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Abstract. The End-of-life phase is the longest phase of the different life cycles of a product. This phase,7

characterized by a last time buy order, is known for increasing supply risk and decreasing demand rate.8

In this paper, starting initially with a repair replacement policy the manufacturer optimizes the order size9

of the last time buy and selects a time switching to another policy substituting failed components.The10

defective items stochastic arrival process is given by a non-homogenous Poisson process and the switch11

time is modeled as a stopping time of this demand process. Since the optimal switching time within12

the class of stopping times can be difficult to implement, we introduce in this paper the set of so-called13

pseudo-deterministic stopping times being the minimum of a deterministic stopping time and the time14

to depletion of the spare part inventory. We show that the optimal pseudo-deterministic stopping time15

satisfies some nice properties under realistic assumptions on the arrival rate function of the Poissonian16

defective items arrival process and the substitution cost function of the alternative policy. Using these17

properties an efficient algorithm is proposed to determine the optimal pseudo-deterministic stopping18

time. Although in general an optimal stopping time (optimal among the class of all stopping times) does19

not belong to the class of pseudo-deterministic stopping times, we numerically show and explain in the20

presence of high penalty costs that the objective value of the optimal pseudo-deterministic stopping time21

is close to the objective value of the optimal stopping time.22

Keywords: End-of-life inventory problem; Martingales; Non-homogeneous Poisson process; Spare parts inventory23

management; Stopping time.24

25

1 Introduction26

Due to rapid technology developments the production time of newly introduced products in the market27

shortened considerable to sometimes only a few months. By these developments it became more difficult28
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to deal with after sales services like for example warranty period requirements lasting for several years.29

At the same time, customers are also seeking support for their equipment even after the expiration date30

of their warranty, and they value manufacturers based on their aftersales service performance (Ahmad31

and Butt, 2012). Similarly, some customers are willing to pay extra for longer manufacturer care through32

extended service contracts (Padmanabhan and Rao, 1993). To respond to this demand and preserve their33

brand perception in the market, Original Equipment Manufacturers (OEMs) pay increasing attention to34

aftersale services of products which are at the end of their life cycle (Cohen et al., 2006).35

Management of aftersales services for end-of-life products is problematic due to both demand and36

supply-side problems in spare parts supply chains. Demand-side problems in spare parts supply occur37

due to the uncertain spare parts demand over time as customers use only the product during a limited38

amount of time in the market and these products are subject to random failure times. At the supply39

side, OEMs need to deal with increasing risk of losing suppliers’ support (Hekimoğlu et al., 2018; Li et40

al., 2016) for original spare parts mainly due to technological (Solomon et al., 2000) or economic reasons41

(Li et al., 2016).42

OEMs utilize different strategies to deal with supply-side problems of original spare parts of a given43

product. The two most common strategies are recognized as last time buy and or development of a44

substitute component to guarantee the supply of spare parts (Shen and Willems, 2014). When a product45

at some OEM becomes end-of-life and is out of production, spare part manufacturers will eventually46

request the OEM to place a last order for original spare parts. For this order, which is referred to as the47

Last Time Buy order, OEMs need to consider the total amount of spare part demand until the planned48

date of End-of-Support (EoS), at which the OEM no longer provides repair services for that product.49

The size of the Last Time Buy order is critical for OEMs as ordering too much original spare parts50

leads to obsolete spare parts, increasing salvage costs and economic losses. On the other hand, if the size51

of the Last Time Buy order is insufficient, this results in unsatisfied customer demand, possibly leading to52

the loss of goodwill and customers’ brand loyalty (Padmanabhan and Rao, 1993). To safeguard against53

these problems an OEM can alternatively next to a repair-replacement policy also utilize a substitution-54

based policy. This means the company uses as a policy original spare parts in a repair-replacement policy55

if a defective product, which cannot be repaired, appears until a particular point in time before the End-56

of-Support date. After that time the OEM switches to an alternative substitution policy not depending57

on original spare parts. The combination of these two spare parts policies is recognized as bridge buy in58

the literature (Shen and Willems, 2014). We refer to this combined strategy as Generalized Last Time59

Buy since a switching time being equal to the End-of Support date leads to the classic Last Time Buy60

problem (Teunter and Fortuin, 1999). In the Generalized Last Time Buy problem, substitute products61

can be obtained by either taking over suppliers’ production lines (Shen and Willems, 2014), using 3D62

printing (Westerweel et al., 2018) or finding an alternative supplier (Shi and Liu , 2020). Therefore,63

the OEM needs to make two critical decisions for the optimal solution of the Generalized Last Time64

Buy problem: At time 0, the OEM decides on the size of an Last Time Buy order and then chooses65

a switch-to-substitute time. The motivation of this study is to investigate how such a more general66

switching policy affects both the risk of obsolete spare parts and the supply-side risks of obtaining spare67

parts and how such a general switching policy increases the service level to customers. For a practical68

example in airline industry related to these risks the reader is referred to (Hekimoğlu et al. (2018)). Since69

the optimal switching policy is difficult to compute (Frenk et al. (2019b)) we are also motivated in this70

study in identifying a simple class of switching polices called the class of pseudo-deterministic policies71

which under certain conditions achieve expected objective costs close to the expected costs of the optimal72

switching policy among all stopping rules.73

1.1 Problem setting74

In this paper, we consider a problem setting where customers bring their defective products for repair to75

the OEM, which accepts them to its repair facility until the time of the End-of Support announcement.76
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It is assumed in all of the early and later literature (see for example (Behfard et al., 2015; Fortuin, 1980,77

1981; Krikke and van Der Laan, 2011; Teunter and Fortuin, 1999)) that in a continuous time setting a78

non-homogeneous Poissonian defective items arrival process is a good representation of the demand for79

spare parts. If the arrival of a defective item is before the switch-to-substitute point, then the product’s80

defective component is removed and sent to inspection for repair feasibility. If a repair is possible, the81

repaired component is installed back to the product and if the component cannot be repaired and there is82

available stock, the defective component is replaced with an original part to complete the repair service.83

If there is no original replacement in stock, the repair process uses a substitute part possible from an84

external source. This business process is depicted in Figure 1.

Figure 1: Repair process at the arrival of a defective product
85

The Generalized Last Time Buy strategy consists of the sequential utilization of a repair-replacement86

and a repair-with-substitute policy. This particular structure of the Generalized Last Time Buy strategy,87

which checks the switch-to-substitute point before checking the repairability of a part, allows OEMs to88

exploit decreasing substitution cost in time. We may justify this assumption since after the switching time89

to an alternative policy the repair center is closed and any defective product will be handled according90

to the new policy. The OEM now needs to make an optimal plan including the optimal size of a Last91

Time Buy order (at time 0) and the optimal switch-to-substitute time to keep their after sales services92

running. Note that our repair-with-substitute policy is dubbed alternative policy by Frenk et al. (2019b).93

Similar to Frenk et al. (2019a),Frenk et al. (2019b) we follow the same cost setup and our switch-to-94

substitute decision is formulated as an optimal stopping time problem. As such this paper can be seen95

as a review, extension and generalization of the results discussed in Frenk et al. (2019a) and Frenk et al.96

(2019b). To obtain the optimum solution of the Generalized Last Time Buy problem, we first derive the97

objective function for any switching time represented by an arbitrary stopping time following a simplified98

approach as done in Frenk et al. (2019a). Next, by substitution, we evaluate the objective function for99

the new defined subclass of switching times represented by the so-called pseudo-deterministic stopping100

times. These stopping times representing the switching time between different policies are defined as the101

minimum of a deterministic stopping time as discussed in detail in Frenk et al. (2019a) and the random102

time of inventory depletion of the Last Time Buy order received at time zero. According to the authors103

knowledge this is the first time the subclass of pseudo-deterministic switching times is discussed in the104

Generalized Last Time Buy problem literature and its mathematical properties are derived for both a105

piece-wise constant substitution cost function and a non-homogeneous Poisson defective items arrival106

process also having a piecewise constant arrival rate function. The practical and theoretical reason for107

studying this particular subclass of switching times between policies will be explained in the following108

paragraphs. First of all, we observe it is more difficult to compute the optimal pseudo-deterministic policy109

for a non-homogeneous Poisson defective items arrival process having an arbitrary bounded arrival rate110

function than for an arrival process having a piece-wise constant arrival rate function. In the later case111

the computation of this optimal pseudo-deterministic policy is very easy. Since any non-homogeneous112

Poisson process with a bounded arrival rate function can be approximated arbitrarily closely by a non-113

homogeneous Poisson process with a piece-wise constant arrival rate function it follows that the restriction114
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to this class of arrival processes of defective items is not too restrictive. Our theoretical results and new115

algorithm for identifying the optimal pseudo-deterministic policy for this class of arrival processes having116

a piece-wise constant arrival rate function now complement and extend the results discussed in Frenk et117

al. (2019a), Frenk et al. (2019b) and Javadi (2018).118

The motivation for studying this particular class of policies is that our numerical results suggest that119

the cost of using a switching time represented by the optimal pseudo-deterministic stopping time is almost120

the same as the cost of the optimal switching time represented by the optimal stopping time within the121

class of arbitrary stopping times. This indicates that the optimal pseudo-deterministic stopping time is a122

good approximation of the optimal stopping time within the class of arbitrary stopping times. The main123

reason for this empirical observation is the absence of penalty cost within the class of pseudo-deterministic124

policies. These penalty costs occur when both a defective non-repairable item arrives and at that time125

no inventory of original spare parts is available and we still apply the repair-replacement policy. If the126

penalty costs are high at the occurrence of these events any optimal policy tries to avoid these penalty127

costs by switching in time from the repair-replacement policy to an alternative policy and so such a policy128

acts like a pseudo-deterministic policy. At the same time, an optimal pseudo-deterministic stopping time129

is much easier to compute and due to its simplicity easier to implement in practice.130

Our problem setting can be motivated by the end-of-life management of electronic products, whose131

manufacturers aim to provide post-warranty repair service to keep their customers loyal. Due to the132

rapid pace of technological change in the semi-conductor industry, component manufacturers frequently133

update their product assortment and shift their capacity to the components of newer models with higher134

profit potential. Component suppliers usually call for Last Time Buy order, forcing OEMs to decide on135

the order size of the last order and other supply alternatives.136

This paper consists of 5 sections. In the remainder of this section, we briefly review the relevant137

literature and articulate the contribution of our study. Section 2 describes the mathematical model also138

discussed in Frenk et al. (2019a) and the different classes of policies and yields simplified proofs of already139

known results for this model. In Section 3, we derive under some reasonable assumptions properties of140

the class of pseudo-deterministic stopping times and at the same time give an easy procedure to compute141

the optimal policy within this class. These results seems to be new in the literature. Section 4 gives by142

means of easier proofs then the ones used in Frenk et al. (2019a) how to approximate the optimal policy143

within the class of all bounded stopping times for the generalized last buy decision problem or end of life144

decision problem. Finally Section 5 includes numerical results, while Section 6 concludes the paper.145

1.2 Literature review.146

The relevant literature for our study mainly consists of the studies from end-of-life management of durable147

products.148

The last stage of a capital product’s life cycle starts with the end of the manufacturing of a product149

by OEMs. Some time later, component suppliers start announcing their end-of-support dates and ask150

OEMs to place their last orders. In the literature such an order is called a Last Time Buy order (Bradley151

and Guerrero, 2008, 2009; Fortuin, 1980, 1981; Frenk et al., 2019a; Teunter and Fortuin, 1999; Teunter152

and Haneveld, 1998). For determining the size of the Last Time Buy order, OEMs need to make an153

estimation on the total spare parts demand from their products in use. The first contributions in the154

literature on determining the size of a Last Time Buy order focused in a discrete time setting solely on155

using only a repair-replacement policy during the remaining economic life time of the product(Fortuin,156

1980; Teunter and Fortuin, 1999). In a recent study, Hur et al. (2018) considers the size of a Last Time157

Buy order decision in a continuous time setting.158

However, in many business cases, companies are interested in complementing decisions about the size159

of the Last Time Buy order with other policies to replace defective items such as removal of repairable160

parts from phased out products (Behfard et al., 2015; Frenk et al., 2019a; Van Kooten and Tan, 2009;161

Krikke and van Der Laan, 2011; Pourakbar et al., 2014), finding an alternative supplier of a substitute162
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(Frenk et al., 2019b; Pourakbar et al., 2012; Sahyouni et al., 2010) or redesigning the entire production163

line of components (Shen and Willems, 2014; Shi and Liu , 2020). In Krikke and van Der Laan (2011) a164

case study and a simple heuristic solution is provided for determining the size of a Last Time Buy order165

in combination with the availability of repairable spare parts that are removed from phased out products.166

They address the impact of phaseouts on spare parts demand and the availability of alternative supply167

sources. The same problem setting is utilized by Pourakbar et al. (2014) for the joint optimization168

of returned repairable parts from phaseouts and the Last Time Buy Order size. Shi (2019) extended169

this problem setting with actively collected end-of-life products. They explicitly model the dynamics of a170

installed base to jointly control the Last Time Buy order size, repairable parts and the size of the installed171

base. Design refresh options are another important tactic to complement Last Time Buy order decisions.172

Shi and Liu (2020) considers a problem setting where the Last Time Buy Order size, design refresh173

and end-of-support decision are jointly optimized in a discrete time setting with respect to the profit174

maximization criterion. In addition, Inderfurth and Kleber (2013), Inderfurth and Mukherjee (2008) and175

Bayındır et al. (2007) consider re-manufacturing options to satisfy incoming spare parts demand.176

Another relevant research stream for our study is on spare parts management during the warranty177

period. (van der Heijden and Iskandar, 2013; Huang et al., 2007, 2008; Kim and Park, 2008; Sahyouni et178

al., 2010). van der Heijden and Iskandar (2013) consider joint optimization of the size of the Last Time179

Buy order and repair decisions for products with active warranty. They develop cost and service level180

formulations using a discrete time setting. Huang et al. (2007) consider a discrete-time problem setting181

where a manufacturer receives demand for new products and warranty claims of old ones. They show182

the optimality of a state-dependent base stock policy using Markov decision processes. This problem183

setting is extended with age-dependent warranty claims in the installed base by Huang et al. (2008). Kim184

and Park (2008) employ continuous time optimal control theory to optimize pricing and production of185

durable products by considering their spare parts costs during warranty periods. They explicitly model186

the positive impact of a warranty period on the products’ demand. Sahyouni et al. (2010) study the joint187

optimization of repair and Last Time Buy order quantity for a deterministic repair demand from products188

under warranty in a continuous time setting. In their model, which is more suited to products having a189

short life cycle, they focus on the joint optimization of the Last Time Buy order size and end-of-repair190

point after which failed products are replaced by substitute products.191

1.3 Our contribution to the literature.192

Our paper contributes to the existing literature of the Generalized Last Time Buy decision problem by193

analyzing in detail a subclass of switching times from a repair-replacement policy to an alternative policy194

in the optimal stopping formulation of the Generalized Last Time Buy decision problem as discussed in195

