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Abstract. The End-of-life phase is the longest phase of the different life cycles of a product. This phase,
characterized by a last time buy order, is known for increasing supply risk and decreasing demand rate.
In this paper, starting initially with a repair replacement policy the manufacturer optimizes the order size
of the last time buy and selects a time switching to another policy substituting failed components.The
defective items stochastic arrival process is given by a non-homogenous Poisson process and the switch
time is modeled as a stopping time of this demand process. Since the optimal switching time within
the class of stopping times can be difficult to implement, we introduce in this paper the set of so-called
pseudo-deterministic stopping times being the minimum of a deterministic stopping time and the time
to depletion of the spare part inventory. We show that the optimal pseudo-deterministic stopping time
satisfies some nice properties under realistic assumptions on the arrival rate function of the Poissonian
defective items arrival process and the substitution cost function of the alternative policy. Using these
properties an efficient algorithm is proposed to determine the optimal pseudo-deterministic stopping
time. Although in general an optimal stopping time (optimal among the class of all stopping times) does
not belong to the class of pseudo-deterministic stopping times, we numerically show and explain in the
presence of high penalty costs that the objective value of the optimal pseudo-deterministic stopping time
is close to the objective value of the optimal stopping time.

Keywords: End-of-life inventory problem; Martingales; Non-homogeneous Poisson process; Spare parts inventory
management; Stopping time.

1 Introduction

Due to rapid technology developments the production time of newly introduced products in the market
shortened considerable to sometimes only a few months. By these developments it became more difficult
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to deal with after sales services like for example warranty period requirements lasting for several years.
At the same time, customers are also seeking support for their equipment even after the expiration date
of their warranty, and they value manufacturers based on their aftersales service performance (Ahmad
and Butt, 2012). Similarly, some customers are willing to pay extra for longer manufacturer care through
extended service contracts (Padmanabhan and Rao, 1993). To respond to this demand and preserve their
brand perception in the market, Original Equipment Manufacturers (OEMs) pay increasing attention to
aftersale services of products which are at the end of their life cycle (Cohen et al., 2006).

Management of aftersales services for end-of-life products is problematic due to both demand and
supply-side problems in spare parts supply chains. Demand-side problems in spare parts supply occur
due to the uncertain spare parts demand over time as customers use only the product during a limited
amount of time in the market and these products are subject to random failure times. At the supply
side, OEMs need to deal with increasing risk of losing suppliers’ support (Hekimoglu et al., 2018; Li et
al., 2016) for original spare parts mainly due to technological (Solomon et al., 2000) or economic reasons
(Li et al., 2016).

OEMs utilize different strategies to deal with supply-side problems of original spare parts of a given
product. The two most common strategies are recognized as last time buy and or development of a
substitute component to guarantee the supply of spare parts (Shen and Willems, 2014). When a product
at some OEM becomes end-of-life and is out of production, spare part manufacturers will eventually
request the OEM to place a last order for original spare parts. For this order, which is referred to as the
Last Time Buy order, OEMs need to consider the total amount of spare part demand until the planned
date of End-of-Support (EoS), at which the OEM no longer provides repair services for that product.

The size of the Last Time Buy order is critical for OEMs as ordering too much original spare parts
leads to obsolete spare parts, increasing salvage costs and economic losses. On the other hand, if the size
of the Last Time Buy order is insufficient, this results in unsatisfied customer demand, possibly leading to
the loss of goodwill and customers’ brand loyalty (Padmanabhan and Rao, 1993). To safeguard against
these problems an OEM can alternatively next to a repair-replacement policy also utilize a substitution-
based policy. This means the company uses as a policy original spare parts in a repair-replacement policy
if a defective product, which cannot be repaired, appears until a particular point in time before the End-
of-Support date. After that time the OEM switches to an alternative substitution policy not depending
on original spare parts. The combination of these two spare parts policies is recognized as bridge buy in
the literature (Shen and Willems, 2014). We refer to this combined strategy as Generalized Last Time
Buy since a switching time being equal to the End-of Support date leads to the classic Last Time Buy
problem (Teunter and Fortuin, 1999). In the Generalized Last Time Buy problem, substitute products
can be obtained by either taking over suppliers’ production lines (Shen and Willems, 2014), using 3D
printing (Westerweel et al., 2018) or finding an alternative supplier (Shi and Liu , 2020). Therefore,
the OEM needs to make two critical decisions for the optimal solution of the Generalized Last Time
Buy problem: At time 0, the OEM decides on the size of an Last Time Buy order and then chooses
a switch-to-substitute time. The motivation of this study is to investigate how such a more general
switching policy affects both the risk of obsolete spare parts and the supply-side risks of obtaining spare
parts and how such a general switching policy increases the service level to customers. For a practical
example in airline industry related to these risks the reader is referred to (Hekimoglu et al. (2018)). Since
the optimal switching policy is difficult to compute (Frenk et al. (2019b)) we are also motivated in this
study in identifying a simple class of switching polices called the class of pseudo-deterministic policies
which under certain conditions achieve expected objective costs close to the expected costs of the optimal
switching policy among all stopping rules.

1.1 Problem setting

In this paper, we consider a problem setting where customers bring their defective products for repair to
the OEM, which accepts them to its repair facility until the time of the End-of Support announcement.
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On the generalized last time buy problem 3

It is assumed in all of the early and later literature (see for example (Behfard et al., 2015; Fortuin, 1980,
1981; Krikke and van Der Laan, 2011; Teunter and Fortuin, 1999)) that in a continuous time setting a
non-homogeneous Poissonian defective items arrival process is a good representation of the demand for
spare parts. If the arrival of a defective item is before the switch-to-substitute point, then the product’s
defective component is removed and sent to inspection for repair feasibility. If a repair is possible, the
repaired component is installed back to the product and if the component cannot be repaired and there is
available stock, the defective component is replaced with an original part to complete the repair service.
If there is no original replacement in stock, the repair process uses a substitute part possible from an
external source. This business process is depicted in Figure 1.

a
(External Source)

Is switch-to-
substitute time
passed?

Demand Replacement Custo_mer
: Service
Arrival from Stock
Complete

Is Repair
Feasible?
YES

|—> Repair Process

Figure 1: Repair process at the arrival of a defective product

The Generalized Last Time Buy strategy consists of the sequential utilization of a repair-replacement
and a repair-with-substitute policy. This particular structure of the Generalized Last Time Buy strategy,
which checks the switch-to-substitute point before checking the repairability of a part, allows OEMs to
exploit decreasing substitution cost in time. We may justify this assumption since after the switching time
to an alternative policy the repair center is closed and any defective product will be handled according
to the new policy. The OEM now needs to make an optimal plan including the optimal size of a Last
Time Buy order (at time 0) and the optimal switch-to-substitute time to keep their after sales services
running. Note that our repair-with-substitute policy is dubbed alternative policy by Frenk et al. (2019b).
Similar to Frenk et al. (2019a),Frenk et al. (2019b) we follow the same cost setup and our switch-to-
substitute decision is formulated as an optimal stopping time problem. As such this paper can be seen
as a review, extension and generalization of the results discussed in Frenk et al. (2019a) and Frenk et al.
(2019b). To obtain the optimum solution of the Generalized Last Time Buy problem, we first derive the
objective function for any switching time represented by an arbitrary stopping time following a simplified
approach as done in Frenk et al. (2019a). Next, by substitution, we evaluate the objective function for
the new defined subclass of switching times represented by the so-called pseudo-deterministic stopping
times. These stopping times representing the switching time between different policies are defined as the
minimum of a deterministic stopping time as discussed in detail in Frenk et al. (2019a) and the random
time of inventory depletion of the Last Time Buy order received at time zero. According to the authors
knowledge this is the first time the subclass of pseudo-deterministic switching times is discussed in the
Generalized Last Time Buy problem literature and its mathematical properties are derived for both a
piece-wise constant substitution cost function and a non-homogeneous Poisson defective items arrival
process also having a piecewise constant arrival rate function. The practical and theoretical reason for
studying this particular subclass of switching times between policies will be explained in the following
paragraphs. First of all, we observe it is more difficult to compute the optimal pseudo-deterministic policy
for a non-homogeneous Poisson defective items arrival process having an arbitrary bounded arrival rate
function than for an arrival process having a piece-wise constant arrival rate function. In the later case
the computation of this optimal pseudo-deterministic policy is very easy. Since any non-homogeneous
Poisson process with a bounded arrival rate function can be approximated arbitrarily closely by a non-
homogeneous Poisson process with a piece-wise constant arrival rate function it follows that the restriction
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to this class of arrival processes of defective items is not too restrictive. Our theoretical results and new
algorithm for identifying the optimal pseudo-deterministic policy for this class of arrival processes having
a piece-wise constant arrival rate function now complement and extend the results discussed in Frenk et
al. (2019a), Frenk et al. (2019b) and Javadi (2018).

The motivation for studying this particular class of policies is that our numerical results suggest that
the cost of using a switching time represented by the optimal pseudo-deterministic stopping time is almost
the same as the cost of the optimal switching time represented by the optimal stopping time within the
class of arbitrary stopping times. This indicates that the optimal pseudo-deterministic stopping time is a
good approximation of the optimal stopping time within the class of arbitrary stopping times. The main
reason for this empirical observation is the absence of penalty cost within the class of pseudo-deterministic
policies. These penalty costs occur when both a defective non-repairable item arrives and at that time
no inventory of original spare parts is available and we still apply the repair-replacement policy. If the
penalty costs are high at the occurrence of these events any optimal policy tries to avoid these penalty
costs by switching in time from the repair-replacement policy to an alternative policy and so such a policy
acts like a pseudo-deterministic policy. At the same time, an optimal pseudo-deterministic stopping time
is much easier to compute and due to its simplicity easier to implement in practice.

Our problem setting can be motivated by the end-of-life management of electronic products, whose
manufacturers aim to provide post-warranty repair service to keep their customers loyal. Due to the
rapid pace of technological change in the semi-conductor industry, component manufacturers frequently
update their product assortment and shift their capacity to the components of newer models with higher
profit potential. Component suppliers usually call for Last Time Buy order, forcing OEMs to decide on
the order size of the last order and other supply alternatives.

This paper consists of 5 sections. In the remainder of this section, we briefly review the relevant
literature and articulate the contribution of our study. Section 2 describes the mathematical model also
discussed in Frenk et al. (2019a) and the different classes of policies and yields simplified proofs of already
known results for this model. In Section 3, we derive under some reasonable assumptions properties of
the class of pseudo-deterministic stopping times and at the same time give an easy procedure to compute
the optimal policy within this class. These results seems to be new in the literature. Section 4 gives by
means of easier proofs then the ones used in Frenk et al. (2019a) how to approximate the optimal policy
within the class of all bounded stopping times for the generalized last buy decision problem or end of life
decision problem. Finally Section 5 includes numerical results, while Section 6 concludes the paper.

1.2 Literature review.

The relevant literature for our study mainly consists of the studies from end-of-life management of durable
products.

The last stage of a capital product’s life cycle starts with the end of the manufacturing of a product
by OEMs. Some time later, component suppliers start announcing their end-of-support dates and ask
OEMs to place their last orders. In the literature such an order is called a Last Time Buy order (Bradley
and Guerrero, 2008, 2009; Fortuin, 1980, 1981; Frenk et al., 2019a; Teunter and Fortuin, 1999; Teunter
and Haneveld, 1998). For determining the size of the Last Time Buy order, OEMs need to make an
estimation on the total spare parts demand from their products in use. The first contributions in the
literature on determining the size of a Last Time Buy order focused in a discrete time setting solely on
using only a repair-replacement policy during the remaining economic life time of the product(Fortuin,
1980; Teunter and Fortuin, 1999). In a recent study, Hur et al. (2018) considers the size of a Last Time
Buy order decision in a continuous time setting.

