze certain series of asset returns via MS — BL
models (9) aimed to predict the future values of such series. The resort to regime switching in asset
returns and their pronounced implications for investments have been widely documented through several
models according some accommodates features. (see Marcucci (2005) for more discussions). Based on
the findings in this literature, we analyze the exchange rates of the Algerian Dinar against the single
European currency (Euro) (EUR/DZD). We investigate some descriptive statistics and the impact of
such series for the different regimes. Our base model is an MS — BL models (9) with two regimes are
considered. We compare its implications to those of restricted models to determine the impact of regime
switching models.

4.1 Sample data and Preliminary Analysis

The proposed models MS — SBL and MS — DBL are investigated to model the series of EUR/DZD already
studied by Bibi (2021), observed from January 3, 2000 to September 29, 2011. Since there is some weeks
comprise less than five observations (due to legal holidays), we remove the entire week with less than five
available. So, the final length of the series is T = 3055 observations uniformly disturbed on 611 weeks.
The elementary statistics are tabulated in Table (Star) below which shows some description of the series
EUR/DZD. The kurtosis is less than the normal value of 3 indicating that the distribution has lighter
tails and a flatter peak than a normal distribution (platykurtic). The skewness is significantly negative,
showing that the tail on the left side of the histogram is longer than the right, with most of the data
clustered on the right side of the mean.

Note: The Jbstat-test which has a x? distribution with 2 degrees of freedom under the null hypothesis
of normally distributed errors. The 5% critical value is therefore 6.4795. The LM(12) statistic is the
ARCHLM test up to the twelfth lag and under the null hypothesis of no ARCH effects it has a x*(q)
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Table 1: The Monte Carlo simulations and theoretical values (in parenthesis) of yx (s) in different lags of MS-SBL and
MS-DBL model.

Lags\Models MS —SBL MS — DBL
C—-SBL 1 —SBL D —SBL C—DBL [I—DBL D —DBL
0 2.2878 1.8946 1.4419 4.0592 3.2296 1.4608
(2.2857)  (1.8957)  (1.4269)  (4.0946)  (3.2639)  (1.4594)
| —0.0042 —0.0022 —0.0006 0.5219 0.4200 0.1216
(0.0000)  (0.0000)  (0.0000)  (05191)  (0.4192)  (0.0984)
> 0.0017 —0.0068 —0.0059 —0.0400 —0.0249 0.0053
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0045)
3 —0.0031 —0.0038 —0.0038 —0.0583 —0.0498 —0.0010
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0006)
4 —0.0095 —0.0082 —0.0042 —0.0453 —0.0378. —0.0091
(0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0000)  (0.0080)
5 —0.0026 —0.0031 —0.0036 —0.0305 —0.0315 —0.0057
(0.0000)  (0.0000)  (0.0000) (0.0000)  (0.0000)  (0.0045)

distribution, where ¢ is the number of lags. The Q?(12) statistic is the Ljung-Box test on the squared
residuals of the conditional mean regression up to the twelfth order. Under the null hypothesis of no serial
correlation, the test is also distributed as a x? (g) where ¢ is the number of lags. Thus, for both tests
the 5% critical value are 6.5597 (resp.31.4104). At a confidence level of 5% both skewness and kurtosis
are significant, since the standard errors under the null of normality are 6/T = 0.0019 and 24/T = 0.0077
respectively.
The plot of the trajectory of EUR/DZD series followed by its second and third-order cumulants are given
in the following Figure 7

It is clear that the series displayed in Figure 7 exhibit a structural break changes. More precisely,
from the results of Table 6 we can see that the descriptive statistics show that the negativity skewed,
indicate that the most data points are clustered on the right side (higher values), with a few extreme
low values stretching out to the left. So, we have mean < median < mode. Moreover, the positivity of
the kurtosis shows that the data are Leptokurtic and hence the null hypothesis of normality is rejected.
Additionally, the Jarque-Bera test statistics (Jbstar) is larger than the critical value (6.5597) which is
significant of 1% level which confirm the rejection of null hypothesis. The plot of third-order cumulant
displayed in Figure 7 performs the rejection.