Frenk et al. (2019a). It is shown that this subclass of switching times satisfies desirable properties under196

very general assumptions on the non-homogeneous Poisson arrival process of defective items and the197

substitution cost function of an alternative policy. The optimal policy within this class of these so-called198

pseudo-deterministic policies can be easily computed and can be used as a heuristic solution replacing199

the optimal, more complicated, optimal policy within the class of all arbitrary bounded stopping times.200

It is verified and also explained in the computational section that under certain conditions this can be201

done without a significant loss in the objective value. At the same time, the optimal policy within the202

class of pseudo-deterministic policies has a clear interpretation contrary to the optimal policy within the203

class of all bounded stopping times.204

The closest studies to our paper are Frenk et al. (2019a); Javadi (2018); Pourakbar et al. (2012); Shi205

and Liu (2020). In Frenk et al. (2019a), which extends Pourakbar et al. (2012), the optimal solution206

of this problem is studied and solved by a dynamic programming algorithm. In Shi and Liu (2020) a207

similar problem is addressed in a discrete time setting. Under deterministic demand assumptions the208

same problem is solved in Sahyouni et al. (2010) using mathematical programming techniques. To the209

best of our knowledge, this paper is the first one addressing the use of pseudo-deterministic policies in210
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the joint optimization of the size of the Last Time Buy order and switching time to an alternative policy211

in a continuous time setting for a non-homogeneous Poisson defective items arrival process.212

2 On the generalized last time buy problem.213

In this section we introduce in subsection 2.1 the random arrival process of defective items. In subsection214

2.2 we define the costs parameters of the generalized last time buy problem, while in section 2.3 we intro-215

duce the objective function for this problem. In subsection 2.4 we formulate the associated minimization216

problem and derive in subsection 2.5 a lowerbound on the optimal objective value. This is needed to217

derive an upperbound on the optimal Last Time Buy order size as expressed in Lemma 3 for nonnegative218

scrapping values and in Lemma 5 for arbitrary scrapping values. Finally in subsection 2.6 we derive some219

qualitative results for the new class of pseudo-deterministic stopping rules. As such these six subsections220

reviews, simplifies and extend and complements the model and results in Frenk et al. (2019a) and Frenk221

et al. (2019b).222

2.1 The arrival process of the defective items process.223

To formulate our end-of-life inventory or generalized last time buy problem, we assume that defective224

products arrive according to a non-homogeneous Poisson point process for a repair or replacement. To225

introduce this arrival process let (Ω,H ,P) be a probability space hosting the point process (Ti,Ri)i∈N.226

The random variable Ti, i ∈N denotes the arrival time of the ith customer having a defective product and227

requesting repair. The counting process of defective products N ≡ {N(t) : t ≥ 0} is defined by228

N(t) := ∑∞
i=1 1{Ti≤t}, t ≥ 0, (1)229

and assumed to be a non-homogeneous Poisson process with a bounded Borel arrival rate function λ (.).230

The random variables Ri, i ∈N, on the other hand, are independent and identically distributed Bernoulli231

random variables indicating the condition of the defective items. They are defined as232

Ri =

{
1 if the product can be repaired
0 otherwise233

with probability 0 ≤ q = P(Ri = 1)≤ 1. The thinned arrival processes N0 := {N0(t) : t ≥ 0} and N1 = {N1(t) :234

t ≥ 0} given by235

N0(t) := ∑∞
i=1(1−Ri)1{Ti≤t},N1(t) := ∑∞

i=1 Ri1{Ti≤t}, (2)236

count the number of non-repairable and repairable products arriving over time. It is well known that237

the arrival processes N0 and N1 are independent non-homogeneous Poisson processes with arrival rate238

functions λ0(.) = (1−q)λ (.), λ1(.) = qλ (.) respectively (cf. Çınlar (2011)) having mean arrival functions239

Λ0(.) = (1−q)Λ(.) and Λ1(.) = qΛ(.) with Λ(t) =
∫ t

0 λ (u)du for 0≤ t ≤ T. In the sequel, we let F≡ (Ft)t≥0 ⊆240

H denote the filtration of the point process (Ti,Ri)i∈N; that is, the flow of information associated with241

both the arrival times of the products and their condition.242

Let T denote the end of service time at which the OEMs’ service obligations with respect to the243

product expires. For the optimal application of the Generalised Last Time Buy policy, the manufacturer244

makes two decisions: the size of the Last Time Buy order at time 0, x ∈ Z+ = {0,1,2, . . .}, and the245

optimal stopping time τ ∈ [0,T ] of switching from a classical repair-replacement policy to an alternative246

policy. This is a (possibly random) stopping time belonging to the set of all bounded stopping times with247

respect to the filtration F. The subset of deterministic stopping times is denoted by F0. Recall that for248

the deterministic stopping time τ a.s
= T the Generalised Last Time Buy optimization problem reduces to249

the Last Time Buy optimization problem in which we only need to determine the size of the Last Time250

Buy order.251
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For the decision making problem, we consider the finite horizon, continuous compounding discounted252

cost criteria with discount rate δ ≥ 0. Figure 1 depicts the control process under the Generalized Last253

Time Buy policy. The total cost of these two decisions for a given (x,τ)-policy consists of cost components254

related with acquisition, inventory holding, repair and replacement. These cost parameters are explained255

in the next subsection and are the same as discussed in Frenk et al. (2019a).256

2.2 The cost parameters of the generalized last time buy problem.257

Acquisition of spare parts take place at time 0 and parts are delivered immediately. The acquisition cost258

function is denoted by c : Z+ 7→ R+, where c(0) = 0. Also the holding cost rate for the delivered parts is259

h > 0 per spare part per unit of time.260

The used policy up to the end of service time T is now summarized by the following procedure.261

Starting with x units representing the size of the Last Time Buy order, the OEM utilizes the repair-262

replacement policy until some random stopping time τ ≤ T . Under this repair-replacement policy, if a263

repair is feasible for an arriving defective component, it is always repaired at some repair cost cre plus264

some service cost cse. If the component is beyond repair and the inventory level of spare parts is non-zero,265

the defective component in the item is replaced with a spare part from the inventory at service cost cse.266

If no spare part is available in inventory, the beyond repairable component is replaced with a substitution267

spare part supplied from an external source like a gray market or a 3D printer (Figure 1). The cost268

of this substitution is given by the right continuous function ca : [0,T ]→ R+. Utilizing the substitution269

policy during the time one should use the repair-replacement policy also leads to an additional penalty270

cost function p : [0,τ]→ R+. This penalty cost function can be motivated by customers’ loss-of-goodwill271

or transportation of the substitute part from another location. Therefore, the total penalty cost of being272

forced to use the alternative substitution policy at time 0 ≤ t ≤ τ during the time one should use the273

repair-replacement policy is given by274

cap(t) := ca(t)+ p(t). (3)275

We assume that cap(t) ≥ cse for 0 ≤ t ≤ τ to avoid trivial domination of substitution parts over spare276

parts available in inventory. It is assumed that the functions ca and p are both non-increasing and right277

continuous. Namely, the substitute component gets cheaper over time thanks to technological progress278

in production processes and the penalty of using a substitute component under the repair-replacement279

policy is a decreasing function of time.280

After time τ ≤ t ≤ T until the end of service time T , the OEM first discards at time τ the existing281

inventory at a scrapping cost of cscr per item and abandons after this time for any defective item arriving282

at time t the repair-replacement policy and replaces it by the substitution policy at the substitution cost283

ca(t). All costs of the repair services are indicated next to the associated processes in Figure 1. In our284

formulation, all cost terms are positive except the scrapping value cscr, which is allowed to be negative.285

This means there can be a net revenue associated with these scrapped parts. To avoid pathological cases286

where ordering is profitable because of scrapping, we assume in this study that the function x 7→ c(x)−c−scrx287

is increasing with c−scr :=−min{cscr,0} and288

limx↑∞ c(x)− c−scrx = ∞. (4)289

This implies for the special case that the scrapping costs are positive, then the acquisition cost function c290

is increasing and satisfies lim↑∞ c(x) = ∞. Also for scrapping costs negative this implies that the function291

x → c(x)+cscrx is increasing. For the scrapping action to be economically justifiable, we must impose the292

condition that h−δcscr ≥ 0. If this condition fails to hold, instead of scrapping an item at some time τ,293

we can keep it indefinitely in inventory at a total cost of h
∫ ∞

τ e−δudu = (h/δ )e−δτ which would be less294

than cscre−δτ . These three conditions on the cost functions and the parameters listed in the previous295

relations always hold in this study unless stated otherwise.296
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2.3 The objective function of the generalized last time buy problem.297

In the decision making problem under consideration, a Last Time Buy order of size x and switching time298

τ ≤ T are determined, which we refer to as a (x,τ)-policy. The first variable x is static, and its value is299

determined at time zero. The switching decision, on the other hand, can be dynamic, and in the general300

formulation of the problem τ is a stopping time of the filtration F.301

In this section, we derive the expected discounted cost C(x,τ) of any (x,τ)-policy, x ∈ Z+, τ ∈ F302

and introduce the optimization problem to be solved. To this end, we introduce the random variable303

σx := inf{t > 0 : N0(t) ≥ x}, denoting the (random) time of inventory depletion for an order size of x.304

Observe the total expected discounted cost is the sum of the procurement and expected discounted305

operation costs. The procurement cost is given by c(x). To derive the expected discounted operation306

costs we utilize the following results about martingales. For any locally bounded Borel measurable307

function f and any non-homogeneous Poisson process N with locally bounded Borel arrival rate function308

µ defined on the probability space (Ω,H ,P) it follows that the stochastic process X = {X(t) : t ≥ 0}, given309

by X(t) :=
∫ t

0 f (s)dN(s)−
∫ t

0 f (s)µ(s)ds for t ≥ 0, is a right-continuous martingale (cf. Çınlar (2011)). For310

these so-called Poissonian martingales and any bounded stopping time τ it holds that E(X(τ)) = 0. This311

means312

E
(∫ τ

0
f (t)dN(t)

)
= E

(∫ τ

0
f (t)µ(t)dt

)
. (5)313

This is known as Doob’s stopping theorem (cf.Çınlar (2011)) and we will make frequently use of this314

result in the computation of the expected discounted operation costs. The expected discounted operation315

costs consist of the following components for any (x,τ)-policy with x ∈ Z+ and τ ∈ F:316

• Inventory holding costs: We switch to the repair-with-substitute policy at time τ ≤ T and scrap317

at that time (possibly) leftover inventory of spare parts. Hence, the random discounted inventory318

holding costs are given by h
∫ τ

0 e−δu(x − N0(u))+du with (z)+ := max(z,0). This shows that the319

expected discounted holding costs Cinv(x,τ) of any (x,τ)-policy equal320

Cinv(x,τ) = hE
(∫ τ

0
e−δu(x−N0(u))+du

)
. (6)321

• Service costs: Service costs arise during the cost of running repair operations for both re-322

pairable and non-repairable products. For a repairable product service costs occur during the323

repair-replacement policy from time 0 to time τ in any (x,τ)-policy. For a non-repairable product,324

service costs occur in case of positive spare parts inventory at the arrival time of a defective prod-325

uct. Hence, for non-repairable products, service costs only need to be paid from time 0 up to time326

τ ∧σx := min{τ,σx}. This shows that the random discounted service costs are given by327

cse

∫ τ

0
e−δudN1(u)+ cse

∫ τ∧σx

0
e−δudN0(u).328

Applying now relation (5) for properly chosen functions f and using both point processes N0 and N1329

it follows for the bounded stopping time τ ≤ T that the expected discounted service costs Cse(x,τ)330

of any (x,τ)-policy equal331

Cse(x,τ) = cseE
(∫ τ

0 e−δuλ1(u)du
)
+ cseE

(∫ τ∧σx
0 e−δuλ0(u)du

)
= qcseE

(∫ τ
0 e−δuλ (u)du

)
+(1−q)cseE

(∫ τ∧σx
0 e−δuλ (u)du

)
.

(7)332

• Repair costs: We incur repair costs during the repair-replacement phase from time 0 to τ. Hence333

the random discounted repair costs are given by cre
∫ τ

0 e−δudN1(u). Applying the same arguments as334
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for service costs the expected discounted repair costs Cre(x,τ) of any (x,τ)-policy equal to335

Cre(x,τ) = creE
(∫ τ

0
e−δuλ1(u)du

)
= qcreE

(∫ τ

0
e−δuλ (u)du

)
. (8)336

• Substitution costs: The random discounted costs of applying the repair-with-substitute policy337

consist of the substitution cost before and after time τ. The random discounted cost of using the338

alternative policy is given by339 ∫ T

τ
e−δuca(u)dN(u)+

∫ τ

τ∧σx

e−δucap(u)dN0(u).340

Applying the same arguments as before and using relation (3) the expected discounted alternative341

policy costs Ca(x,τ) of any (x,τ)-policy are as follows:342

Ca(x,τ) = E
(∫ T

τ e−δuca(u)λ (u)du
)
+(1−q)E

(∫ τ
τ∧σx

e−δucap(u)λ (u)du
)

=


∫ T

0 e−δuca(u)λ (u)du+E(
∫ τ

0 e−δu[(1−q)cap(u)− ca(u)]λ (u)du

−(1−q)E
(∫ τ∧σx

0 e−δucap(u)λ (u)du
)

=


∫ T

0 e−δuca(u)λ (u)du+E(
∫ τ

0 e−δu[(1−q)p(u)−qca(u)]λ (u)du

−(1−q)E
(∫ τ∧σx

0 e−δucap(u)λ (u)du
)
.

(9)343

• Scrapping costs: The random discounted scrapping costs at time τ are given by cscre−δτ(x−344

N0(τ))+. This shows that the expected discounted scrapping costs Cscr(x,τ) of any (x,τ) policy345

equal346

Cscr(x,τ) = cscrE(e−δτ(x−N0(τ))+). (10)347

Adding up the separate operational costs derived in relations (6)-(10), the expected discounted operation348

cost C(x,τ) of any (x,τ)-policy is given by349

C(x,τ) =


hE(

∫ τ
0 e−δu(x−N0(u))+du)+ cscrE(e−δτ(x−N0(τ))+)

+E
(∫ τ

0 e−δu[q(cre + cse − ca(u))+(1−q)p(u)]λ (u)du
)

+(1−q)E
(∫ τ∧σx

0 e−δu[cse − cap(u)]λ (u)du
)
+

∫ T
0 e−δuca(u)λ (u)du.