However, in many business cases, companies are interested in complementing decisions about the size
of the Last Time Buy order with other policies to replace defective items such as removal of repairable
parts from phased out products (Behfard et al., 2015; Frenk et al., 2019a; Van Kooten and Tan, 2009;
Krikke and van Der Laan, 2011; Pourakbar et al., 2014), finding an alternative supplier of a substitute
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On the generalized last time buy problem 5

(Frenk et al., 2019b; Pourakbar et al., 2012; Sahyouni et al., 2010) or redesigning the entire production
line of components (Shen and Willems, 2014; Shi and Liu , 2020). In Krikke and van Der Laan (2011) a
case study and a simple heuristic solution is provided for determining the size of a Last Time Buy order
in combination with the availability of repairable spare parts that are removed from phased out products.
They address the impact of phaseouts on spare parts demand and the availability of alternative supply
sources. The same problem setting is utilized by Pourakbar et al. (2014) for the joint optimization
of returned repairable parts from phaseouts and the Last Time Buy Order size. Shi (2019) extended
this problem setting with actively collected end-of-life products. They explicitly model the dynamics of a
installed base to jointly control the Last Time Buy order size, repairable parts and the size of the installed
base. Design refresh options are another important tactic to complement Last Time Buy order decisions.
Shi and Liu (2020) considers a problem setting where the Last Time Buy Order size, design refresh
and end-of-support decision are jointly optimized in a discrete time setting with respect to the profit
maximization criterion. In addition, Inderfurth and Kleber (2013), Inderfurth and Mukherjee (2008) and
Baymdir et al. (2007) consider re-manufacturing options to satisfy incoming spare parts demand.

Another relevant research stream for our study is on spare parts management during the warranty
period. (van der Heijden and Iskandar, 2013; Huang et al., 2007, 2008; Kim and Park, 2008; Sahyouni et
al., 2010). van der Heijden and Iskandar (2013) consider joint optimization of the size of the Last Time
Buy order and repair decisions for products with active warranty. They develop cost and service level
formulations using a discrete time setting. Huang et al. (2007) consider a discrete-time problem setting
where a manufacturer receives demand for new products and warranty claims of old ones. They show
the optimality of a state-dependent base stock policy using Markov decision processes. This problem
setting is extended with age-dependent warranty claims in the installed base by Huang et al. (2008). Kim
and Park (2008) employ continuous time optimal control theory to optimize pricing and production of
durable products by considering their spare parts costs during warranty periods. They explicitly model
the positive impact of a warranty period on the products’ demand. Sahyouni et al. (2010) study the joint
optimization of repair and Last Time Buy order quantity for a deterministic repair demand from products
under warranty in a continuous time setting. In their model, which is more suited to products having a
short life cycle, they focus on the joint optimization of the Last Time Buy order size and end-of-repair
point after which failed products are replaced by substitute products.

1.3 Our contribution to the literature.

Our paper contributes to the existing literature of the Generalized Last Time Buy decision problem by
analyzing in detail a subclass of switching times from a repair-replacement policy to an alternative policy
in the optimal stopping formulation of the Generalized Last Time Buy decision problem as discussed in
Frenk et al. (2019a). It is shown that this subclass of switching times satisfies desirable properties under
very general assumptions on the non-homogeneous Poisson arrival process of defective items and the
substitution cost function of an alternative policy. The optimal policy within this class of these so-called
pseudo-deterministic policies can be easily computed and can be used as a heuristic solution replacing
the optimal, more complicated, optimal policy within the class of all arbitrary bounded stopping times.
It is verified and also explained in the computational section that under certain conditions this can be
done without a significant loss in the objective value. At the same time, the optimal policy within the
class of pseudo-deterministic policies has a clear interpretation contrary to the optimal policy within the
class of all bounded stopping times.

The closest studies to our paper are Frenk et al. (2019a); Javadi (2018); Pourakbar et al. (2012); Shi
and Liu (2020). In Frenk et al. (2019a), which extends Pourakbar et al. (2012), the optimal solution
of this problem is studied and solved by a dynamic programming algorithm. In Shi and Liu (2020) a
similar problem is addressed in a discrete time setting. Under deterministic demand assumptions the
same problem is solved in Sahyouni et al. (2010) using mathematical programming techniques. To the
best of our knowledge, this paper is the first one addressing the use of pseudo-deterministic policies in
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the joint optimization of the size of the Last Time Buy order and switching time to an alternative policy
in a continuous time setting for a non-homogeneous Poisson defective items arrival process.

2 On the generalized last time buy problem.

In this section we introduce in subsection 2.1 the random arrival process of defective items. In subsection
2.2 we define the costs parameters of the generalized last time buy problem, while in section 2.3 we intro-
duce the objective function for this problem. In subsection 2.4 we formulate the associated minimization
problem and derive in subsection 2.5 a lowerbound on the optimal objective value. This is needed to
derive an upperbound on the optimal Last Time Buy order size as expressed in Lemma 3 for nonnegative
scrapping values and in Lemma 5 for arbitrary scrapping values. Finally in subsection 2.6 we derive some
qualitative results for the new class of pseudo-deterministic stopping rules. As such these six subsections
reviews, simplifies and extend and complements the model and results in Frenk et al. (2019a) and Frenk
et al. (2019b).

2.1 The arrival process of the defective items process.

To formulate our end-of-life inventory or generalized last time buy problem, we assume that defective
products arrive according to a non-homogeneous Poisson point process for a repair or replacement. To
introduce this arrival process let (Q,.7,P) be a probability space hosting the point process (T}, R;)ieN.
The random variable T;, i € N denotes the arrival time of the ith customer having a defective product and
requesting repair. The counting process of defective products N = {N(¢) : ¢ > 0} is defined by

N(t) = Zjo:l I{TiSZ‘}?t > O, (1)

and assumed to be a non-homogeneous Poisson process with a bounded Borel arrival rate function A(.).
The random variables R;, i € N, on the other hand, are independent and identically distributed Bernoulli
random variables indicating the condition of the defective items. They are defined as

R— 1 if the product can be repaired
"7 1 0 otherwise

with probability 0 < g =P(R; = 1) < 1. The thinned arrival processes Ny := {No(#) :¢ > 0} and N; = {N;(¢) :
t >0} given by
NO(t) = Zizl (1 _Ri) l{T,-gt}7N1 (t) = Zi:l Ril{TiSZ}7 (2)

count the number of non-repairable and repairable products arriving over time. It is well known that
the arrival processes Ny and N; are independent non-homogeneous Poisson processes with arrival rate
functions Ag(.) = (1 —q)A(.), A1(.) = gA(.) respectively (cf. Cinlar (2011)) having mean arrival functions
Ao() = (1—g)A(.) and A1 (.) = gA(.) with A(t) = [ A (u)du for 0 <t < T. In the sequel, we let F = (F),>0 C
S denote the filtration of the point process (T}, R;)ien; that is, the flow of information associated with
both the arrival times of the products and their condition.

Let T denote the end of service time at which the OEMs’ service obligations with respect to the
product expires. For the optimal application of the Generalised Last Time Buy policy, the manufacturer
makes two decisions: the size of the Last Time Buy order at time 0, x € Z; = {0,1,2,...}, and the
optimal stopping time 7 € [0,T] of switching from a classical repair-replacement policy to an alternative
policy. This is a (possibly random) stopping time belonging to the set of all bounded stopping times with
respect to the filtration F. The subset of deterministic stopping times is denoted by Fy. Recall that for
the deterministic stopping time 7 < T the Generalised Last Time Buy optimization problem reduces to
the Last Time Buy optimization problem in which we only need to determine the size of the Last Time
Buy order.
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On the generalized last time buy problem 7

For the decision making problem, we consider the finite horizon, continuous compounding discounted
cost criteria with discount rate 6 > 0. Figure 1 depicts the control process under the Generalized Last
Time Buy policy. The total cost of these two decisions for a given (x, T)-policy consists of cost components
related with acquisition, inventory holding, repair and replacement. These cost parameters are explained
in the next subsection and are the same as discussed in Frenk et al. (2019a).

2.2 The cost parameters of the generalized last time buy problem.

Acquisition of spare parts take place at time 0 and parts are delivered immediately. The acquisition cost
function is denoted by ¢ :Z, — R, where ¢(0) = 0. Also the holding cost rate for the delivered parts is
h > 0 per spare part per unit of time.

The used policy up to the end of service time T is now summarized by the following procedure.
Starting with x units representing the size of the Last Time Buy order, the OEM utilizes the repair-
replacement policy until some random stopping time T < 7. Under this repair-replacement policy, if a
repair is feasible for an arriving defective component, it is always repaired at some repair cost ¢, plus
some service cost ¢g.. If the component is beyond repair and the inventory level of spare parts is non-zero,
the defective component in the item is replaced with a spare part from the inventory at service cost cge.
If no spare part is available in inventory, the beyond repairable component is replaced with a substitution
spare part supplied from an external source like a gray market or a 3D printer (Figure 1). The cost
of this substitution is given by the right continuous function ¢, : [0,7] — R™. Utilizing the substitution
policy during the time one should use the repair-replacement policy also leads to an additional penalty
cost function p: [0,7] — R*. This penalty cost function can be motivated by customers’ loss-of-goodwill
or transportation of the substitute part from another location. Therefore, the total penalty cost of being
forced to use the alternative substitution policy at time 0 <t < 7 during the time one should use the
repair-replacement policy is given by

Cap(t) = cq(t) + p(1). (3)

We assume that c,p(f) > c5 for 0 <t < 7 to avoid trivial domination of substitution parts over spare
parts available in inventory. It is assumed that the functions ¢, and p are both non-increasing and right
continuous. Namely, the substitute component gets cheaper over time thanks to technological progress
in production processes and the penalty of using a substitute component under the repair-replacement
policy is a decreasing function of time.

After time 7 <t < T until the end of service time T, the OEM first discards at time 7 the existing
inventory at a scrapping cost of ¢y, per item and abandons after this time for any defective item arriving
at time ¢ the repair-replacement policy and replaces it by the substitution policy at the substitution cost
cq(t). All costs of the repair services are indicated next to the associated processes in Figure 1. In our
formulation, all cost terms are positive except the scrapping value c,.,, which is allowed to be negative.
This means there can be a net revenue associated with these scrapped parts. To avoid pathological cases

where ordering is profitable because of scrapping, we assume in this study that the function x — c(x) —cy.,x

is increasing with ¢y, := —min{c,,0} and

scr

lim e, €(X) — €y X = 0. (4)

This implies for the special case that the scrapping costs are positive, then the acquisition cost function ¢
is increasing and satisfies limye, c(x) = co. Also for scrapping costs negative this implies that the function
X = ¢(x) + cgerx is increasing. For the scrapping action to be economically justifiable, we must impose the
condition that & — dcg, > 0. If this condition fails to hold, instead of scrapping an item at some time 7,
we can keep it indefinitely in inventory at a total cost of & [ e %%du = (h/8)e~ 9% which would be less
than cyre %%, These three conditions on the cost functions and the parameters listed in the previous
relations always hold in this study unless stated otherwise.
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2.3 The objective function of the generalized last time buy problem.

In the decision making problem under consideration, a Last Time Buy order of size x and switching time
T < T are determined, which we refer to as a (x,7)-policy. The first variable x is static, and its value is
determined at time zero. The switching decision, on the other hand, can be dynamic, and in the general
formulation of the problem 7 is a stopping time of the filtration F.