4.2 Fit MS—BL to daily EUR/DZD

Based on the above description of EUR/DZD series, the MS —ARMA model did not reflect the behavior of
such data, and hence MS— BL models may be called for modelling and forecasting this series. Indeed, for
modelling purpose, we are firstly using a quasi-maximum likelihood (QML) procedure for fitting the series
by MS — BL. Table 6 some goodness-of-fit statistics are reported according to C__BL. These statistics
are used as model selection criteria. The Akaike information criterion (AIC) and the Schwarz criterion
(BIC) (results not reported here) both indicate that the best model is the MS — DBL. Another property
of MS — DBL models that emerges from Table 6 is the high persistence showed by small parameters
estimates. The results of the parameter estimation followed by the mean squares errors (results between
parentheses), according to C —SBL and C — DBL models are reported in the column (Parameters) of
Table 6. The results gathered in (statistics column) of Table 6 are the elementary statistics associated
with the adjusted series
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Table 2: The third-order moments of I-SBL and D-SBL models.

Moddls I—SBL model 103 x D — SBL models
0 I 2 3 1 0 1 2 3 1
0 ~0.0007 0.0002 —0.0009 0.0003 0.0002 —0.0363 0.1553 —0.0265 0.0154 —0.1085
(—0.0006)  (0.0000)  (—0.0007)  (0.0005) (0.0000) (—0.0291)  (0.1522)  (—0.0255)  (0.0164) (—0.1001)
) 0.0003 0.0019 0.0001 ~0.0001 0.0820 0.5082 —0.1040 —0.0599
(0.0000)  (0.0020) (0.0000) (0.0000) (0.0789)  (0.4811) (—0.1003)  (—0.0411)
5 —0.0007 0.0001 0.0003 0.0641 0.0369 —0.0614
(—0.0006)  (0.0000) (0.0001) (0.0788) (0.0335) (0.0059)
5 —0.0002 —0.0002 —0.0310 0.0295
(—0.0005)  (0.0000) (0.0325) (0.0198)
A —0.0003 —0.0252
(0.0000) (—0.0250)
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Figure 5: Displayed are the sample third-order moments ¥ (0,s) of the MS—DBL in left panel and of MS—SBL in right.

Table 4: The simulate values of ¥ for different values of lags for the MS-SBL and MS-DBL.

A’i‘;";l“' Squared MS — SBL Squared MS — DBL
C—DBL _I—DBL D—DBL C—DBL _I—DBL D—DBL

0 46.2211 19.4792 4.3941 405.3164 206.3111 40.9966
1 5.9235 3.4578 0.6353 222.7964 95.6614 18.5253
2 23.4193 8.2800 1.0314 113.4164 38.2723 7.6013

3 3.6595 1.7531 0.2424 56.5737 15.7618 4.0707

4 11.4029 3.4330 0.3205 || 32.3876 7.0561. 3.8038

5 1.8171 0.7900 0.0889 || 15.4928 3.3257 3.2314

This table shows the parameter estimates of adjusted EUR/DZD by MS — BL under d = 1 and their

elementary statistics.

The main observation is that the values of elementary statistics of the series
adjusted by C — DBL model are better than C — SBL comparing with the original series.

This is not

surprising observation because the model C — SBL is a weak white noise whereas the EUR/DZD series
is very far to be considered as a white noise. The second approach for modelling the EUR/DZD is by
MS — BL under d =2 with independent and dependent chain, are summarized in Table 7.

In above Table 7 the column "Matrix P” means the estimate of transition matrix of the chain. Now, a
few comments can be made. Indeed, it is clear that the Table 7 demonstrates that the MS — DBL model
applied to the EUR/DZD series performs as effectively as the applications to EUR/DZD concerning
classification certainty for the mean. At least 96% of the fitted observations are considered with low
uncertainty. In terms of variance, the model classify at most 95% of the observations as decisive. The
MS — DBL with a greater number of states, applied to EUR/DZD is the least effective in classifying
variance, with a percentage of “decisive” between 99% and 100%. Regarding the skewness and the
kurtosis are the same as for original data with non-significant difference The Jbstat-test is also significantly
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Figure 6: Displayed are the % (s) of the squared MS— DBL in left panel and of squared MS — SBL in right one.

Table 5: Elementary statistics of daily EUR/DZD series.

Statistics: Mean Std Skew Kur Jbstat LM (12) 0% (12)
10%+Results  0.0088 0.0011 -0.0001  0.0002 0.0232 0.2688  5.8687

Table 6: The elementary statistics of adjusted MS —BL under d = 1.