(11)350

To rewrite the expression in (11) in a more suitable form, we remind that for any first order stochastic351

processes Y = {Y (t), t ≥ 0} and Z = {Z(t) : t ≥ 0} it holds that352

Y (t)Z(t) = Y (0)Z(0)+
∫ t

0
Y (u)dZ(u)+

∫ t

0
Z(u)dY (u), t > 0353

This shows for any 0 ≤ q ≤ 1 using N0(0) = 0354

e−δτ(x−N0(τ))+ = e−δ (τ∧σx)(x−N0(τ ∧σx))

= x−δ
∫ τ∧σx

0 e−δu(x−N0(u))du−
∫ τ∧σx

0 e−δudN0(u)
355
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and so by Doob’s stopping theorem356

E(e−δτ(x−N0(τ))+) = x−δE
(∫ τ

0
e−δu(x−N0(u))+du

)
− (1−q)E

(∫ τ∧σx

0
e−δuλ (u)du

)
. (12)357

Replacing the expectation for the scrapping value in (11) with the expression in (12) and rearranging358

some terms, we obtain the following more suitable representation of the expected discounted operation359

costs.360

C(x,τ) =


cscrx+(1−q)E

(∫ τ∧σx
0 e−δuλ (u)[cse − cscr − cap(u)]du

)
+E

(∫ τ
0 e−δuλ (u)[q(cse + cre − ca(u))+(1−q)p(u)]du

)
+(h−δcscr)E

(∫ τ
0 e−δu(x−N0(u))+)du

)
+

∫ T
0 e−δuλ (u)ca(u)du.

(13)361

In case we consider the subclass of policies (x,τ ∧σx),τ ∈ F this yields by relation (13)362

C(x,τ ∧σx) =


cscrx+E

(∫ τ∧σx
0 e−δuλ (u)[cse +qcre − (1−q)cscr − ca(u)]du

)
+(h−δcscr)E

(∫ τ
0 e−δu(x−N0(u))+du

)
+

∫ T
0 e−δuλ (u)ca(u)du

(14)363

and so364

C(x,τ)−C(x,τ ∧σx) = E
(∫ τ

τ∧σx

e−δu[q(cse + cre − ca(u))+(1−q)p(u)]du
)
. (15)365

In the following lemma, we use relation (15) to show that under certain conditions on the penalty and366

the substitution cost functions it is always optimal within the class of all stopping times to switch to the367

substitution policy before or at the moment the inventory level of spare parts is depleted. In Section 2.6368

we will analyze this special class of policies with τ a constant.369

Lemma 1. If370

inf0≤t≤T{q(cse + cre − ca(t))+(1−q)p(t)} ≥ 0, (16)371

then the class of (x,τ ∧σx)-policies with τ ∈ F contains an optimal policy.372

Proof. Apply relation (15).373

If no item is repairable (q = 0!), the (sufficient) condition of Lemma 1 is satisfied. In this case one can374

find an optimal policy belonging to this special class of policies. In many service systems penalty costs375

are very high. Hence the condition in Lemma 1 is mostly satisfied in practice especially when q is close to376

0. Since the subclass of (x,τ ∧σx)-policies avoid the (possibly) high penalty costs occurring in practice,377

it is therefore worthwhile to study them in detail. We will focus on this set of policies with τ ∈ F0 in378

subsection 2.6 and section 3. However, it might not always happen that a (x,τ ∧σx)-policy is optimal379

within the class of all bounded stopping time policies. In case of high substitution cost ca(.) being larger380

then cse + cre and low penalty costs p(.), and q close to one it might be cheaper (see proof Lemma 1!) to381

continue with the repair-replacement policy after the inventory level hits zero.382

2.4 On the formulation of the generalized last time buy problem.383

Applying relation (13) the objective function of using a given (x,τ) policy consists of the summation of384

the procurement cost c(x) and the operating cost C(x,τ). The corresponding last time buy optimization385

problem is then given by386

υ(P) = infx∈Z+,τ∈F,0≤τ≤T{c(x)+C(x,τ)}. (P)387

Hence we need to determine the parameters of a (x,τ)-policy, if it exists, attaining the infimum in the388

above optimization problem.389
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There is one instance of optimization problem (P) which can be solved easily. In case all the defective390

items are repairable, i.e. q = 1, the stochastic counting process N0 of non-repairable defective components391

listed in relation (2) becomes the zero process. Since for q = 1 all items can be repaired without using392

spare parts, it is easy to check applying relation (13) it is optimal not to order any spare parts. Also, since393

the function ca is decreasing and every time we use for a (repairable) defective item the repair decision394

against cost cse +cre it is optimal to switch to the substitution policy at the earliest time t ≤ T satisfying395

ca(t)≤ cse + cre. This result is formally stated in the next lemma.396

Lemma 2. If all defective items can be repaired and the three conditions on the parameters introduced397

in subsection 2.2 hold, then the optimal policy is not to order any spare parts at time 0 and the optimal398

switching time to the repair-with-substitute policy is given by τ = ζ1 with399

ζq = inf{0 ≤ u ≤ T : cse +qcre − ca(u)≥ 0} ,0 ≤ q ≤ 1, (17)400

with the convention inf{∅} = T and ∅ denoting the empty set. Also the optimal objective value υ(P)401

equals402

υ(P) =
∫ T

0
e−δuλ (u)min{cse + cre,ca(u)}du.403

Proof. See Appendix.404

Since in Lemma 2 we know for the optimal policy that the time to switch to the alternative policy is405

already known at time zero this optimal policy is a so-called static policy. Hence by Lemma 2 we only406

need to consider in the remainder of this paper the optimization problem (P) satisfying 0 ≤ q < 1. To407

solve optimization problem (P) we first compactify the decision space by deriving an upper bound on the408

optimal order quantity. An easy upper bound valid for cscr ≥ 0 is given by the following result. Since the409

function x → infτ∈F,0≤τ≤T{c(x)+C(x,τ)} does not satisfy in general discrete convexity type properties this410

restriction to a finite number of possible order sizes is very useful in the computational section. Observe,411

for the general case of both either positive or negative values of cscr one can show under an additional412

condition on the function cap an improved upper bound and this is shown in Lemma 6.413

Lemma 3. If cscr ≥ 0 and the three conditions on the parameters introduced in subsection 2.2 hold414

and xU := min
{

x ∈ Z+ : c(x)>
∫ T

0 e−δuλ (u)ca(u)du
}

then an optimal order quantity x∗ of the optimization415

problem (P) exists and it satisfies x∗ ≤ xU .416

Proof. See Appendix.417

Lemma 3 implies that solving optimization problem (P) is equivalent to solving418

υ(P) = minx≤xU ,x∈Z+ infτ∈F,0≤τ≤T{c(x)+C(x,τ)}, (18)419

and this problem can be approximated by a computable optimal stopping problem. In Frenk et al. (2019a)420

an approximate solution to this problem is provided by replacing the set of all stopping times with the421

set of stopping times attaining only values from a finite subset of [0,T]. To bound the approximation422

error replacing the set of stopping times by the smaller set of stopping times only attaining values at a423

finite subset of [0,T ] we need a lower bound on υ(P). In the following subsection we provide under some424

additional assumption on the function cap(.) an improved upperbound on the optimal order quantity x425

valid for any scrapping value cscr. This improves the representation in (18).426
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2.5 An upper bound on the optimal order quantity for arbitrary scrapping427

values.428

In this subsection we derive in Lemma 6 an upper bound on the optimal order quantity of the generalized429

last buy decision minimization problem for arbitrary scrapping values cscr under general conditions on430

the function cap(.). To do so we first derive a lower bound on υ(P) in Lemma 5. To start our analysis431

introduce the function L : Z+×F→ R given by432

L(x,τ) :=


c(x)+hE

(∫ τ
0 e−δu(x−N0(u))+du

)
+ cscrE(e−δτ(x−N0(τ))+)

+E
(∫ τ

0 e−δu[cse +qcre − ca(u)]λ (u)du
)
+

∫ T
0 e−δuca(u)λ (u)du.

(19)433

If cap(u) = cse for every 0 ≤ u ≤ T it follows that the costs of the different events given by either an arrival434

moment of a non-repairable defective item at which one still uses the repair-replacement policy but the435

inventory level of spare parts is zero or the cost of replacement at a positive spare parts inventory level436

are the same. If this holds we obtain using p(u) = cap(u)− ca(u) = cse − ca(u) that for every 0 ≤ u ≤ T437

q(cre + cse − ca(u))+(1−q)p(u) = cse +qcre − ca(u)438

This implies by relation (11) that for this selection of the cost parameters the value L(x,τ) is the sum of439

the procurement and the operational costs for every 0 ≤ t ≤ T and so the result in Lemma 4 should not440

come as a surprise. Also by relation (11) it is easy to check that441

c(x)+C(x,τ)−L(x,τ) = (1−q)E
(∫ τ

τ∧σx

e−δuλ (u)[cap(u)− cse]du
)
, (20)442

and by relation (12)443

L(x,τ) =

 c(x)+ cscrx+(h−δcscr)E
(∫ τ

0 e−δu(x−N0(u))+du
)
+

∫ T
0 e−δuλ (u)ca(u)du

−cscr(1−q)E
(∫ τ∧σx

0 e−δuλ (u)du
)
+E

(∫ τ
0 e−δu[cse +qcre − ca(u)]λ (u)du

)
.

(21)444

The following result, which immediately follows from relations (20) and (21), is also shown in Frenk et445

al. (2019a) using a much more complicated proof.446

Lemma 4. If the three conditions on the parameters introduced in subsection 2.2 hold, then for every447

τ ∈ F the function x → L(x,τ) is increasing and limx↑∞ L(x,τ) = ∞. Also, if additionally cap(u) ≥ cse for448

every 0 ≤ u ≤ T , then c(x)+C(x,τ)≥ L(x,τ) for every (x,τ) policy.449

Proof. By relation (21) the first part follows, while the second part is an immediate consequence of450

relation (20).451

Clearly by the interpretation of cap being the cost of being forced to apply the substitution policy452

to a non-repairale defective item at a time one still applies the repair-replacement policy it is natural to453

assume that this cost is higher then the costs cse representing the cost of applying the repair-replacement454

policy to that same item under expected conditions. Using Lemma 4 one can derive for every positive or455

negative scrapping value cscr per item a positive lower bound on υ(P).456

Lemma 5. If the three conditions on the parameters introduced in subsection 2.2 hold and cap(u) ≥ cse457

for every 0 ≤ u ≤ T , then the optimal objective value υ(P) of the optimization problem (P) satisfies458

υ(P)≥
∫ T

0
e−δu min{cse +qcre,ca(u)}λ (u)du > 0. (22)459
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Proof. see Appendix.460

Using Lemma 4 and the natural condition cap(u) ≥ cse for every 0 ≤ u ≤ T it is possible to derive461

a tighter upper bound xU ≤ xU on the optimal order quantity than the one presented in Lemma 3.462

Contrary to the (weaker) one in Lemma 3 this upper bound holds for both positive and negative values463

of the scrapping value cscr.464

Lemma 6. If the three conditions on the parameters introduced in subsection 2.2 hold and cap(u) ≥ cse465

for every 0 ≤ u ≤ T and466

xU = min{x ∈ N : c(x)+min{cscr,0}x >
∫ T

0
e−δuλ (u)max{0,ca(u)− cse −qcre}du}, (23)467

then an optimal order quantity x∗ of the optimization problem (P) exists and it satisfies x∗ ≤ xU .468

Proof. See Appendix.469

Observe the upper bound xU is easy to compute by bisection since by our assumptions the function470

x → c(x)+min{cscr,0}x is increasing having limit infinity at infinity. By using the proof of Lemma 6,471

one can construct an upper bound knowing the value c(x)+C(x,τ) of the objective function for a given472

(x,τ)-policy. In this case the upper bound xU (x,τ) is given by473

xU (x,τ) = min
{

x ∈ N : c(x)+min{cscr,0}x > c(x)+C(x,τ)−
∫ T

0
e−δuλ (u)min{cse +qcre,ca(u)}du

}
. (24)474

Clearly by Lemma 5 the value475

c(x)+C(x,τ)−
∫ T

0
e−δuλ (u)min{cse +qcre,ca(u)}du,476

is non-negative and the lower the values of this difference leads to tighter bounds.477

2.6 On the subclass of deterministic and pseudo-deterministic policies.478

Another important class of policies is the class of (x,τ) policies with τ ∈ F0. These so-called deterministic479

policies are studied in detail in Frenk et al. (2019b). Observe these polices are sometimes also called static480

due to the following advantage. The decision maker knows applying those policies already at time 0 the481

switching time of the repair-replacement policy to the alternative policy and so this policy is easy-to-482

implement in practice. Not knowing the switching time at time zero, but avoiding possibly high penalty483

costs instead, leads us to study the class of (x,τ ∧σx) policies with τ ∈ F. For arbitrary bounded stopping484

times τ ∈ F it was shown in Lemma 1 that under some reasonable conditions the class of (x,τ ∧σx) polices485

indeed contains an optimal one among all (x,τ) policies, x ∈ Z+, τ ∈ F. We will now study this class of486

policies in more detail for any τ ∈ F0 and call this class the class of pseudo-deterministic policies. These487

policies are not discussed previously in the literature and are still relatively easy to implement in practice488

as the decision maker switches from the repair-replacement policy to the alternative policy either at the489

deterministic time τ ∈ F0 or at the random time σx of inventory depletion, whichever occurs first. Since490

in general penalty cost can be very high, it seems natural to assume that any optimal policy tries to491

avoid penalty cost or at least tries to minimize the probability of penalty occurrences. Hence it is useful492

to study this new class of policies. We will compute for different scenarios in Section 5 the probability493

of occurrence of a penalty and the gap between the cost of the optimal pseudo-deterministic policy and494

υ(P). In the next section, we will also show that it is extremely simple to compute an optimal pseudo-495

deterministic policy for the important class of piece-wise constant arrival rate and substitution policy496

costs functions. For these cost and arrival settings one can compute exactly the optimal policy within497
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the class of pseudco deterministic policies instead of approximating the optimal policy. At the same time498

these cost and arrival settings approximate by any accuracy the general arrival and cost settings.499

For the subset of deterministic and pseudo-deterministic policies, one can simplify considerably the500

expression for C(x,τ) in relation (13). By Fubini’s theorem it follows for any Borel measurable function501

f ,τ ∈ F0 and x ∈ Z+ that502

E
(∫ τ∧σx

0
f (u)du

)
= E

(∫ τ

0
f (u)1{σx>u}du

)
=

∫ τ

0
f (u)P(N0(u)< x)du.503

This relation and relation (13) imply for τ ∈ F0 that504

C(x,τ) =


cscrx+(1−q)

∫ τ
0 e−δuλ (u)[cse − cscr − cap(u)]P(N0(u)< x)du

+
∫ τ

0 e−δuλ (u)[q(cse + cre − ca(u))+(1−q)p(u)]du

+(h−δcscr)
∫ τ

0 e−δuE((x−N0(u))+)du+
∫ T

0 e−δuλ (u)ca(u)du.