In this section, we derive the expected discounted cost C(x,T) of any (x,7)-policy, x € Z,, T €F
and introduce the optimization problem to be solved. To this end, we introduce the random variable
oy :=inf{r > 0: No(r) > x}, denoting the (random) time of inventory depletion for an order size of x.
Observe the total expected discounted cost is the sum of the procurement and expected discounted
operation costs. The procurement cost is given by c(x). To derive the expected discounted operation
costs we utilize the following results about martingales. For any locally bounded Borel measurable
function f and any non-homogeneous Poisson process N with locally bounded Borel arrival rate function
U defined on the probability space (Q, .52, P) it follows that the stochastic process X = {X(¢) : ¢t > 0}, given
by X(t) := [5 f(s)dN(s) — [§ f(s)i(s)ds for t > 0, is a right-continuous martingale (cf. Cinlar (2011)). For
these so-called Poissonian martingales and any bounded stopping time 7 it holds that E(X(7)) = 0. This

o B ( [ rwavw) =5 ([ ronwa). 5)

This is known as Doob’s stopping theorem (cf.Cinlar (2011)) and we will make frequently use of this
result in the computation of the expected discounted operation costs. The expected discounted operation
costs counsist of the following components for any (x,7)-policy with x € Z and 7 € F:

e Inventory holding costs: We switch to the repair-with-substitute policy at time 7 < T and scrap
at that time (possibly) leftover inventory of spare parts. Hence, the random discounted inventory
holding costs are given by & [ e~%"(x — No(u))*du with (z)* := max(z,0). This shows that the
expected discounted holding costs Ci,(x, T) of any (x, T)-policy equal

Cin(x,7) = hE ( / Te—5u(x1vo(u))+du) . 6)

0

e Service costs: Service costs arise during the cost of running repair operations for both re-
pairable and non-repairable products. For a repairable product service costs occur during the
repair-replacement policy from time 0 to time 7 in any (x,T)-policy. For a non-repairable product,
service costs occur in case of positive spare parts inventory at the arrival time of a defective prod-
uct. Hence, for non-repairable products, service costs only need to be paid from time 0 up to time
TA Oy :=min{7,0,}. This shows that the random discounted service costs are given by

T TAGy
cse/ e %UdN, (u)+cse/ e_a”dNo(u).
0 0

Applying now relation (5) for properly chosen functions f and using both point processes Ny and Ny
it follows for the bounded stopping time 7 < T that the expected discounted service costs Cse(x,T)
of any (x,7)-policy equal

Coe(x,7) = 5 (fOT e %u), (u)du) +cseE( OMGX e"s”ﬁo(u)du)
(7)

qgcseE (fy e"s”l(u)du) + (1= q)csE (g e’a’%(u)du) .

¢ Repair costs: We incur repair costs during the repair-replacement phase from time 0 to 7. Hence
the random discounted repair costs are given by ¢ [y e~ %dN, (u). Applying the same arguments as
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for service costs the expected discounted repair costs Cr(x, ) of any (x,7)-policy equal to
T T
Cre(x,7) = ¢ E ( / e (u)du) = gcE < / 6—5“/1(u)du> . (8)
0 0

e Substitution costs: The random discounted costs of applying the repair-with-substitute policy
consist of the substitution cost before and after time 7. The random discounted cost of using the
alternative policy is given by

T T
/T e, (u)dN (u) + e % ey (u)dNo(u).

TACy

Applying the same arguments as before and using relation (3) the expected discounted alternative
policy costs C,(x,T) of any (x,7)-policy are as follows:

Culrt) = E ([ e Pea@)A(u)du) + (1= )E (J3,q, ¢ cap )2 (u)du)
T 0% (u) A () du+ E( [ (1 — g} () — calu)]A ()i
(1= q)E (JF"% e~ copy (u) A (u)du) (9)
o 8% (u) A ()du+E( [ e=](1 — q)p(u) — gea(u)] A (u)du

—(1=q)E (Jg"* e~%cap(u)A (u)du)

e Scrapping costs: The random discounted scrapping costs at time T are given by cme"sr(x—
No(7))™. This shows that the expected discounted scrapping costs Cs.r(x,7) of any (x,T) policy
equal

Cscr(xa T) = CAvcrE(e_ér(foO(T))+)- (10)

Adding up the separate operational costs derived in relations (6)-(10), the expected discounted operation
cost C(x,7) of any (x,7)-policy is given by

hE( [y e %% (x — No(u)) tdu) + cyerB(e 0% (x — Ny (1)) 1)
Clx,7)=<¢ +E (fore"s”[q(c,e—l—cse—ca(u))+(1 —q)p(u)]l(u)du) (11)
+(1=q)E (J5" % €% [cye — cap (W) A (w)dut) + [y €= ca(u)A (u)du.,

To rewrite the expression in (11) in a more suitable form, we remind that for any first order stochastic
processes Y = {Y(t),t >0} and Z={Z(z) : t > 0} it holds that

Y(£)Z(t) = Y (0)Z(0) + /O 'Y (wdz(u) + /0 " Z(w)ay (u),t > 0
This shows for any 0 < ¢ <1 using Ny(0) =0
e T (x—No())T = e 3N (x—Ny(tAGy))

= x—& 7 % e % (x — No(u))du— [ e~ %"dNo(u)
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and so by Doob’s stopping theorem

T TACy

E(e 3% (x— No(7))*) = x— 6E (/ e—5"(xN0(u))+du) —(1-q)E (/ e_aul(u)du) .2
0 0

Replacing the expectation for the scrapping value in (11) with the expression in (12) and rearranging

some terms, we obtain the following more suitable representation of the expected discounted operation

costs. N
cserx+ (1—q)E ( OT Ox e"s”k(u) [Cse — Cser — cap(u)]du)

Cle,7)=q +E(Jg e A (u)[g(cse + cre — ca(w)) + (1 = q)p(u)]du) (13)

+(h— 8cser)E ( e du (x— No(u))*)du) + fOT e %) (u)cqa(u)du.

In case we consider the subclass of policies (x,7 A 0y),T € F this yields by relation (13)

CoerX+E (fomq‘ e du) (1) [ese +qcre — (1 — q)cger — Ca (u)]du)
C(x,TA0y) = (14)
+(h— 8cser)E (fif €5 (x — No(u)) Tdu) + fy e %A (u)cq(u)du

and so
T

C(x,r)—C(x,rAGx)zﬂi(/r

In the following lemma, we use relation (15) to show that under certain conditions on the penalty and
the substitution cost functions it is always optimal within the class of all stopping times to switch to the
substitution policy before or at the moment the inventory level of spare parts is depleted. In Section 2.6
we will analyze this special class of policies with T a constant.

e [glcse+cre — cau)) + (1 — Q)p(u)}du> - (15)

e

Lemma 1. If
info<;<7{q(cse +cre —ca(t)) +(1—q)p(t)} > 0, (16)

then the class of (x,T A Ox)-policies with T € F contains an optimal policy.
Proof. Apply relation (15). O

If no item is repairable (¢ = 0!), the (sufficient) condition of Lemma 1 is satisfied. In this case one can
find an optimal policy belonging to this special class of policies. In many service systems penalty costs
are very high. Hence the condition in Lemma 1 is mostly satisfied in practice especially when ¢ is close to
0. Since the subclass of (x, T A oy)-policies avoid the (possibly) high penalty costs occurring in practice,
it is therefore worthwhile to study them in detail. We will focus on this set of policies with 7 € Fy in
subsection 2.6 and section 3. However, it might not always happen that a (x,T A oy)-policy is optimal
within the class of all bounded stopping time policies. In case of high substitution cost c,(.) being larger
then ¢4 + ¢ and low penalty costs p(.), and g close to one it might be cheaper (see proof Lemma 1!) to
continue with the repair-replacement policy after the inventory level hits zero.

2.4 On the formulation of the generalized last time buy problem.

Applying relation (13) the objective function of using a given (x,7) policy consists of the summation of
the procurement cost ¢(x) and the operating cost C(x,7). The corresponding last time buy optimization
problem is then given by

U(P) = infyez, rero<o<r{c(x) +Clx, 7)}. (P)

Hence we need to determine the parameters of a (x,7)-policy, if it exists, attaining the infimum in the
above optimization problem.
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On the generalized last time buy problem 11

There is one instance of optimization problem (P) which can be solved easily. In case all the defective
items are repairable, i.e. ¢ =1, the stochastic counting process Ny of non-repairable defective components
listed in relation (2) becomes the zero process. Since for ¢ =1 all items can be repaired without using
spare parts, it is easy to check applying relation (13) it is optimal not to order any spare parts. Also, since
the function ¢, is decreasing and every time we use for a (repairable) defective item the repair decision
against cost ¢y + cpe it is optimal to switch to the substitution policy at the earliest time t < T satisfying
¢q(t) < ¢ge + Cre. This result is formally stated in the next lemma.

Lemma 2. If all defective items can be repaired and the three conditions on the parameters introduced
in subsection 2.2 hold, then the optimal policy is not to order any spare parts at time O and the optimal
switching time to the repair-with-substitute policy is given by T = {; with

Cq=1nf{0<u<T:cee+qcre—ca(u) >0},0<g <1, (17)

with the convention inf{@} =T and & denoting the empty set. Also the optimal objective value v(P)
equals

o(P) = /0 " o33 () min{cse + oo, calu) bl

Proof. See Appendix. O

Since in Lemma 2 we know for the optimal policy that the time to switch to the alternative policy is
already known at time zero this optimal policy is a so-called static policy. Hence by Lemma 2 we only
need to consider in the remainder of this paper the optimization problem (P) satisfying 0 < ¢ < 1. To
solve optimization problem (P) we first compactify the decision space by deriving an upper bound on the
optimal order quantity. An easy upper bound valid for ¢y, > 0 is given by the following result. Since the
function x — infrep o<z<r{c(x) +C(x,7)} does not satisfy in general discrete convexity type properties this
restriction to a finite number of possible order sizes is very useful in the computational section. Observe,
for the general case of both either positive or negative values of ¢y, one can show under an additional
condition on the function ¢4, an improved upper bound and this is shown in Lemma 6.

Lemma 3. If cger > 0 and the three conditions on the parameters introduced in subsection 2.2 hold
and xy := min {x €Ly c(x)> [ e"s”l(u)ca(u)du} then an optimal order quantity x. of the optimization

problem (P) exists and it satisfies x, < xy.

Proof. See Appendix. O

Lemma 3 implies that solving optimization problem (P) is equivalent to solving

V(P) = miny<y, rez, infrero<i<r{c(x) +C(x,7)}, (18)

and this problem can be approximated by a computable optimal stopping problem. In Frenk et al. (2019a)
an approximate solution to this problem is provided by replacing the set of all stopping times with the
set of stopping times attaining only values from a finite subset of [0,T]. To bound the approximation
error replacing the set of stopping times by the smaller set of stopping times only attaining values at a
finite subset of [0, 7] we need a lower bound on v(P). In the following subsection we provide under some
additional assumption on the function c,,(.) an improved upperbound on the optimal order quantity x
valid for any scrapping value cg,. This improves the representation in (18).
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2.5 An upper bound on the optimal order quantity for arbitrary scrapping
values.

In this subsection we derive in Lemma 6 an upper bound on the optimal order quantity of the generalized
last buy decision minimization problem for arbitrary scrapping values cs, under general conditions on
the function c4p(.). To do so we first derive a lower bound on v(P) in Lemma 5. To start our analysis
introduce the function L:Z, xF — R given by

c(x) +hE (f¢ €% (x — No(u)) " du) + cye, E(e707 (x — No (7)) T)
L(x,7):= (19)
+E (fof e ou [Cse + qCre — ca(u)]l(u)du) + fOT e"s”ca(u)l (u)du.