10*«Statistics
Models | Parameters | Mean  Std skew kur Jbstat  LM(12)  Q*(12)
C—SBL (8832) 0.0088 | 0.0011 | —0.0008 | 0.0004 | 0.0548 | 0.2720 | 0.8480
C—-DBL (882?) 0.0089 | 0.0012 | —0.0001 | 0.0003 | 0.0211 | 0.2697 | 1.6060

to reject the null. In end, the ARCH effect tests indicate clearly that no serial correlation up to the twelfth
lag. Nonetheless, the model is indicated as good alternatives in terms of goodness— of— fit. According
to the study, the MS — DBL with d > 2, is a reasonable choice for the application. This conclusion is
obtained when accounting for both ”classification power” and goodness-of -fit.
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Table 7: The elementary statistics of adjusted MS — BL under d = 2.

10%Statistics
Models | Parameters Mean  Std skew  kur Jbstat LM(12) Q*(12) Matrix P
I—SBL Muoom%w wﬁ%ﬁ 0.0088 | 0.0011 | —0.0008 | 0.0004 | 0.0550 | 0.2720 | 0.8480 A WMMWM WMMMm v
D —SBL Muoo%%% ww_mww 0.0088 | 0.0011 | —0.0009 | 0.0004 | 0.0521 | 0.2718 | 0.8573 A WWWWW WMWWW v
I—DBL Moo%mw wﬁ%mm@v 0.0089 | 0.0012 | —0.0001 | 0.0003 | 0.0211 | 0.2697 | 1.6060 A NNNWW wmww v
D—DBL M@Q%M% ww_oww 0.0088 | 0.0019 | —0.0008 | 0.0004 | 0.0521 | 0.2718 | 0.8573 A WMWWN MMMMM v
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Figure 7: Top panel: the EUR/DZD series. Bottom panels: the second (left) and third (right) order cumulant of EUR/DZD
series.

5 Conclusion

In this paper, we propose a unified framework that enables the calculation of higher-order moments and
the diagnostic analysis of an MS-BL(p,0,P,Q) model under both independent and dependent switching
structures. As a crucial first step, we represent the model in a Markovian state-space form, which allows
us to derive the conditions for the existence of strict stationary and ergodic solutions in L,, p > 1, under
which explicit expressions for the first-, second-, and third-order moments are obtained. The second
step of our framework focuses on analyzing specific cases of MS-BL(p,0,P,Q) models. More precisely, the
first-order MS-SBL and MS-DBL models are examined in detail.

For the MS-SBL model, the first- and second-order moments are derived under both (in-)dependent
switching schemes, which exhibit structural similarities to those of an MS-MA(1) model. Consequently,
studying the second-order structure of the squared process allows us to distinguish between MS-SBL
and MS-MA(1) models. The same methodology is applied to the MS-DBL model. Our main theoretical
contribution lies in demonstrating how this generalized formulation can be used to derive the first and
second moments conditional on dependent regime switching. In contrast, for the MS-DBL model with
independent regime switching, the first- and second-order moments coincide with those of the standard
model and can be identified under covariance with the MS-MA(1) model. However, this equivalence
does not extend to the third-order moment structure, which breaks this covariance-based similarity.
Nonetheless, examining the covariance structure of squared processes can help resolve this ambiguity.

In this study, we have made the following assumptions:

(i) d =2, since the implications of the transition matrix prevent us from considering higher-order models,
even in cases such as d =3 and m =4 (in MS-SBL).

(ii) A lower-triangular model is adopted to obtain a Markovian representation that simplifies the analytical
derivations.

(iii) The restriction to a model without a moving average component is justified by the fact that the
stationarity and ergodicity conditions are independent of this part.

(iv) Gaussian innovations are assumed to simplify otherwise cumbersome computations.
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(v) The estimation of cumulants is known to be biased.

These specifications introduce some limitations to our analysis. Nonetheless, the empirical results
demonstrate that MS-DBL models significantly outperform standard BL models according to a broad
range of elementary statistical criteria. This strong conclusion holds regardless of whether the differences
in performance are statistically significant. We conclude that our theoretical findings are useful for model
identification, and the tools we propose can be directly applied to investigate processes that exhibit
structural changes.
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