(25)505

By the same argument, we can write relation (14) as506

C(x,τ ∧σx) =


cscrx+

∫ τ
0 e−δuλ (u)[cse +qcre − (1−q)cscr − ca(u)]P(N0(u)< x)du

+(h−δcscr)
∫ τ

0 e−δuE((x−N0(u))+)du+
∫ T

0 e−δuλ (u)ca(u)du.
(26)507

To analyze the behavior of both objective functions for a given τ ∈F0 we need the concept of discrete508

convexity: A function f : Z+ → R is called discrete convex on Z+ if its first order difference ∆x f (x) :=509

f (x+1)− f (x),x ∈ Z+ is a non-decreasing function on Z+. The function f is called discrete concave if the510

function − f is discrete convex. Discrete convexity is applied to our problem through the following result.511

Lemma 7. Let N be a non-homogeneous Poisson process with a locally bounded Borel measurable arrival512

rate function µ and f : [0,T ]→ R some Borel measurable function. If the function f is non-decreasing513

and non-positive on [0,τ) for a given τ ∈ F0,0 < τ ≤ T then the function514

x 7→ G(x) := E
(∫ τ∧σx

0
f (v)µ(u)du

)
(27)515

is non-increasing and discrete convex on Z+. If the function f is non-increasing and non-negative on516

[0,τ), then this function is non-decreasing and discrete concave on Z+.517

Proof. See Appendix.518

Using Lemma 7 the next result is easy to verify. A similar result was proved in Frenk et al. (2019b)519

using a much more complicated proof.520

Lemma 8. Let τ ∈ F0,0 < τ ≤ T be given.521

1. If the procurement cost function c is discrete convex on Z+ and cap(t) ≥ cse − cscr for every t < τ,522

then the function x 7→ c(x)+C(x,τ) is discrete convex on Z+.523

2. If the procurement cost function c is discrete convex on Z+ and ca(t) ≥ cse + qcre − (1− q)cscr for524

every t < τ then the function x 7→ c(x)+C(x,τ ∧σx) is discrete convex on Z+.525

Proof. See Appendix.526
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Since we always assume (unless stated otherwise) that p(u)≥ cse and cap is non-increasing, it follows527

for cscr ≥ 0 that cap(t) ≥ cse − cscr for every 0 < t ≤ T . Hence by Lemma 8 the function x → C(x,τ) is528

discrete convex for every 0 < τ ≤ T and this result was used in Frenk et al. (2019b) to give an efficient529

algorithm to compute approximately the optimal deterministic policy. In the next section we will only530

consider the class of pseudo-deterministic policies and prove that one can identify beforehand a finite531

set of τ values containing an optimal solution for piece-wise constant arrival rate and (decreasing) piece-532

wise constant substitution cost functions. For this realistic setting, we will analyze the properties of the533

following optimization problem534

υ(Q) = infx∈Z+,τ∈F0,0≤τ≤T{c(x)+C(x,τ ∧σx)} (Q)535

3 On properties of the class of pseudo-deterministic policies.536

In this section we show for a Poissonian defective items stochastic arrival process having a piece-wise537

constant arrival rate function and a piecewise-constant non-increasing substitution cost function ca that538

the finite set of breaking points of these functions contain the optimal switching time between the two539

used policies and so this optimal switching time can be easily computed. Without loss of generality, we540

may assume that both functions have the same set of breaking points. If this is not the case, we use the541

union of both sets of breaking points.542

To justify the use of a piece-wise constant substitution cost function we first observe one can always543

find a piece-wise constant function approximating a bounded non-increasing substitution cost function ca544

within any given accuracy using the following procedure. Introducing the composite function ca,n(t) :=545

dn(ca(t)),0 ≤ t ≤ T,n ∈ N with the so-called dyadic function dn : [0,∞]→ [0,∞) (cf.Çınlar (2011)) given by546

dn(r) = ∑n2n

k=1
k−1

2n 1[(k−1)2−n,k2−n)(r)+n1[n,∞)(r), (28)547

yield a sequence of piece-wise constant functions taking only finitely many values. Using this repre-548

sentation we obtain that the function ca,n is again a non-increasing right continuous function satisfy-549

ing ca,n ≤ ca and for every n ∈ N, n > ca(0) we have the approximation errors ‖ ca,n − ca ‖∞≤ 2−n with550

‖ f ‖∞= supt∈[0,T ] | f (t) |. Similarly, one can also approximate any locally bounded, Borel measurable551

arrival rate function λ by the function λn(t) := dn(λ (t)) for t ∈ [0,T ] and ‖ λn −λ ‖∞≤ 2−n for sufficiently552

large n. By increasing the value of n, we obtain more accurate approximations. Although not proved553

in this paper it is relatively easy to give an upper bound on the error in the optimal discounted cost554

replacing the function ca by its approximation ca,n and the arrival rate function λ by λn. Hence up to any555

given accuracy one can replace the true functions ca and λ by their piece-wise constant approximations556

ca,n and λn for some properly selected n ∈ N. Hence this justifies the use of these piece-wise constant557

functions.558

To solve the optimization problem (Q) listed in subsection 2.6 for the set of pseudo-deterministic559

policies two alternative approaches are possible: The first approach we may use (used in Frenk et al.560

(2019b) for only the set of static policies) is given by561

υ(Q) = infτ∈F0,0≤τ≤T φ(τ),562

with563

φ(τ) := infx∈Z+{c(x)+C(x,τ ∧σx)}. (Q(τ))564

Applying this bilevel approach and Lemma 8 we may use the necessary and sufficient first order conditions565

to determine first the optimal order quantity x(τ) for each given deterministic switching time τ ∈ F0 and566

compute for this optimal order quantity the optimal value φ(τ) of optimization problem (Q(τ)). In567

general the optimal value function φ : [0,T ]→ R is not a convex function on [0,T ] and so we cannot use568
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a classical one-dimensional optimization algorithm to determine an optimal τ ∈ F0. However, it can be569

shown that the function φ is Lipschitz continuous with a computable Lipschitz constant and so up to any570

given accuracy we may construct a finite discretization D of the set [0,T ]. Evaluating the finite number of571

function values φ(τ),τ ∈D and taking the minimum of those values we can then approximate υ(Q) up to572

any given accuracy. Although applicable this approximation approach will not be followed in this paper.573

The second bilevel approach (considered in this paper) yielding an exact procedure to compute the optimal574

pseudo-deterministic policy for a piecewise-constant arrival rate and piecewise constant substitution cost575

function is given by576

υ(Q) = infx∈Z+{ψ(x)}. (Q)577

with578

ψ(x) := inf0≤τ≤T,τ∈F0{c(x)+C(x,τ ∧σx)}. (Q(x))579

For the optimization problem (Q) we first identify the following easy instance.580

Lemma 9. If the substitution cost function ca of applying the alternative policy is non-increasing and581

ca(0)≤ cse+qcre−(1−q)cscr it is optimal within the class of pseudo-deterministic policies not to order any582

spare parts and switch at time 0 immediately to the substitution policy. This yields the optimal objective583

value υ(Q) =
∫ T

0 e−δuλ (u)ca(u)du.584

Proof. See Appendix.585

Due to the low cost of substitution at time 0 and using relation (14) in the proof of Lemma 9 it586

is easy to see that it is also optimal to switch immediately at time 0 to the alternative policy within587

the class of all (x,τ ∧σx) policies with τ an arbitrary bounded stopping time. Hence in the remainder588

of this paper it is assumed that ca(0) > cse + qcre − (1− q)cscr. In practice this condition on the costs589

parameters is realistic since immediately applying the alternative policy at time 0 is in general much590

more expensive then applying the repair-replacement policy. We will now analyze the optimization591

problem (Q(x)) for a Poissonian defective items arrival process having a piece-wise constant arrival rate592

function and decreasing piece-wise constant substitution or alternative policy cost function ca(.). To593

introduce this piece-wise constant arrival rate function consider a strictly increasing sequence (ai)
n+1
i=1594

satisfying 0 = a1 < a2 < ... < an < an+1 = T and define for t ≥ 0595

λ (t) = ∑n
i=1 λi1[ai,ai+1)(t) (29)596

for any arbitrarily selected non-negative sequence (λi)
n
i=1. At the same time the non-increasing substitu-597

tion cost function of applying the alternative policy is given by598

ca(t) = ∑n
i=1 ci1[ai,ai+1)(t),0 ≤ t ≤ T. (30)599

with c1 ≥ c2 ≥ ... ≥ cn > 0 and c1 > cse + qcre − (1− q)cscr. Since by Lemma 9 it is optimal not to order600

and immediately switch to the substitution policy if c1 = ca(0) ≤ cse + qcre − (1− q)cscr, we may assume601

c1 > cse + qcre − (1− q)cscr. By relation (14) it also follows that the partial derivative of the function602

c(x)+C(x,τ ∧σx) with respect to τ ∈ F0 for any ai < τ < ai+1, i = 1, ...,n is given by603

∂C
∂τ

(x,τ ∧σx) = e−δτ (λi[cse +qcre − (1−q)cscr − ci]P(N0(τ)< x)+(h−δcscr)E((x−N0(τ))+)
)
. (31)604

Using relation (31) and introducing the index605

n∗ = max{1 ≤ i ≤ n : ci > cse +qcre − (1−q)cscr} ≤ n, (32)606

the next result is easy to show for optimization problem (Q(x)).607
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Lemma 10. Introducing ψi(x) = minai≤τ≤ai+1{c(x)+C(x,τ ∧σx)}, i = 1, ...,n it follows for every x ∈ Z+608

that ψ(x) = mini=1,...,n∗ ψi(x) with ψ(x) the optimal objective value of optimization problem (Q(x)).609

Proof. See Appendix.610

The partial derivative in relation (31) consists of the difference of two positive decreasing functions611

and so this difference might not be increasing or decreasing. To analyze in detail this partial derivative612

we introduce the well known Erlang-B formula represented by the function B : Z+×R+ → R given by613

B(x, t) :=
tx

x!

∑x
j=0

t j

j!

, x ∈ N, (33)614

and B(0, t) = 1 for every t > 0. The value B(x, t) represents the probability that an arriving customer615

is rejected in a M/M/x/x Markovian loss model with an arrival rate t and departure rate 1 (Kleinrock616

(1975)). Hence 1−B(x, t) represents the probability that an arriving customer is admitted to the system.617

By a straightforward computation it is easy to show the following result.618

Lemma 11. If N = {N(t) : t ≥ 0} is a non-homogeneous Poisson process with arrival rate function θ and619

mean arrival function Θ(t) =
∫ t

0 θ(u)du, t ≥ 0 then for any x ∈ N and t > 0620

E((x−N(t))+)
P(N(t)< x)

= x−Θ(t)(1−B(x−1,Θ(t))). (34)621

Proof. see Appendix.622

Introducing the function κi : Z+× [0,T ]→ R given by623

κi(x,τ) = λi[cse +qcre − (1−q)cscr − ci]+ (h−δcscr)x− (h−δcscr)Λ0(τ)[1−B(x−1,Λ0(τ))], (35)624

with Λ0(τ) = (1−q)
∫ τ

0 λ (u)du and considering relations (31) and (34), we obtain625

∂C
∂τ

(x,τ ∧σx) = e−δτP(N0(τ)< x)κi(x,τ), (36)626

for ai < τ < ai+1, i = 1, ...,n. For every x ∈ N the following result is well known. We list a short proof of627

this result in the Appendix.628

Lemma 12. For every x∈N the function t 7→ t(1−B(x, t)) is increasing and satisfies limt↑∞t(1−B(x, t))= x.629

Proof. see Appendix.630

Using Lemma 12 we can slightly improve the result in Lemma 10. By Lemma 12 it follows for every631

x ∈N and τ ≥ 0 that Λ0(τ)(1−B(x−1,Λ0(τ))≤ x−1, and this yields for every x ∈N that the function κi632

listed in relation (35) satisfies633

κi(x,τ)≥ λi(cse +qcre − (1−q)cscr − ci)+(h−δcscr). (37)634

Hence it follows for ci ≤ cse +qcre − (1−q)cscr +λ−1
i (h−δcscr) that by relation (36)635

∂C
∂τ

(x,τ ∧σx) = e−δτP(N0(τ)≤ x)ki(x,τ)≥ 0, (38)636

and this shows the improved result that the function τ 7→ c(x)+C(x,τ ∧σx) is actually increasing for637

every x on [ai,ai+1]. This shows for638

c1 ≤ cse +qcre − (1−q)cscr +λ−1
max(h−δcscr), (39)639
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with λmax := maxi=1,..,n λi that again it is optimal not to order in optimization problem (Q). Hence to640

solve problem (Q) it is sufficient to consider problem instances satisfying641

c1 > cse +qcre − (1−q)cscr +λ−1
max(h−δcscr). (40)642

For such instances the set {1 ≤ i ≤ n : ci > cse +qcre − (1−q)cscr +λ−1
max(h−δcscr)} is nonempty and intro-643

ducing644

n∗0 := max{1 ≤ i ≤ n : ci > cse +qcre − (1−q)cscr +λ−1
max(h−δcscr)} ≤ n∗, (41)645

where n∗ is listed in (32). Using similar arguments as in Lemma 10, we obtain646

ψ(x) = mini=1,...,n∗0
ψi(x). (42)647

In the next result we show for every x ∈ Z+ that the finite set of breaking points a1, ...,an⋆0+1 contains an648

optimal exit time τ of the optimization problem (Q(x)).649

Lemma 13. For every x ∈ N an optimal solution of optimization problem (Q(x)) is attained at some ai,650

i = 1, ...,n∗0 +1 with n∗0 listed in (41).651

Proof. See Appendix.652

The result in Lemma 13 implies that for any given x ∈ Z+ we only have to evaluate the objective653

function c(x)+C(x,τ ∧σx) at τ = ai for i = 1, ...,n∗0 +1. Therefore, our optimization problem (Q) listed in654

subsection 2.6 reduces to655

υ(Q) = mini=1,...,n∗0+1 minx∈Z+{c(x)+C(x,ai ∧σx)}.656

By Lemma 8 the function x→C(x,ai∧σx) is discrete convex for i≤ n∗+1 since ca(u)> cse+qcre−(1−q)cscr657

for every u < an∗+1. For a discrete convex procurement function c(.), an optimal solution x(ai), i =658

1, ...,n∗0 +1 of infx∈Z+{c(x)+C(x,ai ∧σx)} is given by659

x(ai) = min{x ∈ Z+ : c(x+1)− c(x)+∆C(x,ai ∧σx)≥ 0}, (43)660

where ∆C(x,ai ∧σx) represents the first order operator of the function x 7→C(x,ai ∧σx) given by661

∆C(x,ai ∧σx) :=C(x+1,ai ∧σx+1)−C(x,ai ∧σx),x ∈ Z+. (44)662

Observe (44) can be used to compute the objective value c(x(ai)+C(x(ai),ai ∧σx) using663

c(x(ai)) + C(x(ai),ai ∧ σx(ai)) = ∑x(ai)−1
k=0 [c(k + 1) − c(k) + ∆C(k,ai ∧ σk)] + C(0,ai ∧ σ0), (45)664

for every i = 2, ...,n∗ + 1. In (45), we need to evaluate the first order difference operator for different665

parameter values and the value of the objective function in case of no ordering. Applying relation (26)666

to the special instances of piece-wise constant arrival rate and substitution cost functions, we obtain the667

following simplification for the first order cost difference.668

Lemma 14. If the arrival rate function is given by relation (29) and the substitution cost function by669

relation (30) then for every i = 1, ...,n+1670

C(0,ai ∧σ0) =
∫ T

0
e−δuλ (u)ca(u)du = ∑n

j=1
λ jc j

δ
(e−δa j − e−δa j+1), (46)671

and for every i = 2, ...,n+1 and x ∈ Z+672

∆C(x,ai ∧σx) =


∑i−1

j=1

(
cse+qcre−c j

1−q − cscr

)
[e−δa jP(N0(a j)≤ x)− e−δa j+1P(N0(a j+1)≤ x)]

+(h−δcscr)∑i−1
j=1

∫ a j+1
a j e−δuP(N0(u)≤ x)du+ cscr.