If cqp(u) = cye for every 0 < u < T it follows that the costs of the different events given by either an arrival
moment of a non-repairable defective item at which one still uses the repair-replacement policy but the
inventory level of spare parts is zero or the cost of replacement at a positive spare parts inventory level
are the same. If this holds we obtain using p(u) = cap(u) — ca(1) = c5e — cq(u) that for every 0 <u <T

q(cre +Cse — ca(u)) + (1= q)p(u) = cse +qcre — calu)

This implies by relation (11) that for this selection of the cost parameters the value L(x, T) is the sum of
the procurement and the operational costs for every 0 <t < T and so the result in Lemma 4 should not
come as a surprise. Also by relation (11) it is easy to check that

c(x)+C(x,7) — L(x,7) = (1—q)E (/TT eiS“)&(u)[cap(u) —cse]du> , (20)

NOx

and by relation (12)

e(x) + cserx 4+ (h— 8cser)E (ff e (x — No(u)) *du) + fo e A (u)cq(u)du
L(x,7) = (21)
_cscr(l - Q)E (for/\o-x 675141 (u)du) + E (fO‘lr 676u [cse + qCre — ca(u)}l (u)du) .

The following result, which immediately follows from relations (20) and (21), is also shown in Frenk et
al. (2019a) using a much more complicated proof.

Lemma 4. If the three conditions on the parameters introduced in subsection 2.2 hold, then for every
T €F the function x — L(x,T) is increasing and limye L(x,7T) = co. Also, if additionally cap(u) > cye for
every 0 <u<T, then ¢(x)+C(x,T) > L(x, ) for every (x,T) policy.

Proof. By relation (21) the first part follows, while the second part is an immediate consequence of
relation (20). O

Clearly by the interpretation of c,, being the cost of being forced to apply the substitution policy
to a non-repairale defective item at a time one still applies the repair-replacement policy it is natural to
assume that this cost is higher then the costs ¢y representing the cost of applying the repair-replacement
policy to that same item under expected conditions. Using Lemma 4 one can derive for every positive or
negative scrapping value ¢y, per item a positive lower bound on v(P).

Lemma 5. If the three conditions on the parameters introduced in subsection 2.2 hold and cap(u) > cse
for every 0 <u < T, then the optimal objective value V(P) of the optimization problem (P) satisfies

v(P) > /OT e du min{cse + gcre, cq(u) }A (u)du > 0. (22)
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Proof. see Appendix. O

Using Lemma 4 and the natural condition ¢, (1) > ¢ for every 0 <u < T it is possible to derive
a tighter upper bound Xy < xy on the optimal order quantity than the one presented in Lemma 3.
Contrary to the (weaker) one in Lemma 3 this upper bound holds for both positive and negative values
of the scrapping value ¢,

Lemma 6. If the three conditions on the parameters introduced in subsection 2.2 hold and cap(u) > cse
for every 0 <u<T and

T
Xy = min{x € N : ¢(x) + min{cse,,0}x > / ¢~ %% (u) max{0, cq (1) — c50 — gcre ydu}, (23)
0

then an optimal order quantity x. of the optimization problem (P) exists and it satisfies x, <Xy .
Proof. See Appendix. O

Observe the upper bound Xy is easy to compute by bisection since by our assumptions the function
x — ¢(x) + min{cser,0}x is increasing having limit infinity at infinity. By using the proof of Lemma 6,
one can construct an upper bound knowing the value ¢(x) + C(X,7) of the objective function for a given
(x,7)-policy. In this case the upper bound Xy (¥, 7) is given by

T
Xy (X,T) = min {x € N: ¢(x) + min{cger, 0}x > ¢(X) + C(X,7) —/ ¢~ %2 (u) min{cy, —|—qcre,ca(u)}du} . (24)
0
Clearly by Lemma 5 the value
T
c(x)+C(x,7)— / ¢~ (u) min{cse + GCre, cau) }du,
0
is non-negative and the lower the values of this difference leads to tighter bounds.

2.6 On the subclass of deterministic and pseudo-deterministic policies.

Another important class of policies is the class of (x,T) policies with 7 € Fy. These so-called deterministic
policies are studied in detail in Frenk et al. (2019b). Observe these polices are sometimes also called static
due to the following advantage. The decision maker knows applying those policies already at time O the
switching time of the repair-replacement policy to the alternative policy and so this policy is easy-to-
implement in practice. Not knowing the switching time at time zero, but avoiding possibly high penalty
costs instead, leads us to study the class of (x,7 A 0,) policies with 7 € F. For arbitrary bounded stopping
times T € F it was shown in Lemma 1 that under some reasonable conditions the class of (x,T A oy) polices
indeed contains an optimal one among all (x,7) policies, x € Z, T € F. We will now study this class of
policies in more detail for any 7 € Fy and call this class the class of pseudo-deterministic policies. These
policies are not discussed previously in the literature and are still relatively easy to implement in practice
as the decision maker switches from the repair-replacement policy to the alternative policy either at the
deterministic time 7 € Fy or at the random time oy of inventory depletion, whichever occurs first. Since
in general penalty cost can be very high, it seems natural to assume that any optimal policy tries to
avoid penalty cost or at least tries to minimize the probability of penalty occurrences. Hence it is useful
to study this new class of policies. We will compute for different scenarios in Section 5 the probability
of occurrence of a penalty and the gap between the cost of the optimal pseudo-deterministic policy and
v(P). In the next section, we will also show that it is extremely simple to compute an optimal pseudo-
deterministic policy for the important class of piece-wise constant arrival rate and substitution policy
costs functions. For these cost and arrival settings one can compute exactly the optimal policy within
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the class of pseudco deterministic policies instead of approximating the optimal policy. At the same time
these cost and arrival settings approximate by any accuracy the general arrival and cost settings.

For the subset of deterministic and pseudo-deterministic policies, one can simplify considerably the
expression for C(x, ) in relation (13). By Fubini’s theorem it follows for any Borel measurable function
[yt €Fpand x € Z; that

E ( /0 e f(u)du> —E ( /0 ! f(u)l{(,x>u}du> - /0 " () P(No () < x)du.

This relation and relation (13) imply for 7 € Fy that
Ccserx+ (1 —q) Jof e A () [cse — Cser — Cap(w)|P(No(u) < x)du
Clx,7) =1 + o e 2“A(w)[glcse +cre — ca()) + (1 — ) p(u)]du (25)
+(h— 8cser) i e SUE((x — No() " )du+ [ e A(u)eq (u)du.

By the same argument, we can write relation (14) as

T

CserX+ Jo e"s”l(u)[cse +gcre — (1 — q)cser — ca(w)|P(No(u) < x)du
Clx,TA0y) = (26)
+(h = 8cser) fy € S“E((x— No(u)) T )du+ [y e 0" (u)cq(u)du.

To analyze the behavior of both objective functions for a given T € .%y we need the concept of discrete
convezity: A function f:Z, — R is called discrete conver on Z. if its first order difference A,f(x) :=
Ff(x+1)= f(x),x € Z is a non-decreasing function on Z,. The function f is called discrete concave if the
function — f is discrete convex. Discrete convexity is applied to our problem through the following result.

Lemma 7. Let N be a non-homogeneous Poisson process with a locally bounded Borel measurable arrival
rate function U and f:[0,T] — R some Borel measurable function. If the function f is non-decreasing
and non-positive on [0,7) for a given T €Fo,0 < T < T then the function

X G(x) =E ( /O e f(v),u(u)du) 27)

is mon-increasing and discrete conver on Z.. If the function f is non-increasing and non-negative on
[0,7T), then this function is non-decreasing and discrete concave on Z .

Proof. See Appendix. O

Using Lemma 7 the next result is easy to verify. A similar result was proved in Frenk et al. (2019b)
using a much more complicated proof.

Lemma 8. Let 1€ Fy,0<t<T be given.

1. If the procurement cost function c¢ is discrete convex on Zy and cap(t) > cge — Cser for every t < T,
then the function x — ¢(x) +C(x,T) is discrete convex on Z..

2. If the procurement cost function c is discrete convex on Zy and c4(t) > cse +qcre — (1 — q)cser for
every t < T then the function x — c(x) +C(x,T A 0y) is discrete convexr on Z .

Proof. See Appendix. O
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Since we always assume (unless stated otherwise) that p(u) > cs and ¢, is non-increasing, it follows
for cger > 0 that cqp(t) > cge — c5er for every 0 <t < T. Hence by Lemma 8 the function x — C(x,7) is
discrete convex for every 0 < T < T and this result was used in Frenk et al. (2019b) to give an efficient
algorithm to compute approximately the optimal deterministic policy. In the next section we will only
consider the class of pseudo-deterministic policies and prove that one can identify beforehand a finite
set of T values containing an optimal solution for piece-wise constant arrival rate and (decreasing) piece-
wise constant substitution cost functions. For this realistic setting, we will analyze the properties of the

following optimization problem

1)(Q) = infer%re]Fo,OgrgT {C(x) +C(x,TA O-X)} (0)

3 On properties of the class of pseudo-deterministic policies.

In this section we show for a Poissonian defective items stochastic arrival process having a piece-wise
constant arrival rate function and a piecewise-constant non-increasing substitution cost function ¢, that
the finite set of breaking points of these functions contain the optimal switching time between the two
used policies and so this optimal switching time can be easily computed. Without loss of generality, we
may assume that both functions have the same set of breaking points. If this is not the case, we use the
union of both sets of breaking points.

To justify the use of a piece-wise constant substitution cost function we first observe one can always
find a piece-wise constant function approximating a bounded non-increasing substitution cost function ¢,
within any given accuracy using the following procedure. Introducing the composite function ¢, ,(f) :=
dy(ca(t)),0 <t < T,n €N with the so-called dyadic function d, : [0,00] — [0,00) (cf.Cinlar (2011)) given by

nk—1
() = L R i () 1 (), (28)
yield a sequence of piece-wise constant functions taking only finitely many values. Using this repre-
sentation we obtain that the function ¢,, is again a non-increasing right continuous function satisfy-
ing capn < cq and for every n € N, n > ¢,(0) we have the approximation errors || c,n — ca [|-< 27" with
| £ lle=supepo,ry | f(2) [ Similarly, one can also approximate any locally bounded, Borel measurable
arrival rate function A by the function A, (¢) :=d,(A(¢)) for t € [0,7] and || 4, — 2 ||«< 27" for sufficiently
large n. By increasing the value of n, we obtain more accurate approximations. Although not proved
in this paper it is relatively easy to give an upper bound on the error in the optimal discounted cost
replacing the function ¢, by its approximation c,, and the arrival rate function A by 4,. Hence up to any
given accuracy one can replace the true functions ¢, and A by their piece-wise constant approximations
can and A, for some properly selected n € N. Hence this justifies the use of these piece-wise constant
functions.
To solve the optimization problem (Q) listed in subsection 2.6 for the set of pseudo-deterministic
policies two alternative approaches are possible: The first approach we may use (used in Frenk et al.
(2019b) for only the set of static policies) is given by

v(Q) = infrer, 0<r<7 @(T),

with
@(1) :=infyez, {c(x)+C(x,TA )} (0(7))

Applying this bilevel approach and Lemma 8 we may use the necessary and sufficient first order conditions
to determine first the optimal order quantity x(7) for each given deterministic switching time 7 € Fy and
compute for this optimal order quantity the optimal value @(7) of optimization problem (Q(7)). In
general the optimal value function ¢ : [0,7] — R is not a convex function on [0,7] and so we cannot use
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a classical one-dimensional optimization algorithm to determine an optimal T € Fy. However, it can be
shown that the function ¢ is Lipschitz continuous with a computable Lipschitz constant and so up to any
given accuracy we may construct a finite discretization 2 of the set [0,T]. Evaluating the finite number of
function values ¢(7),7 € & and taking the minimum of those values we can then approximate v(Q) up to
any given accuracy. Although applicable this approximation approach will not be followed in this paper.
The second bilevel approach (considered in this paper) yielding an exact procedure to compute the optimal
pseudo-deterministic policy for a piecewise-constant arrival rate and piecewise constant substitution cost
function is given by

v(Q) = infrez, {y(x)}. (0)
with
Y (x) == infocc<r,zer, {c(x) + C(x,TA Ok }. (Q(x))

For the optimization problem (Q) we first identify the following easy instance.