(47)673
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Proof. See Appendix.674

For a1 = 0, relation (26) leads to ∆C(0,0∧σx) = cscr. This implies, by relation (43) and x → c(x)+675

min{cscr,0}x being increasing, that an optimal solution is given by x(a1) = 0 with the optimal value676

infx∈Z+{c(x)+C(x,a1 ∧σx)}=
∫ T

0
e−δuca(u)λ (u)du = ∑n

j=1
c jλ j

δ
(e−δa j − e−δa j+1). (48)677

To simplify the calculations in Section 5 and determine the optimal pseudo-deterministic policy we will678

use Lemma 14 together with the following result.679

Lemma 15. If the arrival rate function is given by relation (29) and introducing for every 1 ≤ j ≤ n and680

x ∈ Z+681

υ j(x) := e−δa jP(N0(a j)≤ x),682

then for every 1 ≤ j ≤ n and x ∈ Z+683

∫ a j+1

a j

e−δuP(N0(u)≤ x)du =
∑x

m=0

(
(1−q)λ j

δ+(1−q)λ j

)m
[υ j(x−m)−υ j+1(x−m)]

δ +(1−q)λ j
. (49)684

Proof. See Appendix.685

To solve the optimization problem (Q) determining the optimal pseudo-deterministic policy we can686

now apply the following algorithm.687

Solving optimization problem (Q) for piece-wise constant arrival rate and substitution cost function with
breaking points ai, i = 1, ...n and c discrete convex

• Compute n∗0 in relation (41).

• Solve for every i = 1, ...,n∗0 +1 the discrete convex minimization problem infx∈Z+{c(x)+C(x,ai ∧σx)}
by evaluating the first order conditions x(ai) = min{x ∈ Z+ : c(x+1)−c(x)+∆C(x,ai ∧σx)≥ 0} with
∆C(x,ai ∧σx) given below

∆C(x,ai ∧σx) =

 cscr +
∫ ai

0 e−δuλ (u)[cse +qcre − (1−q)cscr − ca(u)]P(N0(u) = x)du

+(h−δcscr)
∫ ai

0 e−δuP(N0(u)≤ x)du.
(50)

• Output
υ(Q) = min1≤i≤n∗+1{c(x(ai))+C(x(ai),ai)},

and
(x(ai∗),ai∗) = argmin1≤i≤n∗+1{c(x(ai))+C(x(ai),ai)}.

In Section 5, we present the results of some computational experiments with piece-wise constant688

arrival rate and substitution cost functions. We determine both the optimal pseudo-deterministic and689

the optimal stopping time policies for the most general optimization problem (P). Before presenting the690

computational results, we shortly discuss in the following section how to (approximately) compute the691

optimal policy of optimization problem (P).692
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4 On the optimal policy within the class of all stopping times.693

In this section we discuss how to solve optimization problem (P) listed in Section 2.4. Although most694

of the results except the characterization of the optimal stopping sets Sk in Lemma 18 and 19 already695

appeared in Frenk et al. (2019a) using a slightly more difficult approach, we list these main results for696

completeness also in this paper. By relation (18) we know that there exist a computable upperbound xU697

satisfying698

υ(P) = infx≤xU ,x∈Z+, infτ∈F,0≤τ≤T{c(x)+C(x,τ)}. (51)699

To solve for each x ≤ xU ,x ∈Z+ the optimization problem φ(x) := infτ∈F,0≤τ≤T{c(x)+C(x,τ)} we discretize700

the set [0,T ] and construct a finite set Θ = {t0, t1, ..., tN} ⊆ [0,T ] satisfying 0 = t0 < t1 < ... < tN = T. Its701

mesh is given by702

∆(Θ) = max0≤ j≤N−1 | t j+1 − t j | . (52)703

Depending on the given set Θ we consider the set of stopping times τ ∈ F taking only values in Θ. For704

each finite set Θ the set of stopping times only attaining value in Θ is denoted by FΘ. Consider now for705

every x ≤ xU ,x ∈ Z+ the optimization problem φΘ(x) = infτ∈FΘ{c(x)+C(x,τ)}, and introduce706

υ(PΘ) = infx≤xU ,τ∈FΘ φΘ(x) = infx≤xU ,τ∈FΘ{c(x)+C(x,τ)}. (PΘ)707

Since FΘ ⊆ F it follows by relation (51) that 0 ≤ υ(PΘ)−υ(P). It is also possibe to construct an upper-708

bound on υ(PΘ)−υ(P). If we introduce the functions fi : [0,T ]→ R, i = 1,2 as follows.709

f1(t) = (1−q)(cse − cscr − cap(t)),710

and711

f2(t) = q(cse + cre − ca(t))+(1−q)p(t).712

By using these definitions, one can show the following result. Although this result is shown in Frenk et713

al. (2019a) we list for completeness an outline of the proof.714

Lemma 16. If the arrival process N of defective items is given by a non-homogeneous Poisson process715

with arrival rate function λ (.) then υ(PΘ)−υ(P)≤ f0(xU )∆(Θ) and f0(x) = h−δcsrx+ ‖ λ f1 ‖∞ + ‖ λ f2 ‖∞716

with ‖ g‖∞ := sup0≤t≤T | g(t) | denotes the well-known supnorm.717

Proof. see Appendix.718

By Lemma 5 we obtain that the relative error of solving the approximative problem (PΘ) instead of719

optimization problem (P) is given by720

1 ≤ υ(PΘ)

υ(P)
≤ 1+

f0(xU )∆(Θ)∫ T
0 e−δuλ (u)min{cse +qcre,ca(u)}du

. (53)721

In our computational section we select ε > 0 and use a finite set Θ with mesh ∆(θ) satisfying722

0 < ∆(Θ)≤
ε
∫ T

0 e−δuλ (u)min{cse +qcre,ca(u)}du
f0(xU )

. (54)723

If (54) holds, then (53) implies that the relative error is smaller than ε. In Section 5, we will use a724

piece-wise constant arrival rate and a piece-wise constant substitution cost function with the same set725

of breaking points. Θ is chosen to be Θ = { j∆(Θ) : j = 0, ...,N} with N∆(Θ) = T and the breaking points726

of arrival rate substitution cost are included in this set. ∆=∆(Θ)> 0 we solve the optimization problem727

(PΘ) using shifted stochastic processes.728
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Definition 1. For any non-homogeneous Poisson process X with arrival rate function θ , the shifted729

stochastic process {X (k)(t) : t ≥ 0} is defined as X (k)(t) := X(t + k∆)−X(k∆) for k = 0, ...,N −1.730

It is well known that X (k) is again a non-homogeneous Poisson process with arrival rate function731

t → θ(t +k∆). Let us define the shifted stochastic process N(k)
0 , k = 0, ...,N−1 for the arrival process N0 of732

non-repairable items with arrival rate function λ0 = (1−q)λ . For this shifted process the stopping times733

is defined as σ (k)
x := inf{t ≥ 0 : N(k)

0 (t)≥ x} for every x ∈ Z+. At time k∆,k = 0, ...,N −1 we either stop or734

continue with the repair-replacement policy. If we decide to stop at time k∆ and the inventory level equals735

x, then the random discounted costs of switching to the substitution policy (discounted from time k∆) is736

given by cscrx+
∫ (N−k)∆

0 e−δuca(u+ k∆)dN(k)(u), where N(k) is a shifted Poisson process of arrival requests737

with rate λ . Hence the expected discounted cost of taking action π0, which is defined as to switch to the738

repair-with-substitute policy, at time k∆ with inventory level x equals739

Cπ0(x) := cscrx+
∫ (N−k)∆

0
e−δuca(u+ k∆)λ (u+ k∆)du. (55)740

Also the random discounted cost of continuing with the repair-replacement policy at time k∆ equals741

bk(x)+e−δ∆Vk+1((x−N(k)
0 (∆))+) with bk(x) the random discounted cost of applying the repair-replacement742

policy during the time interval [k∆,(k+1)∆). Introducing743

Bk(x) = E(bk(x)), (56)744

the expected discounted cost of taking action π1, defined as not to switch to the repair-with-substitute745

policy, with inventory level x at time k∆ becomes746

Cπ1(x) := Bk(x)+ e−δ∆E(Vk+1((x−N(k)
0 (∆))+). (57)747

This shows for x ≤ xU that the Bellman equations for the above stopping problem are given by the748

functions Vk : Z+ → R, k = 0, ...,N given by749

VN(x) = cscrx,Vk(x) = min{Cπ0(x),Cπ1(x)}. (58)750

To simplify the recurrent relation for Vk in relation (58), we introduce the function Wk :Z+ →R, k = 0, ...,N751

given by752

Wk(x) :=Vk(x)−
∫ (N−k)∆

0
e−δuca(u+ k∆)λ (u+ k∆)d. (59)753

Since it is easy to check that754

∫ (N−k)∆

0
e−δuca(u+ k∆)λ (u+ k∆)du =755 ∫ ∆

0
e−δuca(u+ k∆)λ (u+ k∆)du+ e−δ∆

∫ (N−(k+1))∆

0
e−δuca(u+(k+1)∆)λ (u+(k+1)∆)du,756

we obtain from relations (55)-(59) that we need to solve for x ≤ xU and k = 0, ...,N the Bellman equations757

WN(x) = cscrx,Wk(x) = min{cscrx,Bk(x)+ e−δ∆E(Wk+1((x−N(k)
0 (∆))+)}, (60)758

where759

Bk(x) := Bk(x)−
∫ ∆

0
e−δuca(u+ k∆)λ (u+ k∆)du. (61)760
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For x = 0 and k = 0, ...,N −1 relation (60) reduces to the simplified recurrent relation761

WN(0) = 0,Wk(0) = min{0,Bk(0)+ e−δ∆Wk+1(0)}. (62)762

Observe that after hitting the zero inventory level, so x = 0, it might be cheaper to continue with the763

repair-replacement policy depending on the sign of Bk(0). This holds if the expected cost q(cse + cre)+764

(1−q)cap(u) of any defective item arriving at u is much lower then the expected costs ca(u) of substitution765

at u. Having computed W0(x) for x = 0, ...,xU with the recurrent relations (60) and (61) after N iterations,766

we set767

V0(x) =W0(x)+
∫ N∆

0
e−δuca(u)λ (u)du, (63)768

for x = 0, ...,xU and solve the optimization problem769

minx≤xU {c(x)+V0(x)}, (64)770

by enumeration. To compute Bk(x) in (60) we proceed as follows. By definition let Ck(x,∆) denote the771

expected discounted operational cost (discounted from time k∆) from time k∆ up to time N∆ = T . If772

we observe inventory level x at time k∆ and we apply the deterministic (x,∆) policy at time k∆, the773

shifted arrival processes N(k)
0 and N(k) are non-homogeneous Poisson processes with arrival rate functions774

t → λ0(k∆+ t) and t → λ (k∆+ t). Therefore by the definition of Bk(x) in (56), we need to subtract the775

discounted substitution costs from time (k+1)∆ up to N∆ = T from Ck(x,∆) and set the scrapping value776

equal to zero in the expression for Ck(x,∆). This means that777

Bk(x) =Ck(x,∆)−
∫ (N−k)∆

∆
e−δuλ (k∆+u)ca(u+ k∆)du, (65)778

and by relation (25) substituting cscr = 0779

Ck(x,∆) =


(1−q)

∫ ∆
0 e−δuλ (k∆+u)[cse − cap(u+ k∆)]P(N(k)

0 (u)< x)du

+
∫ ∆

0 e−δuλ (k∆+u)[q(cse + cre − ca(u+ k∆))+(1−q)p(k∆+u)]du

+h
∫ ∆

0 e−δuE((x−N(k)
0 (u))+)+

∫ (N−k)∆
0 e−δuλ (k∆+u)ca(k∆+u)du.

780

This implies using relation (65)781

Bk(x) =


(1−q)

∫ ∆
0 e−δuλ (k∆+u)[cse − cap(u+ k∆)]P(N(k)

0 (u)< x)du

+
∫ ∆

0 e−δuλ (k∆+u)[q(cse + cre − ca(u+ k∆))+(1−q)p(k∆+u)]du

+h
∫ ∆

0 e−δuE((x−N(k)
0 (u)+)+

∫ ∆
0 e−δuλ (k∆+u)ca(k∆+u)du.

782

Applying relation (61) we obtain783

Bk(x) =


(1−q)

∫ ∆
0 e−δuλ (k∆+u)[cse − cap(u+ k∆)]P(N(k)

0 (u)< x)du

+
∫ ∆

0 e−δuλ (k∆+u)[q(cse + cre − ca(u+ k∆))+(1−q)p(k∆+u)]du

+h
∫ ∆

0 e−δuE((x−N(k)
0 (u))+)du.