Lemma 9. If the substitution cost function c, of applying the alternative policy is non-increasing and
ca(0) < ¢5e +qcre — (1 — q)cser it is optimal within the class of pseudo-deterministic policies not to order any
spare parts and switch at time 0 immediately to the substitution policy. This yields the optimal objective
value v(Q) = [} e %A(u)c,(u)du.

Proof. See Appendix. O

Due to the low cost of substitution at time 0 and using relation (14) in the proof of Lemma 9 it
is easy to see that it is also optimal to switch immediately at time O to the alternative policy within
the class of all (x,T A oy) policies with T an arbitrary bounded stopping time. Hence in the remainder
of this paper it is assumed that ¢,(0) > cs + gcre — (1 — g)cser- In practice this condition on the costs
parameters is realistic since immediately applying the alternative policy at time 0 is in general much
more expensive then applying the repair-replacement policy. We will now analyze the optimization
problem (Q(x)) for a Poissonian defective items arrival process having a piece-wise constant arrival rate
function and decreasing piece-wise constant substitution or alternative policy cost function c¢,(.). To
introduce this piece-wise constant arrival rate function consider a strictly increasing sequence (ai)f‘jll
satisfying 0 =a; < az < ... < ay < ay+1 =T and define for r >0

A=Y Ailjga, () (29)

for any arbitrarily selected non-negative sequence (4;)"_,. At the same time the non-increasing substitu-
tion cost function of applying the alternative policy is given by

cat) =Y €iliga)(t),0<1 <T. (30)

with ¢; > ¢ > ... > ¢, >0 and ¢] > ¢ge +qcre — (1 — q)cser. Since by Lemma 9 it is optimal not to order
and immediately switch to the substitution policy if ¢; = ¢4(0) < ¢ge + gcre — (1 — g)Cser, We may assume
c1 > ¢se +qcre — (1 — q)cser. By relation (14) it also follows that the partial derivative of the function
c(x) +C(x,T A oy) with respect to T € Fy for any a; < T < a;41,i=1,...,n is given by

%(x, TAG) =e %F (Ailcse +gere — (1 = q)cger — ci]P(No(T) < x) + (h— Scger)E((x — No(7)) ")) - (31)

Using relation (31) and introducing the index
n*=max{l <i<n:¢;>ce+qgcre—(1—q)csert <n, (32)

the next result is easy to show for optimization problem (Q(x)).
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Lemma 10. Introducing y;(x) = ming<c<q,, {c(x) +C(x,TA 0y}, i=1,...,n it follows for every x € Z,
that y(x) = min;—; .+ Wi(x) with y(x) the optimal objective value of optimization problem (Q(x)).

Proof. See Appendix. O

The partial derivative in relation (31) consists of the difference of two positive decreasing functions
and so this difference might not be increasing or decreasing. To analyze in detail this partial derivative
we introduce the well known Erlang-B formula represented by the function B:Z., xR, — R given by

*

B(x,t) = —*— x€N, (33)

x  th)
j=0 j!

and B(0,f) =1 for every ¢ > 0. The value B(x,t) represents the probability that an arriving customer
is rejected in a M /M /x/x Markovian loss model with an arrival rate ¢ and departure rate 1 (Kleinrock
(1975)). Hence 1 — B(x,t) represents the probability that an arriving customer is admitted to the system.
By a straightforward computation it is easy to show the following result.

Lemma 11. If N={N(¢) :t > 0} is a non-homogeneous Poisson process with arrival rate function 8 and
mean arrival function ©(t) = [} 0(u)du,t >0 then for any x €N and t >0

W — - 0()(1—B(x—1,0()). (34)
Proof. see Appendix. O

Introducing the function & : Z4 x [0,T] — R given by
Ki(x, T) = Ailese +qcre — (1 —g)eser — ¢i] + (h— 8¢ser)x — (h— 8eser) Ao (T)[1 — B(x — 1, A0(7))], (35)

with Ag(7) = (1 —g) Jy A(u)du and considering relations (31) and (34), we obtain

g—i(x, TACy) = eiSTIP’(No(T) < x)Ki(x,7), (36)

for a; < T < ajy1,i=1,...,n. For every x € N the following result is well known. We list a short proof of
this result in the Appendix.

Lemma 12. For everyx € N the functiont— t(1—B(x,t)) is increasing and satisfies limy ot (1 —B(x,1)) = x.
Proof. see Appendix. O

Using Lemma 12 we can slightly improve the result in Lemma 10. By Lemma 12 it follows for every
xeNand 7> 0 that Ag(7)(1 —B(x—1,A9(7)) <x—1, and this yields for every x € N that the function x;
listed in relation (35) satisfies

K',‘(x, "L') > A,i(Cse +qcre — (1 - q>cscr - Ci) + (h - 5Cscr)- (37)

Hence it follows for ¢; < cye +qcre — (1 — q)cser + A, (h— 8cger) that by relation (36)

3—5(}@ TAG,) = e OP(No(T) < x)ki(x,T) > 0, (38)

and this shows the improved result that the function 7+— ¢(x) +C(x,7T A 0y) is actually increasing for
every x on [da;,a;+1]. This shows for

1 < CsetgCre — (1 - Q)Cscr + )Ln_mlx(h - Sc‘vcr)7 (39)
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with Amax := max;—; _,A; that again it is optimal not to order in optimization problem (Q). Hence to
solve problem (Q) it is sufficient to consider problem instances satisfying
Cl > Cye +(Cre — (1 - Q)Cscr + An?alx(h - 5cscr)- (40)

For such instances the set {1 <i<n:c; > cge+qcre — (1 —q)cser + Aoy (h— 8¢ger) } is nonempty and intro-
ducing
ny:=max{1 <i<n:c¢; > ce+qcr—(1 fq)cxc,Jrl,;alx(hf Scser) } <, (41)

where n* is listed in (32). Using similar arguments as in Lemma 10, we obtain
Y(x) =min—y s Wi(x). (42)

In the next result we show for every x € Z, that the finite set of breaking points ay, ooy g ] contains an
optimal exit time T of the optimization problem (Q(x)).

Lemma 13. For every x € N an optimal solution of optimization problem (Q(x)) is attained at some a;,
i=1,..,n5+1 with n§ listed in (41).

Proof. See Appendix. O

The result in Lemma 13 implies that for any given x € Z we only have to evaluate the objective
function ¢(x)+C(x,TA0y) at T=aq; for i =1,...,n5+ 1. Therefore, our optimization problem (Q) listed in
subsection 2.6 reduces to

v(Q) =min;_;_ e minyez, {c(x) +C(x,a; A oy)}.

By Lemma 8 the function x — C(x,a; A 0y) is discrete convex for i <n*+1 since ¢, (u) > cse +gcre — (1 — ) Cser
for every u < ay+y1. For a discrete convex procurement function c¢(.), an optimal solution x(g;), i =
1,...,n5+ 1 of infyez, {c(x) +C(x,a; A oy)} is given by

x(a;) =min{x € Z; : c(x+1) —¢(x) + AC(x,a; A 6y) > 0}, (43)
where AC(x,a; A 0y) represents the first order operator of the function x — C(x,a; A 6;) given by
AC(x,a; \Noy) :=C(x+1,a; A Oyxy1) —C(x,a; AN Ox),x € Z. (44)

Observe (44) can be used to compute the objective value c(x(a;) + C(x(a;),a; A 0x) using

c(x(a)) + Clx(a),ai A Oyay) = YoV Me(k + 1) — c(k) + AC(ka; A 01)] + C(O,a; A ), (45)

for every i =2,....n" +1. In (45), we need to evaluate the first order difference operator for different
parameter values and the value of the objective function in case of no ordering. Applying relation (26)
to the special instances of piece-wise constant arrival rate and substitution cost functions, we obtain the
following simplification for the first order cost difference.

Lemma 14. If the arrival rate function is given by relation (29) and the substitution cost function by
relation (30) then for everyi=1,...,n+1

T c:
C(0,a;Nop) = / e %A (u)cq(u)du = Zj_l %(6‘_5‘” —e %), (46)
b -

and for every i=2,...n+1 and x € Z.

o (S ) [ DB (Np(ay) <) - e D B(Ny(ay1) < )]
AC(x,a; N oy) = (47)
a

+(h—8cser) Z;_:ll Ja] ' e P(No(u) < x)du+ cyer.
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Proof. See Appendix. O

For a; =0, relation (26) leads to AC(0,0 A 0y) = c¢ger. This implies, by relation (43) and x — c(x) +
min{cs,0}x being increasing, that an optimal solution is given by x(a;) = 0 with the optimal value
cjhj

infyez, {c(x) +C(x,a1 Noy)} = /OT e ¥y (u)A(u)du = Z;:l 7(6’5“1 —e %), (48)

To simplify the calculations in Section 5 and determine the optimal pseudo-deterministic policy we will
use Lemma 14 together with the following result.

Lemma 15. If the arrival rate function is given by relation (29) and introducing for every 1 < j <n and
X e Z+

v;(x) := e PPNy (a;) < x),

then for every 1 < j<n and x € Z;

. 1—g)A; \™
oo (st ) o= m) = vjp (r—m)]

S+(—qh (49)

a
/ ™ e UP(No(u) < x)du =
a

j
Proof. See Appendix. O

To solve the optimization problem (Q) determining the optimal pseudo-deterministic policy we can
now apply the following algorithm.

Solving optimization problem (Q) for piece-wise constant arrival rate and substitution cost function with
breaking points a;, i = 1,...n and ¢ discrete convex

« Compute ng in relation (41).

 Solve for every i =1,...,n5+ 1 the discrete convex minimization problem infycz, {c(x) +C(x,a; Aoy)}
by evaluating the first order conditions x(a;) = min{x € Z : c(x+ 1) — c(x) + AC(x,a; A oy) > 0} with
AC(x,a; A\ Oy) given below

Cser + Jo° e~ (u)[cse 4 gere — (1 — @) cser — a(u) P(No (1) = x)du
AC(x,a; \Noy) = (50)
+(h—8cyer) f§ e OUP(No(u) < x)du.

e Output
0(Q) = minj<j<pr1{c(x(a;)) + Cx(ai),a:) },

and
(x(ai-),ai) = argming <i<pe 41 {c(x(ai)) + C(x(ai),ai) }-

In Section 5, we present the results of some computational experiments with piece-wise constant
arrival rate and substitution cost functions. We determine both the optimal pseudo-deterministic and
the optimal stopping time policies for the most general optimization problem (P). Before presenting the
computational results, we shortly discuss in the following section how to (approximately) compute the
optimal policy of optimization problem (P).
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4 On the optimal policy within the class of all stopping times.

In this section we discuss how to solve optimization problem (P) listed in Section 2.4. Although most
of the results except the characterization of the optimal stopping sets S; in Lemma 18 and 19 already
appeared in Frenk et al. (2019a) using a slightly more difficult approach, we list these main results for
completeness also in this paper. By relation (18) we know that there exist a computable upperbound xy
satisfying

'()(P) = infoxU’er+’ infTE]F.OSTST{C(x) + C(x, T)} (51)

To solve for each x < xy,x € Z, the optimization problem @(x) := infep o<z<7{c(x) +C(x,7)} we discretize
the set [0,7] and construct a finite set ® = {to,71,...,tx} C [0,T] satisfying 0 =1y <t; < ... <ty =T. Its
mesh is given by

A(®) =maxo<jn-1 | tjr1 =15 ] . (52)
Depending on the given set ® we consider the set of stopping times 7 € F taking only values in ®. For

each finite set ® the set of stopping times only attaining value in ® is denoted by Fg. Consider now for
every x < xy,Xx € Zy the optimization problem @g(x) = infrcr, {c(x) +C(x,7)}, and introduce

U(P@) = infxngﬂe]F@ (0 (x) = infxgxy,rdp@ {c(x) + C(x, T)} (P@)

Since Fg C F it follows by relation (51) that 0 < v(Pg) — v(P). It is also possibe to construct an upper-
bound on v(Pg) — v(P). If we introduce the functions f;: [0,7] — R,i= 1,2 as follows.

fl (t) = (1 _Q)(Cse — Cscr _cap(t))7
and
F2(t) = glcse +cre —ca(t)) + (1= q)p(t).