(66)784

Hence by relation (66) and the definition of the first order difference operator, the next result easily785

follows.786
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Lemma 17. For every k ∈ N it follows that787

Bk(0) =
∫ ∆

0
e−δuλ (k∆+u)[q(cse + cre − ca(k∆+u))+(1−q)p(k∆+u)]du, (67)788

and for every x ∈ Z+789

∆Bk(x) = (1−q)
∫ ∆

0
e−δuλ (k∆+u)[cse − cap(k∆+u)]P(N(k)

0 (u) = x)du+h
∫ ∆

0
e−δuP(N(k)

0 (u)≤ x)du. (68)790

By relation (60) we obtain the following optimal stopping sets Sk.791

Sk := {x ∈ Z+ : cscrx ≤ Bk(x)+ e−δ∆E(Wk+1((x−N(k)
0 (∆))+)}}, (69)792

for k = 0, ...,N−1. Under certain intuitively clear conditions on the arrival rate and the substitution cost793

one can show a desirable property for the optimal stopping set Sk. To this end, we first need the next794

two results.795

Lemma 18. If the arrival process of defective items is a homogeneous Poisson process and the penalty796

costs are constant over [0,T ] then for every 0 ≤ k ≤ N −1 and for every x ∈ Z+797

Wk(x)≤Wk+1(x)≤ cscrx.798

Proof. see Appendix.799

The following result follows from Lemma 18.800

Lemma 19. If the arrival process of defective items is a homogeneous Poisson process and the penalty801

costs are constant over [0,T ] then Sk ⊆ Sk+1 for every 0 ≤ k ≤ N −1.802

Proof. see Appendix.803

By Lemma 19 we obtain that for every time 0≤ k ≤N−1 there exists no threshold value or there exists804

some threshold inventory level x⋆k satisfying we will always stop at time k if and only if our inventory level805

is above this level. In Section 5, we numerically find that the same structure for our optimal stopping806

sets in Lemma 19 holds for our piece-wise homogeneous Poisson process. This is probably due to ∆ being807

extremely small, so we have P(N(k)
0 ≤ 1)' 1 at the breaking points which is partly indicated by the proof808

of Lemma 18. Hence due to (66) the function x 7→ Bk(x) is almost an affine function with approximately809

the same slopes depending mainly on the inventory cost h and the discount factor δ but with increasing810

constant terms.811

5 Computational results.812

In this section we numerically analyze the performance of the optimal stopping problem (P) and determine813

the optimal pseudo-deterministic policies for different parameter settings. We measure the sensitivity of814

the performance gap between pseudo-deterministic and deterministic policies to different parameters. Our815

computational experiments are coded in R Gui and run with a 1.60GHz processor. It took on average 8816

minutes to execute the algorithm to compute the optimal stopping policy for the dynamic model and 4817

seconds to run the algorithm for the optimal pseudo-deterministic policy.818
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5.1 Experimental setting and base scenario819

In our test bed, the planning horizon [0,T ] is split into three equal intervals by the sequence of breaking820

points (ai)
4
i=1, where ai = (i−1)T

3 . Therefore, our sub-intervals are [0, T
3 ], [

T
3 ,

2T
3 ] and [ 2T

3 ,T ], and in each821

of these sub-intervals the arrival rate and the substitution cost functions are assumed to be equal to λi822

and ci for i = 1,2,3 respectively. The cost of the repair-with-substitute policy over different sub-intervals823

is now given by c j = ca(0)e−γa j for j = 1,2,3, where γ is the decay factor. The arrival rate of the defective824

products is assumed to be a step function; constant arrival rate of λi = lβ i−1 over the interval [ai,ai+1]825

and jumps at time ai. For a given β , l is set to a value that makes the expected number of product826

arrivals over the horizon [0,T ] equal to 10T (i.e., on average 10 customer requests per unit time). For the827

general (x,τ)-policy the penalty costs, p, is assumed to be equal to 1290. The base case scenario with828

these parameters is given in Table 1. Note that our substitution cost and arrival rate functions are also829

used by Frenk et al. (2019a), to which we benchmark our results.830

Table 1: Problem parameters for the base case scenario.
width=0.9

T cscr cse cre h q c̄ ca(0) γ p ε δ β
66 (months) 30 30 20 3.25 0.5 225 645 0.02 1290 0.001 0.003 0.5

The procurement cost function has the form c(x) = c̄x with rate c̄ > 0. Also we assume c̄ > c−scr =831

−min{cscr,0} which makes x 7→ c(x)− c−scrx an increasing non-negative function with limit ∞ satisfying832

our standard assumption on the cost parameters. This also implies that the first order conditions in (43)833

reduce to834

x(ai) = min{x ∈ Z+ : ∆C(x,ai ∧σx)≥−c̄}. (70)835

To solve the optimization problem (P), we apply the approximation approach proposed in Section 4836

and select the finite set Θ having mesh ∆ > 0 in such a way that the breaking points are contained in837

Θ. This means that Mi∆ = ai, i = 1, ...,n+ 1 and so M1 = 0 and Mn+1 = N. Selecting a relative error of838

ε = 0.001 in the base case scenario, the mesh ∆ of our set Θ is not larger than 0.003 due to (54). Due to839

the approximation approach, the computed optimal objective values υ(P), in Table 2, are subject to this840

selected relative error. For the above settings one can also simplify the computation of ∆Bk(x). The next841

result follows immediately from Lemma 17.842

Lemma 20. If the arrival rate and substitution policy cost functions are given by relations (29), and843

(30) then for Mi ≤ k ≤ Mi+1 −1, i = 1, ...,n+1844

Bk(0) = [q(cse + cre − ci)+(1−q)p]λiδ−1(1− e−δ∆). (71)845

Also for every m ∈ Z+846

∆Bk(m) = [h+δ (p+ ci − cse)]
∫ ∆

0
e−δuP(X(u)≤ m)du− (p+ ci − cse)[1− e−δ∆P(X(∆)≤ m)]. (72)847

and X a homogeneous Poisson process with arrival rate (1−q)λi.848

Solving the Bellman equations in relations (60) and (61) we are able to compute the function V0 in849

relation (63) and solve optimization problem minx≤xU {c(x)+V0(x)}. In Figure 2 the function V0 is plotted850

for the values x = 0,1, ...,xU under the base case scenario. This plot shows that this function achieves a851

minimum within this range.852
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Figure 2: Function V0(x) plotted over the range of x values for the base case scenario.

5.2 Sensitivity of υ(P) to Problem Parameters.853

The optimal solution of (P) consists of the optimal initial order quantity, x, and the optimal stopping854

time to switch from the repair-replacement policy to the repair-with-substitute policy, τ. Plainly, the855

set of points (x,τ) represent the times τ at which it is optimal to stop holding inventory x. In order856

to provide insight into the structure of the optimal policy, we present the optimal (x,τ) policies as blue857

regions in Figure 3 for different values of holding cost and decay factors. If for a given realization of the858

arrival process one enters the blue region at a certain time with x items in inventory, it is optimal to859

switch at that time to the repair-with-substitute policy. Also in the base case scenario it follows for every860

1 ≤ i ≤ n that q(cse + cre − ci)+(1−q)p = 670−322.5θ i−1. This shows that the conditions of Lemma (1)861

are satisfied restricting our class of optimal policies for the optimization problem (P). At the optimal862

stopping time we immediately switch to the substitution policy (from the repair-replacement policy) at863

the moment the spare parts inventory is zero. This is depicted by the thin blue horizontal lines at the864

bottom of each plot in Figure 3.865

In Figure 3, we observe that as γ increases, the substitution policy cost declines faster and that866

makes switching to the substitution policy by scrapping inventory more profitable. h has similar but867

opposite effect on the stopping region. With the increase of h, the repair-replacement policy becomes868

more expensive. Hence, the size of stopping area is increasing in h. These results are consistent with the869

results of Frenk et al. (2019a). The main difference between their results and ours stems from the cost of870

substitution policy, which is larger in our experiments. Therefore, we encounter larger stopping regions871

than Frenk et al. (2019a) in all scenarios.872

In Figure 7, we depict the effect of different parameter values on the optimal cost and order quantity873

of the problem P. In each plot, the value of a parameter is changed whereas the rest of the parameters are874

set to the values in Table 1. The optimal cost value is depicted with a dashed line whereas the optimum875

order size is presented with a straight line on the secondary axis.876

Figure 4 indicates that the optimal order size and the optimum cost decrease in γ with different rates.877

Decrease in the optimum cost values occurs with a constant rate due to decaying cost parameters. The878

optimum order size converges to 200 for γ ≥ 0.05 due to the fact that order size of less than 200 lead to879

high penalty costs.880

Figure 5 also depicts the effect of the probability q on the optimum order size and the optimum cost881

value. As q increases, less spares will be needed and thus the optimum order is smaller. In addition, we882

apply the repair-replacement policy for most of the time horizon which in turn incurs lower expected total883

cost. For the extreme case q = 1, which represents all items can be repaired, the optimal order quantity884

is 0 and the total expected cost of the optimal policy is 30.757 thousand. On the other hand, for q = 0,885
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Figure 3: Stopping regions for different γ and h values. First row plots are for γ ∈ {0.03,0.05,0.07}. Second row
plots are for h ∈ {3.25,6.5,13}.

we order initially a large quantity to cover the demand and therefore, we incur a large optimum expected886

cost. This shows that the effect of the repair probability is rather significant on the system behavior and887

optimum results. Figure 6 shows the relation between the optimum results and the inventory holding888

cost rate. Expectedly, increasing values of h lead to lower order size and higher total cost in the optimum889

solutions.890

5.3 Performance of pseudo-deterministic policy for different parameters.891

To investigate the effect of different problem parameters on υ(P) and υ(Q), we conduct numerical ex-892

periments by altering parameter values of the base scenario in one-at-a-time fashion. For each parameter893

setting, we report the optimal values of υ(P) and υ(Q) together with their relative percent difference894

given below:895

υ(P) vs υ(Q) = 100× υ(Q)−υ(P)
υ(P)

. (73)896

In addition, we report the optimal initial order quantities for both optimization problems and switching897

times for υ(Q). The results of our numerical experiments are reported in Table 2.898

In all considered scenarios the optimal policies of υ(P) and υ(Q) are almost the same and this explains899

the small relative deviation. The relative error between the optimal objective υ(P) and υ(Q) is on900

average 0.15 percent. Such a low difference justifies using the optimal pseudo-deterministic policy as an901

approximation to the general optimization problem. At the same time, the small difference between the902

two policy shows that one cannot prove that the optimal pseudo-deterministic policy is optimal within903

the larger class of stopping times and that within the class of pseudo-deterministic policies the order904

quantity is the most important decision variable to control the cost. For many parameter settings, the905

optimal order quantity of the problem (P) satisfies906

xopt ≤ min{x ∈ Z+ : (x,τ) : Wτ(x) = cscrx}, (74)907

showing that the optimal policy never switches to the repair-with-substitute policy before the end of the908

horizon with a positive inventory. The switch to substitution takes place before the end of the horizon909
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Figure 4: Effect of decay rate (γ)

Figure 5: Effect of non-repairable probability (q)

Figure 6: Effect of holding cost (h)

Figure 7: Sensitivity of the optimum solution of the problem P to different parameters.
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with 0 inventory. This means that the optimal dynamic policy actually coincides with the optimal910

pseudo-deterministic policy, explaining the extremely small relative deviation, which is mainly caused by911

our approximation to υ(P). For the pseudo-deterministic policy, we calculate the probability of {τ0 ≤ σx},912

which represents the event of switching to the repair-with-substitute policy with positive inventory. Table913

2 presents the calculated probabilities, which are very close to zero in almost all cases. For the cases914

failing to satisfy (74), the highest probabilities of switching with positive inventory are related to high915

substitution costs either directly by means of ca(0) or indirectly through γ and q. The probability is almost916

0 in case of low h, high initial ca(0) or high q. All of these findings are intuitively clear. In addition,917

we computed the probability of switching to substitution with a positive spare parts inventory in the918

optimum solution of (P). This probability, which we didn’t report in Table 2 due to space limitation, is919

again found to be extremely small. Hence in both optimal policies (recall that we will only stop at the920

end of the horizon with a positive inventory level under the pseudo-deterministic policy) switching to the921

repair-with-substitute policy with a positive spare parts inventory occurs rarely when the system starts922

with the optimal order quantity.923

Generally we observe that time to switch to substitution coincides with the breaking point at which924

substitution becomes cheaper and inventory is depleted in the optimal policies. In Table 2 we observe that925

the optimal order quantities of both policies are the same and the objective values of the two problems926

are very close to each other. This is partly due to the fact that the majority of the cases in Table927

2 satisfy the condition in Lemma 1. In majority of the cases, the deterministic switching time of the928

optimal pseudo-deterministic policy is equal to 66, i.e. τopt = 66 except two cases where the substitution929

is relatively inexpensive at time 0. In those cases τopt = 44. τ0 = 66 represents the utilization of the930

repair-replacement policy until σx, after which substitution is utilized.931

In Table 2, we notice that the decay factor, γ, of the substitution cost function has a negative effect932

on order sizes and costs of both optimal policies. Decreasing values of γ make substitution expensive933

leading to a higher total expected cost. For the same reason, we order a higher initial inventory so that934

we can avoid switching to the repair-with-substitute policy due to reaching earlier inventory level 0. The935

initial substitution cost ca(0) has a similar effect on the optimal cost and the optimal initial inventory.936

In our analyses we find that the optimum cost and policy parameters are insensitive to cscr value. This is937

mainly because switch time mostly corresponds to σx in almost all cases. Similarly, p values do not have938

major effect on the objective value as long as (16) in Lemma 1 is satisfied (cases that do not satisfy (16)939

are evaluated in Section 5.5).940

Furthermore, we find that q has a large negative effect on the expected total costs for both policies. In941

case of high q, a lot of the returned products need only a repair service, which leads to smaller order size942

and lower cost. Parameters h and β have similar effect on the optimal order quantity and the objective943

value. Expectedly, a higher h increases the average cost of the repair-replacement policy and decreases944

the optimum order size. For higher values of β most of the arrivals happen in later periods (recall that945

the total number of expected arrival is 10T ). This decreases the optimal order quantity as substitution946

gets cheaper over time.947

5.4 End-of-life management for different product types.948

We also compute the optimal dynamic policy and the optimal pseudo-deterministic policy for different949

lengths of the warranty period by considering three different product types. Each of these cases is950

presented in Table 3 and the different length T refers to a certain type of product. First, we compare the951

performance of the two policies on the second product type in the table (row with T = 66). The box plot952

in Figure 8 indicates a very small and always positive difference between the optimal policy in problem953

(P) and the optimal pseudo-deterministic policy. Also one can observe that both policies order the same954

amount of spare parts at the beginning of the planning horizon.955

The first product in the table represents a high-demand electronic device with T = 24 months of956

warranty. The product type can be exemplified with cell phones. Since, the product has a short life cycle,957
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Table 2: Sensitivity analysis of the problem parameters for different policies.
υ(P) υ(Q)