By using these definitions, one can show the following result. Although this result is shown in Frenk et
al. (2019a) we list for completeness an outline of the proof.

Lemma 16. If the arrival process N of defective items is given by a non-homogeneous Poisson process
with arrival rate function A(.) then v(Pg) —V(P) < fo(xy)A(®) and fo(x) = h— Sesrx+ || Afi ||oo + [| A L2 ||
with || glle := supy<,<7 | &(t) | denotes the well-known supnorm.

Proof. see Appendix. O

By Lemma 5 we obtain that the relative error of solving the approximative problem (Pg) instead of
optimization problem (P) is given by

P A
1< v(Po) <1t fO.(xU) (©) _ (53)
v(P) Jo € %A (u) min{cye + qCre,ca(u) }du
In our computational section we select € > 0 and use a finite set ® with mesh A(60) satisfying
0 @) < e [ e=%"A (u) min{cy, —|—qcrg,ca(u)}du‘ (54)

Jolxu)

If (54) holds, then (53) implies that the relative error is smaller than €. In Section 5, we will use a
piece-wise constant arrival rate and a piece-wise constant substitution cost function with the same set
of breaking points. ® is chosen to be ® = {jA(®) : j =0,...,N} with NA(®) =T and the breaking points
of arrival rate substitution cost are included in this set. A=A(®) > 0 we solve the optimization problem
(Po) using shifted stochastic processes.
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Definition 1. For any non-homogeneous Poisson process X with arrival rate function 0, the shifted
stochastic process {X®) (1) :1 >0} is defined as X®) (1) := X (t + kA) — X (kA) for k=0,...,N —1.

It is well known that X® is again a non-homogeneous Poisson process with arrival rate function

t — 0(t +kA). Let us define the shifted stochastic process Nék), k=0,...,N —1 for the arrival process Ny of
non-repairable items with arrival rate function A9 = (1 —¢)A. For this shifted process the stopping times
is defined as o*) = inf{r >0: N(gk) (t) > x} for every x € Zy. At time kA,k=0,...,N — 1 we either stop or
continue with the repair-replacement policy. If we decide to stop at time kA and the inventory level equals
x, then the random discounted costs of switching to the substitution policy (discounted from time kA) is

given by cgerx + fO(N_k)A e %%c,(u+kA)dN® (u), where N is a shifted Poisson process of arrival requests
with rate A. Hence the expected discounted cost of taking action 7y, which is defined as to switch to the
repair-with-substitute policy, at time kA with inventory level x equals

(N—k)A
Cro (%) 1= Coerx + / e 8 cy (u+ kA (u+ kA)du. (55)
0

Also the random discounted cost of continuing with the repair-replacement policy at time kA equals
br(x) +e %V ( (x—N(gk) (A))1) with bg(x) the random discounted cost of applying the repair-replacement
policy during the time interval [kA, (k+ 1)A). Introducing

Bi(x) = E(bi(x)), (56)

the expected discounted cost of taking action 7, defined as not to switch to the repair-with-substitute
policy, with inventory level x at time kA becomes

Cr (x) 1= Bi(x) + ¢ B (Vi1 (1~ NS () ). (57)

This shows for x < xy that the Bellman equations for the above stopping problem are given by the
functions Vi : Zy - R, k=0,...,N given by

Vi (x) = cgerx, Vi (x) = min{Cr, (x),Cr, (x)}. (58)

To simplify the recurrent relation for V; in relation (58), we introduce the function Wy : Zy - R, k=0,...,.N
given by

(N—k)A

Wi (x) = Vi(x) — / e, (u+ kAL (u+kAYd. (59)

0
Since it is easy to check that
(N—K)A
/ e %y (u+kA)A (u+ kA)du =
0
A (N—(k+1))A
/ 3 (u-+ kA)A (1 + kA)du + ¢ / e e (u+ (k+ DA (u+ (k+ DA)du,
0 0

we obtain from relations (55)-(59) that we need to solve for x < xy and k=0,...,N the Bellman equations

Wiy (x) = Cser, Wi (x) = min{coerx, Bi(x) + e 2B Wiy (x— N (A)) )}, (60)
where A
By (x) := By(x) — /0 e, (u+kA)A (u+kA)du. (61)
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For x=0 and k=0,...,N — | relation (60) reduces to the simplified recurrent relation
Wy (0) = 0, W, (0) = min{0, B¢(0) + e %Wy, 1 (0)}. (62)

Observe that after hitting the zero inventory level, so x = 0, it might be cheaper to continue with the
repair-replacement policy depending on the sign of By(0). This holds if the expected cost g(cse + cre) +
(1—g)cap(u) of any defective item arriving at u is much lower then the expected costs c,(u) of substitution
at u. Having computed Wy(x) for x =0,...,xy with the recurrent relations (60) and (61) after N iterations,
we set

NA
Vo) = Wol) + [ ¢ e, () (u)du, (63)
for x =0,...,xy and solve the optimization problem
min,<y,; {c(x) +Vo(x)}, (64)

by enumeration. To compute Bi(x) in (60) we proceed as follows. By definition let Ci(x,A) denote the
expected discounted operational cost (discounted from time kA) from time kA up to time NA=T. If
we observe inventory level x at time kA and we apply the deterministic (x,A) policy at time kA, the

shifted arrival processes N(gk) and N®) are non-homogeneous Poisson processes with arrival rate functions
t — Ap(kA+1) and t+ — A(kA+1t). Therefore by the definition of Bi(x) in (56), we need to subtract the
discounted substitution costs from time (k+ 1)A up to NA=T from Cy(x,A) and set the scrapping value
equal to zero in the expression for Cy(x,A). This means that

N—k

Bi(x) = Ci(x, A) — / WO 803 (kA )+ K, (65)

A
and by relation (25) substituting cg, =0
(1—q) J2 e 3UA (kA + 1) [cye — Cap(u+KA)PNS (1) < x)du
Ce(x,A) =<+ [Re 3L (kA +u) [q(cse + cre — ca(u+kA)) + (1 — ) p(kA+ u)|du
+h f e E((x— NS () ) + [iN T e A (KA + u)ca(kA + u)du.
This implies using relation (65)
(1= q) J2 e A (kA + 1) [cye — cap(u+kA)P(NS (1) < x)du
Bi(x) =+ [Re S A (kA4 u)[g(cse + cre — caltt+KA)) + (1 — q) p(kA + u)]du
+h 2 e SR ((x — NP () ) + [ e84 A (kA + u)ca(KA+ u)du.
Applying relation (61) we obtain
(1—q) J& e 3 A (kA + u) [cse — cap(u-+KA) PN (u) < x)du
Bi(x) =+ [Le S A (kA4 u)[g(cse + cre — calt+KA)) + (1 — q) p(kA+ 1) du (66)
+h [t e (e~ Ny (u)) )

Hence by relation (66) and the definition of the first order difference operator, the next result easily
follows.
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Lemma 17. For every k € N it follows that

A
B (0) = /0 e %) (kA +u)[q(cse + cre — ca(kA+u)) + (1 — q) p(kA+ u)]du, (67)
and for every x € Z

ABi(x) = (1—q) /0 Ae—ﬁwmﬂ)[cse—ca,,(kAﬂ)]P(Ng")(u) =x)du+h /0 Ae_5“IP’(NO(k)(u) <x)du. (68)

By relation (60) we obtain the following optimal stopping sets Sj.
Sy i={x€Z::cx<B “AEWe (k= NP (AN 69
k= A{X € Ly coerx < Bi(x) + e "E(Wira (x =Ny (A))7) (69)

for k=0,...,N—1. Under certain intuitively clear conditions on the arrival rate and the substitution cost
one can show a desirable property for the optimal stopping set Si. To this end, we first need the next
two results.

Lemma 18. If the arrival process of defective items is a homogeneous Poisson process and the penalty
costs are constant over [0,T] then for every 0 <k <N —1 and for every x € Z

Wi ()C) < Wit 1 (X) < CyerX.
Proof. see Appendix. O

The following result follows from Lemma 18.

Lemma 19. If the arrival process of defective items is a homogeneous Poisson process and the penalty
costs are constant over [0,T] then Si C Sgy1 for every 0 <k < N-—1.

Proof. see Appendix. O

By Lemma 19 we obtain that for every time 0 < k <N — 1 there exists no threshold value or there exists
some threshold inventory level x} satisfying we will always stop at time k if and only if our inventory level
is above this level. In Section 5, we numerically find that the same structure for our optimal stopping
sets in Lemma 19 holds for our piece-wise homogeneous Poisson process. This is probably due to A being
extremely small, so we have P(Nék) < 1)~ 1 at the breaking points which is partly indicated by the proof
of Lemma 18. Hence due to (66) the function x — By(x) is almost an affine function with approximately
the same slopes depending mainly on the inventory cost & and the discount factor 6 but with increasing
constant terms.

5 Computational results.

In this section we numerically analyze the performance of the optimal stopping problem (P) and determine
the optimal pseudo-deterministic policies for different parameter settings. We measure the sensitivity of
the performance gap between pseudo-deterministic and deterministic policies to different parameters. Our
computational experiments are coded in R Gui and run with a 1.60GHz processor. It took on average 8
minutes to execute the algorithm to compute the optimal stopping policy for the dynamic model and 4
seconds to run the algorithm for the optimal pseudo-deterministic policy.
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5.1 Experimental setting and base scenario

In our test bed, the planning horizon [0,7] is split into three equal intervals by the sequence of breaking
points (a;)%_,, where a; = (i — 1)% Therefore, our sub-intervals are [0, %], [%, %] and [%,T], and in each
of these sub-intervals the arrival rate and the substitution cost functions are assumed to be equal to A;
and ¢; for i = 1,2,3 respectively. The cost of the repair-with-substitute policy over different sub-intervals
is now given by ¢j =c,(0)e™ " for j=1,2,3, where y is the decay factor. The arrival rate of the defective
products is assumed to be a step function; constant arrival rate of A4; =[B! over the interval [ai,ait1]
and jumps at time a;. For a given B, [ is set to a value that makes the expected number of product
arrivals over the horizon [0,T] equal to 10T (i.e., on average 10 customer requests per unit time). For the
general (x,7)-policy the penalty costs, p, is assumed to be equal to 1290. The base case scenario with
these parameters is given in Table 1. Note that our substitution cost and arrival rate functions are also
used by Frenk et al. (2019a), to which we benchmark our results.

Table 1: Problem parameters for the base case scenario.
width=0.9
T Cscr  Cse Cre h q c Ca (0) Y )4 € 0 ﬁ
66 (months) 30 30 20 325 05 225 645 0.02 1290 0.001 0.003 0.5

The procurement cost function has the form c(x) = éx with rate ¢ > 0. Also we assume ¢ > ¢y, =
—min{csr,0} which makes x — ¢(x) — ¢;,x an increasing non-negative function with limit e satisfying
our standard assumption on the cost parameters. This also implies that the first order conditions in (43)

reduce to
x(a;) = min{x € Z, : AC(x,a; A 0y) > —¢}. (70)

To solve the optimization problem (P), we apply the approximation approach proposed in Section 4
and select the finite set ® having mesh A > 0 in such a way that the breaking points are contained in
®. This means that MiA=a;,i=1,...,n+1 and so M| =0 and M| = N. Selecting a relative error of
€ =10.001 in the base case scenario, the mesh A of our set ® is not larger than 0.003 due to (54). Due to
the approximation approach, the computed optimal objective values v(P), in Table 2, are subject to this
selected relative error. For the above settings one can also simplify the computation of ABy(x). The next
result follows immediately from Lemma 17.