P(τ0 < σx)
υ(P) vs υ(Q)

x cost x τ0 cost (%)
0.05 227 105,455.8 227 66 105,552.9 1.19×10−9 0.09

γ 0.02 304 122,965.6 304 66 122,974.6 7.88×10−2 0.09
0.01 323 127,140.5 323 66 127,259.6 3.64×10−1 0.09

0.005 329 128,755.6 329 66 128,878.2 4.93×10−1 0.10

250 191 100,289.7 191 44 100,382.0 4.16×10−9 0.09
ca(0) 322.5 216 109,735.0 216 44 109,732.0 2.01×10−5 0.09

1290 329 128,991.9 329 66 129,111.9 4.93×10−1 0.09
2580 342 132,955.64 342 66 133,083.2 7.56×10−1 0.10

322.5 304 122,845.2 304 66 122,974.6 7.88×10−2 0.11
p 645 304 122,850.3 304 66 122,974.6 7.88×10−2 0.10

2580 304 122,854.2 304 66 122,974.6 7.88×10−2 0.10
5160 304 122,853.5 304 66 122,974.6 7.88×10−2 0.10

0.8125 320 107,237.1 320 66 107,350.5 3.03×10−1 0.11
h 1.625 315 112,679.2 315 66 112,787.6 2.14×10−1 0.10

6.5 285 140,809.4 285 66 140,953.0 6.24×10−3 0.10
13 248 169,876.7 248 66 170,039.8 1.41×10−6 0.10

−30 304 122,829.7 304 66 122,945.8 7.88×10−2 0.09
cscr 10 304 122,841.2 304 66 122,965.0 7.88×10−2 0.10

60 304 122,864.2 304 66 122,989.1 7.88×10−2 0.10
90 303 122,879.7 303 66 123,001.8 7.09×10−2 0.10

0.4 353 138,842.7 353 66 138,849.5 1.51×10−2 0.10
q 0.6 250 106,489.7 250 66 106,500.5 2.04×10−1 0.09

0.8 134 72,127.8 134 66 72,145.2 5.92×10−1 0.13
1 0 30,772.5 1 66 31,232 1 1.54

0.25 319 119,943.2 319 66 119,958.8 2.84×10−1 0.10
β 1 270 130,079.9 270 66 130,078.7 3.73×10−4 0.09

1.5 244 134,660.0 244 66 134,652.9 4.20×10−7 0.09
2 227 137,495.7 227 66 137,485.0 1.19×10−9 0.09

the average number of service requests per unit of time Λ(T )/T , the substitution cost and its decay factor958

are expected to be high. The second row in Table 3 represents products with medium economic lifetime959

(5-10 years) with relatively cheaper substitution and repair costs. As it has longer lifetime, its repair960

demand is slower than the electronic products. This product type can be exemplified with household961

appliances such as dishwasher. The last row refers to a product with a long warranty period and very962

low value of Λ(T )/T . An example of such a product can be an expensive medical machine/equipment.963

The average monthly service demand as well as the decay of the substitution cost are very low for these964

types of products. The box plot of the operational costs is given in Figure 9. The box plot shows that965

short and long-life products have closer optimum cost whereas the medium-life product has a much lower966

optimum cost. The proximity of the optimum costs of short and long-life products, despite the difference967

between the cost rates, mainly stems from the difference between their demand rates. Lower optimum968

cost of medium-life products, on the other hand, is due to cheaper substitution, service and repair costs.969

In order to investigate the relative cost difference between (P) and (Q), we calculate the statistics in970
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Table 3: Three types of products with different characteristics.
Type T Λ(T )/T parameter ranges
Short life, medium cost 24 50 cscr ∈ [−10,80], cse ∈ [20,70], cre ∈ [10,70], h ∈ [0.5,1.5],

(Cell phone) q ∈ [0.2,0.5], c ∈ [250,750], ca(0) ∈ [1250,3000], γ ∈ [0.025,0.05],
p ∈ [1000,3000], δ ∈ [0.001,0.01], β ∈ [0.7,1]

Medium life, low cost 66 10 cscr ∈ [−10,40], cse ∈ [10,50], cre ∈ [10,40], h ∈ [1,5],

(Dishwasher) q ∈ [0.3,0.7], c̄ ∈ [100,400], ca(0) ∈ [750,2000], γ ∈ [0.01,0.03],
p ∈ [500,3000], δ ∈ [0.001,0.01], β ∈ [0.5,0.7]

Long life, high cost 120 1 cscr ∈ [−1000,2000], cse ∈ [200,700], cre ∈ [1000,3000], h ∈ [10,30],

(MRI Scanner) q ∈ [0.5,0.9], c ∈ [7500,20000], ca(0) ∈ [15000,30000], γ ∈ [0.005,0.015],
p ∈ [10000,30000], δ ∈ [0.001,0.01], β ∈ [0.5,0.7]

Figure 8: Difference between the dynamic and the pseudo-deterministic policies for a medium-life product
(T = 66).

(73) for each generated parameter sets for the three product types. Percent cost difference between the two971

problems are depicted in Figure 10. Results of our calculations indicate that the pseudo-deterministic972

policy provides a very good approximation to the optimal policy for short-life products. However, as973

product lifetimes increase (while spare parts demand decreases), the cost difference increases up to 300%.974

This indicates that the pseudo-deterministic policy has a questionable performance for long-life capital975

products due to the importance of penalty costs, which is ignored by the pseudo-deterministic policy.976

5.5 Worst case performance of pseudo-deterministic policy for short-life prod-977

ucts.978

In Sections 5.2 and 5.3, we consider parameter settings that mostly satisfy the condition (16) in Lemma 1979

and similar to short-life medium-cost products in Table 3. Specifically, 24 out of 28 cases in Table 2 satisfy980

(16) in Lemma 1, which proves that the pseudo-deterministic policy is optimal for the GLTB problem. In981

order to investigate the worst case performance of the pseudo-deterministic policy, we conduct numerical982

experiments with the parameter values, given in Table 4, which violate the condition (16). To this end,983
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Figure 9: Operational costs for the three different product types in Table 3.

Figure 10: Percentage of relative cost efficiency for the three product types.

we set q to the values close to 1 and choose ca(0) such that (16) fails at least one part of the planning984

horizon. Note that all unspecified parameters are equal to the values given in Table 1.985

Our results in Table 4 indicate that pseudo-deterministic policy performs near-optimally. The differ-986

ence between the optimal policy and the pseudo-deterministic policy appears when we q = 0.999. Even987

in those cases the cost difference does not exceed 0.02 %. Recall that the optimal solution of the GLTB988

problem is presented in Lemma 2 for q= 1. Therefore, the parameters of the pseudo-deterministic solution989

can easily be modified for those cases using our analytical results (Lemma 2).990
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Table 4: Worst case performance of pseudo-deterministic policy.
q ca(0) x∗(P) x∗(Q) τ∗(Q) υ(Q) vs. υ(P)

0.999

35 0 0 0 0.00
70 0 1 22 0.01
105 0 1 44 0.01
140 0 1 66 0.02

0.95

70 16 16 22 0.00
120 27 27 44 0.00
140 29 29 66 0.00
210 34 34 66 0.00
280 36 36 66 0.00

0.9

120 44 44 66 0.00
240 62 62 66 0.00
360 67 67 66 0.00
480 70 70 66 0.00

6 Conclusion991

This paper is a continuation of Teunter and Fortuin (1999), Pourakbar et al. (2012), Frenk et al. (2019b)992

and Frenk et al. (2019a). In Teunter and Fortuin (1999) it is assumed that during the so-called end-of-993

life phase of a product one always uses the so-called repair-replacement policy and never switches to an994

alternative policy. In many practical problems, other end-of-life management strategies are utilized to995

avoid (possibly) high holding costs of Last Time Buy orders. Finding a substitute part is recognized to996

be a good alternative policy that can be executed. As the cost of such a policy becomes cheaper over997

time Pourakbar et al. (2012) proposed the idea of switching to a alternative policy instead of holding998

inventory for the rest of the planning horizon. Accordingly, they extended the class of policies and999

proposed a heuristic procedure to determine a optimal policy among this larger class. Subsequently1000

for the important subclass of deterministic policies Frenk et al. (2019b) gives an exact procedure to1001

determine the optimal deterministic policy. Also, in Frenk et al. (2019a) an algorithm was proposed to1002

identify the optimal so-called dynamic policy by studying in more detail the problem originally considered1003

in Pourakbar et al. (2012). In the current paper we consider the same problem and introduce among the1004

set of all dynamic policies the subclass of pseudo-deterministic policies. Under the assumption that the1005

substitution policy cost function and the arrival intensity function are piece-wise constant functions we1006

show it is easy to identify the optimal pseudo-deterministic policy. In our computational section we then1007

compare the objective value of the optimal pseudo-deterministic policy with the optimal objective value1008

of the more general optimal stopping problem and show numerically for different scenarios that these1009

objective values are close. This can be explained since the class of deterministic polices avoid possibly1010

high penalty costs and in this case an optimal policy avoids these penalty costs. This empirical evidence1011

and its intuitive explanation suggests that the simpler set of pseudo-deterministic policies can serve as1012

an approximation of the optimal policy within the more general optimal stopping problem.This justifies1013

a detailed study of these class of policies.1014
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A Appendix: Proof of the results.1104

In this Appendix we list the proofs of the results shown in this paper.1105

Proof of Lemma 2. Since q = 1 the arrival process N0 = {N0(t) : t ≥ 0} of non repairable items is the1106

zero process and so by relation (13) we obtain introducing1107

k(T ) :=
∫ T

0
e−δuλ (u)ca(u)du (75)1108

that1109

C(x,τ) = cscrx+E
(∫ τ

0
e−δu[cse + cre − ca(u)]λ (u)du

)
+ x(h−δcscr)E

(∫ τ

0
e−δudu

)
+ k(T ). (76)1110

This shows for every τ ∈ F that infx∈Z+{c(x)+C(x,τ)}= γ(τ)+E
(∫ τ

0 e−δu[cse + cre − ca(u)]λ (u)du
)
+ k(T )1111

with the value γ(τ) given by1112

γ(τ) := infx∈Z+

{
c(x)+ cscrx+ x(h−δcscr)E

(∫ τ

0
e−δudu

)}
.1113

Since h−δcscr ≥ 0 we obtain by our remark after relation (4) that γ(τ) = 0 and so1114

υ(P) = infτ∈F

{
E
(∫ τ

0
e−δu[cse + cre − ca(u)]λ (u)du

)}
+ k(T ).1115

Since the integrand function in the above optimization problem does not depend on the stopping time τ1116

it is easy to see that an optimal switching time is given by some deterministic stopping time τ ∈ F0 and1117

so1118

infτ∈F

{
E
(∫ τ

0
e−δu[cse + cre − ca(u)]λ (u)du

)}
= infτ∈F0

{∫ τ

0
e−δu[cse + cre − ca(u)]λ (u)du

}
.1119

We know that the function ca is non-increasing and by standard first order condition arguments the1120

optimal solution of the above optimization problem is given by ς1 and no ordering. This has the objective1121

value
∫ T

0 e−δuλ (u)min{cse + cre,ca(u)}du and we have shown the result of Lemma 2.1122

1123

Proof of Lemma 3. Since ccsr ≥ 0 we obtain that all operational costs components mentioned in the1124

beginning of subsection 2.3 are non-negative and so we obtain C(x,τ)≥ 0 for every x ≥ 0 and τ ∈ F. Since1125

cscr ≥ 0 and hence c is increasing and the vector (0,0) is a feasible solution this implies that for every1126

x ≥ xU +11127

c(x)+C(x,τ)≥ c(x)>
∫ T

0
e−δuλ (u)ca(u)du =C(0,0)≥ υ(P) (77)1128

showing the desired result.1129

Proof of Lemma 5. Since by Lemma 4 we know that the objective function is bounded below by the1130

function L(x,τ) and x → L(x,τ) is increasing for every τ ∈ F, we obtain1131

υ(P) = infx∈Z+,τ∈F,0≤τ≤T{c(x)+C(x,τ)} ≥ infτ∈F,0≤τ≤T{L(0,τ)}. (78)1132

Similar as in the proof of Lemma 2 it follows using relation (21) that1133

infτ∈F,0≤τ≤T{L(0,τ)}= infτ∈F0

{∫ τ

0
e−δuλ (u)[cse +qcre − ca(u)]du

}
1134

=
∫ ζq

0
e−δuλ (u)[cse +qcre − ca(u)]du1135

with ζq given in relation (17) and we have verified the result.1136
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Proof of Lemma 6. It follows by relations (19) for cscr ≥ 0 and (21) for ccsr ≤ 0 that1137

L(x,τ)≥ q(x)+E
(∫ τ

0
e−δuλ (u)[cse +qcre − ca(u)]du

)
+

∫ T

0
e−δuλ (u)ca(u)du1138

with q(x) := c(x)+min{cscr,0}x. Since cap(u)≥ cse for every 0 ≤ u ≤ T we may apply Lemma 4 and so for1139

every x ∈ Z+ we obtain by the previous inequality1140

infτ∈F,0≤τ≤T{c(x)+C(x,τ)} ≥ q(x)+ infτ∈F,0≤τ≤T

{
E
(∫ τ

0
e−δuλ (u)[cse +qcre − ca(u)]du

)}
+ k(T )1141

with k(T ) listed in relation (75). This implies using the same arguments as in Lemma 5 that1142

infτ∈F,0≤τ≤T{c(x)+C(x,τ)} ≥ q(x)+
∫ T

0
e−δuλ (u)min{cse +qcre,ca(u)}du. (79)1143

Hence it follows for every x ≥ xU that1144

infτ∈F,0≤τ≤T{c(x)+C(x,τ)}>
∫ T

0
e−δuλ (u)ca(u)du =C(0,0)≥ υ(P)1145

and the result is verified.1146

Proof of Lemma 7. It is sufficient to give the proof of the first result only. The second claim follows1147

replacing f by − f . Since f is non-positive it is obvious that the function G is non-increasing. To show1148

that the function G is discrete convex, we note by Doob’s stopping theorem for any 0 < τ ≤ T1149

E
(∫ τ∧σx

0
f (u)µ(u)du

)
= E

(∫ τ∧σx

0
f (u)dN(u)

)
= E

(
∑x

k=1 f (σk)1{σk≤τ}
)
.1150

with σk the hitting time at level k of the nonhomogeneous Poisson process N. Since σk has a continuous1151

cdf this yields1152

E
(∫ τ∧σx

0
f (u)µ(u)du

)
= E

(
∑x

k=1 f (σk)1{σk<τ}
)