Lemma 20. If the arrival rate and substitution policy cost functions are given by relations (29), and
(50) then for M <k <M1 —1,i=1,...n+1

By (0) = [q(cse +cre — i) +(1 _Q)P])Li‘s_l(l - e_SA)~ (71)

Also for every m € Z .
ABy(m) = Ih+8(p+ ;)] [ ® BB () < m)du— (e — )1 —e PPX(A) <m)]. (72)

and X a homogeneous Poisson process with arrival rate (1 —q)A;.

Solving the Bellman equations in relations (60) and (61) we are able to compute the function Vj in
relation (63) and solve optimization problem miny<y, {c(x)+Vo(x)}. In Figure 2 the function Vy is plotted
for the values x =0, 1,...,xy under the base case scenario. This plot shows that this function achieves a
minimum within this range.
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Figure 2: Function Vp(x) plotted over the range of x values for the base case scenario.

5.2 Sensitivity of v(P) to Problem Parameters.

The optimal solution of (P) consists of the optimal initial order quantity, x, and the optimal stopping
time to switch from the repair-replacement policy to the repair-with-substitute policy, t. Plainly, the
set of points (x,7) represent the times T at which it is optimal to stop holding inventory x. In order
to provide insight into the structure of the optimal policy, we present the optimal (x,7) policies as blue
regions in Figure 3 for different values of holding cost and decay factors. If for a given realization of the
arrival process one enters the blue region at a certain time with x items in inventory, it is optimal to
switch at that time to the repair-with-substitute policy. Also in the base case scenario it follows for every
1 <i<nthat g(cse +cre—c;)+ (1 —q)p =670 —322.50""". This shows that the conditions of Lemma (1)
are satisfied restricting our class of optimal policies for the optimization problem (P). At the optimal
stopping time we immediately switch to the substitution policy (from the repair-replacement policy) at
the moment the spare parts inventory is zero. This is depicted by the thin blue horizontal lines at the
bottom of each plot in Figure 3.

In Figure 3, we observe that as Yy increases, the substitution policy cost declines faster and that
makes switching to the substitution policy by scrapping inventory more profitable. £ has similar but
opposite effect on the stopping region. With the increase of &, the repair-replacement policy becomes
more expensive. Hence, the size of stopping area is increasing in h. These results are consistent with the
results of Frenk et al. (2019a). The main difference between their results and ours stems from the cost of
substitution policy, which is larger in our experiments. Therefore, we encounter larger stopping regions
than Frenk et al. (2019a) in all scenarios.

In Figure 7, we depict the effect of different parameter values on the optimal cost and order quantity
of the problem P. In each plot, the value of a parameter is changed whereas the rest of the parameters are
set to the values in Table 1. The optimal cost value is depicted with a dashed line whereas the optimum
order size is presented with a straight line on the secondary axis.

Figure 4 indicates that the optimal order size and the optimum cost decrease in y with different rates.
Decrease in the optimum cost values occurs with a constant rate due to decaying cost parameters. The
optimum order size converges to 200 for ¥ > 0.05 due to the fact that order size of less than 200 lead to
high penalty costs.

Figure 5 also depicts the effect of the probability ¢ on the optimum order size and the optimum cost
value. As ¢ increases, less spares will be needed and thus the optimum order is smaller. In addition, we
apply the repair-replacement policy for most of the time horizon which in turn incurs lower expected total
cost. For the extreme case ¢ = 1, which represents all items can be repaired, the optimal order quantity
is 0 and the total expected cost of the optimal policy is 30.757 thousand. On the other hand, for g =0,
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Figure 3: Stopping regions for different ¥ and h values. First row plots are for y € {0.03,0.05,0.07}. Second row
plots are for h € {3.25,6.5,13}.

we order initially a large quantity to cover the demand and therefore, we incur a large optimum expected
cost. This shows that the effect of the repair probability is rather significant on the system behavior and
optimum results. Figure 6 shows the relation between the optimum results and the inventory holding
cost rate. Expectedly, increasing values of & lead to lower order size and higher total cost in the optimum
solutions.

5.3 Performance of pseudo-deterministic policy for different parameters.

To investigate the effect of different problem parameters on v(P) and v(Q), we conduct numerical ex-
periments by altering parameter values of the base scenario in one-at-a-time fashion. For each parameter
setting, we report the optimal values of v(P) and v(Q) together with their relative percent difference
given below:

_ v(Q) —v(P)
v(P) vs v(Q) = 100 x o)

In addition, we report the optimal initial order quantities for both optimization problems and switching
times for v(Q). The results of our numerical experiments are reported in Table 2.

In all considered scenarios the optimal policies of v(P) and v(Q) are almost the same and this explains
the small relative deviation. The relative error between the optimal objective v(P) and v(Q) is on
average 0.15 percent. Such a low difference justifies using the optimal pseudo-deterministic policy as an
approximation to the general optimization problem. At the same time, the small difference between the
two policy shows that one cannot prove that the optimal pseudo-deterministic policy is optimal within
the larger class of stopping times and that within the class of pseudo-deterministic policies the order
quantity is the most important decision variable to control the cost. For many parameter settings, the
optimal order quantity of the problem (P) satisfies

(73)

Xopr <min{x € Zy : (x,7) : We(x) = coerx}, (74)

showing that the optimal policy never switches to the repair-with-substitute policy before the end of the
horizon with a positive inventory. The switch to substitution takes place before the end of the horizon
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with O inventory. This means that the optimal dynamic policy actually coincides with the optimal
pseudo-deterministic policy, explaining the extremely small relative deviation, which is mainly caused by
our approximation to v(P). For the pseudo-deterministic policy, we calculate the probability of {7y < o,},
which represents the event of switching to the repair-with-substitute policy with positive inventory. Table
2 presents the calculated probabilities, which are very close to zero in almost all cases. For the cases
failing to satisfy (74), the highest probabilities of switching with positive inventory are related to high
substitution costs either directly by means of ¢,(0) or indirectly through y and ¢q. The probability is almost
0 in case of low A, high initial ¢,(0) or high g. All of these findings are intuitively clear. In addition,
we computed the probability of switching to substitution with a positive spare parts inventory in the
optimum solution of (P). This probability, which we didn’t report in Table 2 due to space limitation, is
again found to be extremely small. Hence in both optimal policies (recall that we will only stop at the
end of the horizon with a positive inventory level under the pseudo-deterministic policy) switching to the
repair-with-substitute policy with a positive spare parts inventory occurs rarely when the system starts
with the optimal order quantity.

Generally we observe that time to switch to substitution coincides with the breaking point at which
substitution becomes cheaper and inventory is depleted in the optimal policies. In Table 2 we observe that
the optimal order quantities of both policies are the same and the objective values of the two problems
are very close to each other. This is partly due to the fact that the majority of the cases in Table
2 satisfy the condition in Lemma 1. In majority of the cases, the deterministic switching time of the
optimal pseudo-deterministic policy is equal to 66, i.e. 7,, = 66 except two cases where the substitution
is relatively inexpensive at time 0. In those cases 7,,; = 44. Ty = 66 represents the utilization of the
repair-replacement policy until oy, after which substitution is utilized.

In Table 2, we notice that the decay factor, ¥, of the substitution cost function has a negative effect
on order sizes and costs of both optimal policies. Decreasing values of y make substitution expensive
leading to a higher total expected cost. For the same reason, we order a higher initial inventory so that
we can avoid switching to the repair-with-substitute policy due to reaching earlier inventory level 0. The
initial substitution cost ¢,(0) has a similar effect on the optimal cost and the optimal initial inventory.
In our analyses we find that the optimum cost and policy parameters are insensitive to ¢y, value. This is
mainly because switch time mostly corresponds to o, in almost all cases. Similarly, p values do not have
major effect on the objective value as long as (16) in Lemma 1 is satisfied (cases that do not satisfy (16)
are evaluated in Section 5.5).

Furthermore, we find that g has a large negative effect on the expected total costs for both policies. In
case of high ¢, a lot of the returned products need only a repair service, which leads to smaller order size
and lower cost. Parameters h and § have similar effect on the optimal order quantity and the objective
value. Expectedly, a higher h increases the average cost of the repair-replacement policy and decreases
the optimum order size. For higher values of B most of the arrivals happen in later periods (recall that
the total number of expected arrival is 107). This decreases the optimal order quantity as substitution
gets cheaper over time.

5.4 End-of-life management for different product types.

We also compute the optimal dynamic policy and the optimal pseudo-deterministic policy for different
lengths of the warranty period by considering three different product types. Each of these cases is
presented in Table 3 and the different length T refers to a certain type of product. First, we compare the
performance of the two policies on the second product type in the table (row with 7= 66). The box plot
in Figure 8 indicates a very small and always positive difference between the optimal policy in problem
(P) and the optimal pseudo-deterministic policy. Also one can observe that both policies order the same
amount of spare parts at the beginning of the planning horizon.

The first product in the table represents a high-demand electronic device with T = 24 months of
warranty. The product type can be exemplified with cell phones. Since, the product has a short life cycle,
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Table 2: Sensitivity analysis of the problem parameters for different policies.

o(P) v(0) oy VP (O
x cost X T cost (%)
0.05 227 105,455.8 227 66 105,552.9 1.19x107° 0.09
4 0.02 304 122,965.6 304 66 122,974.6 7.88x 1072 0.09
0.01 323 127,140.5 323 66 127,259.6 3.64x 107! 0.09
0.005 329 128,755.6 329 66 128,878.2 4.93x 107! 0.10
250 191 100,289.7 191 44 100,382.0 4.16x107° 0.09
cqg(0) 3225 216 109,735.0 216 44 109,732.0 2.01x 1073 0.09
1290 329  128,991.9 329 66 129,111.9 4.93x107! 0.09
2580 342 132,955.64 342 66 133,0832 7.56x 107! 0.10
3225 304 122,8452 304 66 122,974.6 7.88x 1072 0.11
)4 645 304 122,850.3 304 66 122,974.6 7.88x 1072 0.10
2580 304 122,854.2 304 66 122,974.6 7.88x 1072 0.10
5160 304 122,853.5 304 66 122,974.6 7.88x 1072 0.10
0.8125 320 107,237.1 320 66 107,350.5 3.03x 107! 0.11
h 1.625 315 112,679.2 315 66 112,787.6 2.14x 107! 0.10
6.5 285 140,809.4 285 66 140,953.0 6.24x1073 0.10
13 248 169,876.7 248 66 170,039.8 1.41x107° 0.10
-30 304 122,829.7 304 66 122,945.8 7.88x 1072 0.09
Cscr 10 304 122,841.2 304 66 122,965.0 7.88x 1072 0.10
60 304 122,864.2 304 66 122,980.1 7.88 x 1072 0.10
90 303 122,879.7 303 66 123,001.8 7.09 x 102 0.10
0.4 353 138,842.7 353 66 138,849.5 1.51x1072 0.10
q 0.6 250 106,489.7 250 66 106,500.5 2.04x 107! 0.09
0.8 134 72,127.8 134 66 72,1452  5.92x 107! 0.13
1 0 30,772.5 1 66 31,232 1 1.54
0.25 319 119,9432 319 66 119,958.8 2.84x 107! 0.10
B 1 270 130,079.9 270 66 130,078.7 3.73x10~* 0.09
1.5 244 134,660.0 244 66 134,652.9 4.20x 107 0.09
2 227  137,495.7 227 66 137,485.0 1.19x107° 0.09

the average number of service requests per unit of time A(T)/T, the substitution cost and its decay factor
are expected to be high. The second row in Table 3 represents products with medium economic lifetime
(5-10 years) with relatively cheaper substitution and repair costs. As it has longer lifetime, its repair
demand is slower than the electronic products. This product type can be exemplified with household
appliances such as dishwasher. The last row refers to a product with a long warranty period and very
low value of A(T)/T. An example of such a product can be an expensive medical machine/equipment.
The average monthly service demand as well as the decay of the substitution cost are very low for these
types of products. The box plot of the operational costs is given in Figure 9. The box plot shows that
short and long-life products have closer optimum cost whereas the medium-life product has a much lower
optimum cost. The proximity of the optimum costs of short and long-life products, despite the difference
between the cost rates, mainly stems from the difference between their demand rates. Lower optimum
cost of medium-life products, on the other hand, is due to cheaper substitution, service and repair costs.