1153

and hence for every x ∈ Z+ it follows1154

∆xG(x) := G(x+1)−G(x) = E
(

f (σx+1)1{σx+1<τ}
)
. (80)1155

Using σx+1 ≤ σx+2 and hence 1{σx+1<τ} ≥ 1{σx+2<τ} and f non-decreasing and non-positive on [0,τ) we1156

obtain1157

f (σx+1)1{σx+1<τ} ≤ f (σx+2)1{σx+2<τ}.1158

This shows applying relation (80) that for every x ∈ Z+1159

∆G(x) = E( f (σx+1)1{σx+1<τ})≤ E( f (σx+2)1{σx+2<τ}) = ∆G(x+1),1160

and we have verified the discrete convexity property.1161

Proof of Lemma 8. We will only verify the first part of this result. The proof of the second part is1162

similar. Since cap(u) ≥ cse − cscr for every u < τ and cap is non-increasing we obtain that the function1163

u 7→ e−δu(cse−cscr −cap(u)) is non-positive and non-decreasing on [0,τ). Hence, by Lemma 7 the function1164

x 7→ E
(∫ τ∧σx

0
e−δuλ0(u)(cse − cscr − cap(u))du

)
1165

is discrete convex. Since the random function x 7→ ((x−N0(u))+) is also discrete convex and h−δcscr ≥ 01166

it follows from relation (13) that the function x 7→ C(x,τ) is discrete convex again. Finally, the discrete1167

convexity of c completes the proof.1168
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Proof of Lemma 9. For any x ∈ Z+ using ca decreasing it follows immediately due to ca(0) ≤ cse +1169

qcre − (1− q)cscr and relation (26) that optimization problem (Q(x)) has optimal solution τ = 0. This1170

shows using x → c(x)+cscrx is increasing that it is optimal in optimization problem (Q) not to order and1171

immediately start with the alternative policy with objective value
∫ T

0 e−δuλ (u)ca(u)du.1172

Proof of Lemma 10. For the selected arrival rate and alternative policy cost function in (30) and (29)1173

it is clear for every x ∈ Z+ that the function τ → c(x)+C(x∧σx) with C(x∧σx) listed in relation (26) is1174

continuous on (0,T ) satisfying both c(x)+C(x,0∧σx) = limτ↓0 c(x)+C(x,τ ∧σx) and c(x)+C(x,T ∧σx) =1175

limτ↑T c(x)+C(x,τ ∧σx). This shows ψ(x) = mini=1,...,n ψi(x). By relation (26) it follows for every x ∈ Z+1176

that the derivative of the function c(x)+C(x,τ ∧σx) with respect to τ for any ai < τ < ai+1, i = 1, ...,n is1177

given by1178

∂C
∂τ

(x,τ ∧σx) = e−δτ (λi[cse +qcre − (1−q)cscr − ci]P(N0(τ)< x)+(h−δcscr)E((x−N0(τ))+)
)
.1179

Clearly for ci ≤ cse+qcre−(1−q)cscr it follows that ∂C
∂τ (x,τ ∧σx)≥ 0 and so we may immediately conclude1180

using c1 ≥ c2 ≥ ... ≥ cn that the continuous function τ 7→ c(x)+C(x,τ ∧σx) is increasing on [an∗+1,T ] for1181

every x. This shows ψ(x) = mini=1,...,n∗ ψi(x) and we have shown the result.1182

Proof of Lemma 11. For every x ∈ N we obtain by writing out the expectation1183

E((x−N(t))+) = xP(N(t)< x)−∑x−1
n=1 nP(N(t) = n)1184

that1185

E((x−N(t))+)
P(N(t)< x)

= x− ∑x−1
n=1 nP(N(t) = n)
P(N(t)< x)

. (81)1186

Since the random variable N(t) has a Poisson cdf with parameter θ(t) (cf.Ross (1997)) it follows1187

∑x−1
n=1 nP(N(t) = n)
P(N(t)< x)

=
∑x−1

n=1
Θ(t)n

(n−1)!

∑x−1
n=0

Θ(t)n

n!

= Θ(t)(1−B(x−1,Θ(t)))1188

and substituting this into relation (81) the result follows.1189

Proof of Lemma 12. By the interpretation of B(x, t) and expected service time equals 1 it follows by1190

the formula of Little (cf.?) that t(1−B(x, t)) denotes the long run average number of busy serves in the1191

system in a pure Markovian loss system with arrival rate λ = t > 0 and departure rate µ = 1. Since each1192

server serves exactly one customer and we consider a pure loss system the long run average number of1193

busy servers equals the long run average number of customers in the system and so1194

t(1−B(x, t)) = E(Z(t)(∞)) (82)1195

with1196

Z(t)(∞) := lims↑∞
1
s

∫ s

0
Z(t)(v)dv1197

denoting the longrun average number of customers in the Markovian loss system in the equilibrium1198

situation having arrival rate t and departure rate 1. Since the Markovian loss system is a birth-death1199

process we obtain by Proposition 4.2.10 of Stoyan and Daley (1983) that1200

Z(t)(∞)≥d Z(s)(∞)1201

for t > s with ≥d denoting first order dominance and this shows that E(Z(t)(∞))≥ E(Z(s)(∞)). Hence by1202

(82) it follows that the function t(1−B(x, t) is increasing in t. Since t(1−B(x, t)) represents the number1203

of busy servers and so for the arrival rate going to infinity on average all x servers will be busy it follows1204

that limt↑∞ t(1−B(t,x)) = x.1205
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Proof of Lemma 13. Applying relation (42) it is sufficient to verify for any i ≤ n∗0 that1206

ψi(x) = min{c(x)+C(x,ai ∧σx),c(x)+C(x,ai+1 ∧σx)}.1207

By Lemma 12 and using h− δcscr ≥ 0 and Λ0 increasing it follows that the function κi listed in (35) is1208

decreasing. This shows for κi(x,ai)≤ 0 that by (36) the partial derivative ∂C
∂τ (x,τ ∧σx) is non-positive on1209

(ai,ai+1) and hence the minimum is attained at ai+1. Similar for κi(x,ai)> 0 we distinguish the mutually1210

exclusive cases κi(x,ai+1)> 0 and κi(x,ai+1)≤ 0. For the first subcase the partial derivative ∂C
∂τ (x,τ ∧σx)1211

is non-negative on (ai,ai+1) and so the minimum is attained at ai. For the second subcase we conclude1212

using again a standard calculus argument as before that the minimum is either attained at ai or ai+11213

showing the desired result.1214

Proof of Lemma 14. For x= 0 and i= 1, ...,n+1 it follows by relation (26) that C(0,ai∧σ0)=
∫ T

0 e−δuλ (u)ca(u)du1215

and we obtain the result in relation (46) using (29) and (30). To verify relation (47) we first observe for1216

every x ∈ Z+ that1217

E((x+1−N0(u))+)−E(x−N0(u))+) = P(N0(u)≤ x)1218

Applying again relation (26) this implies for i = 2, ...,n+1 and x ∈ Z+1219

∆C(x,ai ∧σx) =

 cscr +
∫ ai

0 e−δuλ (u)[cse +qcre − (1−q)cscr − ca(u)]P(N0(u) = x)du

+(h−δcscr)
∫ ai

0 e−δuP(N0(u)≤ x)du.
(83)1220

Substituting now into relation (83) the particular choice of the arrival rate and the alternative policy cost1221

function given in (29) and (30) yields1222

∆C(x,ai ∧σx) =


cscr +∑i−1

j=1(cse +qcre − (1−q)cscr − c j)λ j
∫ a j+1

a j e−δuP(N0(u) = x)du

+(h−δcscr)∑i−1
j=1

∫ a j+1
a j e−δuP(N0(u)≤ x)du.

(84)1223

To simplify the above expression we observe, since the non-homogenous Poisson process N0 has the1224

constant arrival rate (1−q)λ j on the interval (a j,a j+1), that by Lemma 21 using ρ(u) = e−δu and applying1225

relation (84) that for i = 2, ...,n+11226

∆C(x,ai ∧σx) =


cscr +∑i−1

j=1(
cse+qcre−(1−q)cscr−c j

1−q )[e−δa jP(N0(a j)≤ x)− e−δa j+1P(N0(a j+1)≤ x)]

+∑i−1
j=1[h+δ ( c j−cse−qcre

1−q )]
∫ a j+1

a j e−δuP(N0(u)≤ x)du.
(85)1227

and this shows the desired result.1228

Proof of Lemma 15. To give a proof of Lemma 15 we first show by induction that the sequence1229

αk j,k ∈ Z+ given by1230

αk j :=
∫ a j+1

a j

e−δuP(N0(u) = k)du (86)1231

satisfies1232

αk j =
1

δ +(1−q)λ j

k

∑
m=0

(
(1−q)λ j

δ +(1−q)λ j

)m

θ j(k−m) (87)1233

with1234

θ j(k) := e−δa jP(N0(a j) = k)− e−δa j+1P(N0(a j+1) = k),k ∈ Z+1235
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Introducing the functions f : (0,T ]→ R and gk : (0,T ]→ R, k ∈ Z+ given by f (u) := e−(δu+(1−q)Λ(u)) and1236

gk(u) := ((1−q)Λ(u))k

k! it follows for every k ∈ Z+ and a j < u < a j+1 that1237

( f gk)(u) = e−δuP(N0(u) = k),( f g′k+1)(u) = (1−q)λ je−δuP(N0(u) = k) (88)1238

Since1239

f ′(u) =−(δ +(1−q)λ j) f (u) (89)1240

for every a j < u < a j+1 we obtain1241 ∫ a j+1

a j

f (u)du =
f (a j)− f (a j+1)

δ +(1−q)λ j
=

θ j(0)
δ +(1−q)λ j

1242

and this verifies relation (87) for k = 0. To show relation (87) for k+1 we assume that relation (87) holds1243

for k. By partial integration and relations (88) and (89) we conclude1244

−(δ +(1−q)λ j)αk+1 j =−(δ +(1−q)λ j)
∫ a j+1

a j

f (u)gk+1(u)du =−θ j(k+1)− (1−q)λ jαk j1245

This shows that1246

αk+1 j =
(1−q)λ j

δ+(1−q)λ j
αk j +

θ j(k+1)
δ+(1−q)λ j

= 1
δ+(1−q)λ j

∑k
m=0

(
(1−q)λ j

δ+(1−q)λ j

)m+1
θ j(k−m)+

θ j(k+1)
δ+(1−q)λ j

= 1
δ+(1−q)λ j

∑k+1
m=0

(
(1−q)λ j

δ+(1−q)λ j

)m
θ j(k+1−m)

1247

and we have verified relation (87). Using this result we obtain1248 ∫ a j+1
a j e−δuP(N0(u)≤ x)du = ∑x

k=0 αk j

= 1
δ+(1−q)λ j

∑x
k=0 ∑k

m=0

(
(1−q)λ j

δ+(1−q)λ j

)m
θ j(k−m)

= 1
δ+(1−q)λ j

∑x
m=0 ∑x

k=m

(
(1−q)λ j

δ+(1−q)λ j

)m
θ j(k−m)

= 1
δ+(1−q)λ j

∑x
m=0

(
(1−q)λ j

δ+(1−q)λ j

)m
∑x−m

k=0 θ j(k)

1249

and this completes the proof.1250

Proof of Lemma 16. Introduce for every τ ∈ F the stopping time τΘ = dΘ(τ) with1251

dΘ(r) = ∑N−2
k=0 tk+11[tk,tk+1)(r)+T 1[TN−1,T ](r).1252

By its definition we obtain τΘ ≥ τ,τΘ ∈ FΘ and E(τΘ−τ)≤ ∆(Θ). Applying relation (13) it follows by some1253

standard upper bound arguments applied to each separate term in this relation that for every x ∈ Z+1254

|C(x,τΘ)−C(x,τ) |≤ f0(x)∆(Θ)1255

This shows1256

υ(PΘ)−υ(P)≤ supx≤xU
f0(x)∆(Θ) = f0(xU )∆(Θ)1257

and we have verified the result.1258
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Proof of Lemma 18. By the definition of WN and WN−1 in relation (59) and (60) it is obvious that1259

WN−1(x) ≤ cscrx = WN(x) and so the result is verified for k = N − 1. Assume now that Wk+1(x) ≤ Wk+2(x)1260

for every x ≤ xU and k ≤ N −2. Since the arrival process N0 is a homogeneous Poisson process it follows1261

that N(k)
0

d
= N(k+1)

0 and this shows using Wk+1(x)≤Wk+2(x) that1262

E(Wk+1((x−N(k)
0 (∆))+)≤ E(Wk+2((x−N(k+1)

0 (∆))+).1263

If it can be shown that Bk(x)≤ Bk+1(x) we obtain by relation (60) that1264

Wk(x) = min{cscrx,Bk(x)+ e−δ∆E(Wk+1((x−N(k)
0 (∆))+)

≤ min{cscrx,Bk+1(x)+ e−δ∆E(Wk+1((x−N(k+2)
0 (∆))+)}

= Wk+1(x)

1265

and this shows the result. Hence it is sufficient to verify that Bk(x)≤ Bk+1(x) and using relation (66) and1266

ca a decreasing function this is easy to verify for penalty costs being constant on [0,T ].1267

Proof of Lemma 19. It follows for x ∈ Sk that Wk(x) = cscrx. Applying Lemma 18 we obtain1268

cscrx =Wk(x)≤Wk+1(x) = min
{

cscrx,Bk+1(x)+ e−δ∆E(Wk+2((x−N(k+1)
0 (∆))+)

}
≤ cscrx.1269

This shows Wk+1(x) = cscr and we have verified the desired result.1270

Lemma 21. Let N be a non-homogeneous Poisson process with a continuous arrival intensity function1271

µ and ρ some differentiable function. Then it follows for every x ∈ Z+ and 1 ≤ j ≤ n that1272 ∫ a j+1

a j

ρ(u)µ(u)P(N(u) = x)du =
∫ a j+1

a j

ρ ′(u)P(N(u)≤ x)du+ρ(a j)P(N(a j)≤ x)−ρ(a j+1)P(N(a j+1)≤ x).1273

Proof of Lemma 21. It is well known for every x∈Z+ (Ross (1997)) that the function χ(u) :=P(N(u)≤1274

x) is differentiable and satisfies χ ′(u) = µ(u)P(N(u) = x). This shows that1275

ρ(a j+1)P(N(a j+1)≤ x)−ρ(a j)P(N(a j+1)≤ x) =
∫ a j+1

a j

(ρχ)′(u)du1276

=
∫ a j+1

a j

ρ ′(u)χ(u)du+
∫ a j+1

a j

ρ(u)χ ′(u)du1277

=
∫ a j+1

a j

ρ ′(u)χ(u)du+
∫ a j+1

a j

ρ(u)χ ′(u)du1278

=
∫ a j+1

a j

ρ ′(u)P(N(u)≤ x)du1279

+
∫ a j+1

a j

ρ(u)µ(u)P(N(u) = x)du1280

and we obtain the desired result.1281
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