In order to investigate the relative cost difference between (P) and (Q), we calculate the statistics in
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Table 3: Three types of products with different characteristics.

Type T A(T)/T parameter ranges

Short life, medium cost 24 50 cser € [—10,80], ¢se € [20,70], c¢re € [10,70], h € [0.5,1.5],
g €[0.2,0.5], ¢ € [250,750], c4(0) € [1250,3000], ¥ € [0.025,0.05),
(Cell phone) p € [1000,3000], & € [0.001,0.01], B € [0.7,1]

Medium life, low cost 66 10 cser € [=10,40], s € [10,50], cre € [10,40], h € [1,5],
. 7 €[0.3,0.7], ¢ € [100,400], c4(0) € [750,2000], y € [0.01,0.03],
Qi p € [500,3000], & € [0.001,0.01], B €[0.5,0.7]

Long life, high cost 120 I Cser € [—1000,2000], cse € [200,700], cre € [1000,3000], 4 € [10,30],
4 €1[0.5,0.9], ¢ € [7500,20000], c4(0) € [15000,30000], y € [0.005,0.015],
(MRI Scanner) p € [10000,30000], & € [0.001,0.01], B € [0.5,0.7]

2.5

2.0

15

1.0

Relative % difference

0.5 . 2
. ——

sOptimum costs *Optimum order quantities

Figure 8: Difference between the dynamic and the pseudo-deterministic policies for a medium-life product
(T =66).

(73) for each generated parameter sets for the three product types. Percent cost difference between the two
problems are depicted in Figure 10. Results of our calculations indicate that the pseudo-deterministic
policy provides a very good approximation to the optimal policy for short-life products. However, as
product lifetimes increase (while spare parts demand decreases), the cost difference increases up to 300%.
This indicates that the pseudo-deterministic policy has a questionable performance for long-life capital
products due to the importance of penalty costs, which is ignored by the pseudo-deterministic policy.

5.5 Worst case performance of pseudo-deterministic policy for short-life prod-
ucts.

In Sections 5.2 and 5.3, we consider parameter settings that mostly satisfy the condition (16) in Lemma 1
and similar to short-life medium-cost products in Table 3. Specifically, 24 out of 28 cases in Table 2 satisfy
(16) in Lemma 1, which proves that the pseudo-deterministic policy is optimal for the GLTB problem. In
order to investigate the worst case performance of the pseudo-deterministic policy, we conduct numerical
experiments with the parameter values, given in Table 4, which violate the condition (16). To this end,
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Figure 9: Operational costs for the three different product types in Table 3.

3.0
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2.0

15
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sShort Life ®Medium Life aLong Life

0.0

Figure 10: Percentage of relative cost efficiency for the three product types.

we set g to the values close to 1 and choose ¢,(0) such that (16) fails at least one part of the planning
horizon. Note that all unspecified parameters are equal to the values given in Table 1.

Our results in Table 4 indicate that pseudo-deterministic policy performs near-optimally. The differ-
ence between the optimal policy and the pseudo-deterministic policy appears when we g = 0.999. Even
in those cases the cost difference does not exceed 0.02 %. Recall that the optimal solution of the GLTB
problem is presented in Lemma 2 for ¢ = 1. Therefore, the parameters of the pseudo-deterministic solution
can easily be modified for those cases using our analytical results (Lemma 2).
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Table 4: Worst case performance of pseudo-deterministic policy.

¢ [0 [v(P) (@ 7(Q) ] v(Q)vs o)
35 0 0 0 0.00
70 0 1 22 0.01
0.999 105 0 1 44 0.01
140 0 1 66 0.02
70 16 16 22 0.00
120 27 27 44 0.00
0.95 140 29 29 66 0.00
210 34 34 66 0.00
280 36 36 66 0.00
120 44 44 66 0.00
09 240 62 62 66 0.00
’ 360 67 67 66 0.00
480 70 70 66 0.00

6 Conclusion

This paper is a continuation of Teunter and Fortuin (1999), Pourakbar et al. (2012), Frenk et al. (2019b)
and Frenk et al. (2019a). In Teunter and Fortuin (1999) it is assumed that during the so-called end-of-
life phase of a product one always uses the so-called repair-replacement policy and never switches to an
alternative policy. In many practical problems, other end-of-life management strategies are utilized to
avoid (possibly) high holding costs of Last Time Buy orders. Finding a substitute part is recognized to
be a good alternative policy that can be executed. As the cost of such a policy becomes cheaper over
time Pourakbar et al. (2012) proposed the idea of switching to a alternative policy instead of holding
inventory for the rest of the planning horizon. Accordingly, they extended the class of policies and
proposed a heuristic procedure to determine a optimal policy among this larger class. Subsequently
for the important subclass of deterministic policies Frenk et al. (2019b) gives an exact procedure to
determine the optimal deterministic policy. Also, in Frenk et al. (2019a) an algorithm was proposed to
identify the optimal so-called dynamic policy by studying in more detail the problem originally considered
in Pourakbar et al. (2012). In the current paper we consider the same problem and introduce among the
set of all dynamic policies the subclass of pseudo-deterministic policies. Under the assumption that the
substitution policy cost function and the arrival intensity function are piece-wise constant functions we
show it is easy to identify the optimal pseudo-deterministic policy. In our computational section we then
compare the objective value of the optimal pseudo-deterministic policy with the optimal objective value
of the more general optimal stopping problem and show numerically for different scenarios that these
objective values are close. This can be explained since the class of deterministic polices avoid possibly
high penalty costs and in this case an optimal policy avoids these penalty costs. This empirical evidence
and its intuitive explanation suggests that the simpler set of pseudo-deterministic policies can serve as
an approximation of the optimal policy within the more general optimal stopping problem.This justifies
a detailed study of these class of policies.
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A Appendix: Proof of the results.

In this Appendix we list the proofs of the results shown in this paper.

Proof of Lemma 2. Since g =1 the arrival process No = {Ny(¢) : # > 0} of non repairable items is the
zero process and so by relation (13) we obtain introducing

K(T) = /0 " S () ea(w)du (75)

that
O, 7) = crrx + ( /Ofefau[cse—f—c,e —ca(u)];L(u)du) +x(h— 8cger)E ( /0 F o du) LKT).  (76)

This shows for every 7 € F that infyez, {c(x) +C(x,7)} = ¥(7) + E (Jif e ®"[cse + e — ca(u)]A (u)du) +k(T)
with the value y(7) given by

T
Y(7) :==infez, {c(x) + cserx+x(h— 8cser)E </ 6_5“du> } _
0

Since h— 8cger > 0 we obtain by our remark after relation (4) that y(t) =0 and so

O(P) = infrer {]E ( /0 "o Bules, 4 cpo ca(u)wu)du> } K(T).

Since the integrand function in the above optimization problem does not depend on the stopping time T
it is easy to see that an optimal switching time is given by some deterministic stopping time 7 € Fy and
SO

inf,cp {E ( /O T g 4o ca(u)]),(u)du) } — inf,cx, { /0 "o Bues 4 cpo ca(u)]l(u)du} .

We know that the function ¢, is non-increasing and by standard first order condition arguments the
optimal solution of the above optimization problem is given by ¢; and no ordering. This has the objective
value [y e=%A (u)min{cy, + cye,cq(u) }du and we have shown the result of Lemma 2.

O

Proof of Lemma 3. Since c., > 0 we obtain that all operational costs components mentioned in the
beginning of subsection 2.3 are non-negative and so we obtain C(x,7) > 0 for every x > 0 and t € F. Since
cser > 0 and hence c is increasing and the vector (0,0) is a feasible solution this implies that for every
x>xy+1

T

c(x)+C(x,7) > c(x) > / ¢~ A (u)cq(u)du = C(0,0) > v(P) (77)
0

showing the desired result. O

Proof of Lemma 5. Since by Lemma 4 we know that the objective function is bounded below by the
function L(x,7) and x — L(x, T) is increasing for every 7 € IF, we obtain

V(P) = inficz, rero<r<r{c(x) +C(x,7)} > infrero<c<r{L(0,7)}. (78)

Similar as in the proof of Lemma 2 it follows using relation (21) that

infrer g<r<7{L(0,7)} = infrcp, {/0 e*‘s’%(u) [cse +gCre — ca(u)]du}

4
:/ e %"A(u)[cse +gcre — cq(u)]du
0

with §; given in relation (17) and we have verified the result. O



1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

On the generalized last time buy problem 37

Proof of Lemma 6. It follows by relations (19) for ¢y, > 0 and (21) for c.s < 0 that

5:0) 2 ) +E ([ 2w+ g - ca<u>1du) + [ e e

with ¢(x) := ¢(x) + min{cse,, 0}x. Since cqp(u) > cye for every 0 <u < T we may apply Lemma 4 and so for
every x € Z, we obtain by the previous inequality

infrer o<r<r{c(x) +C(x,7)} > g(x) +infrepo<r<r {E (/0.T e %A (u)[cse +qcre — Ca(“)]d“> } +k(T)

with k(T) listed in relation (75). This implies using the same arguments as in Lemma 5 that

T
infrer << {c(x) +C(x,7)} > g(x) +/0 efaul(u) min{cge + gcre, cq(ut) }du. (79)
Hence it follows for every x > Xy that
T
infrep o<e<r{c(x)+C(x,7)} > / e L (u)ea(u)du = C(0,0) > v(P)
0

and the result is verified. O

Proof of Lemma 7. It is sufficient to give the proof of the first result only. The second claim follows
replacing f by —f. Since f is non-positive it is obvious that the function G is non-increasing. To show
that the function G is discrete convex, we note by Doob’s stopping theorem for any 0 <7< T

B ([ rnta) =z (77 0N ) =5 (L £001 ).

with oy the hitting time at level k of the nonhomogeneous Poisson process N. Since o; has a continuous
cdf this yields

e </0r/\0ff(u)u(u)du> :E(Zizlf(c’k)l{okq})

and hence for every x € Z_ it follows
AG(x) :==G(x+1)-G(x) =E (f(Gerl) 1{6X+1<T}) . (80)

Using Oyt1 < Oxy2 and hence lig <7} > (g, ,<7} and f non-decreasing and non-positive on [0,7) we
obtain

f(6x+1)1{ox+1<r} < f(cx+2)1{ox+2<r}'
This shows applying relation (80) that for every x € Z

AG(x) = E(f(0x+1)1{qx+1<r}) < E(f(GX+2)1{ax+z<r}) =AG(x+1),
and we have verified the discrete convexity property. ]

Proof of Lemma 8. We will only verify the first part of this result. The proof of the second part is
similar. Since cqp(u) > cge — cyer for every u < v and c,p is non-increasing we obtain that the function
U e (e — Cyor — cqp(ut)) is non-positive and non-decreasing on [0,7). Hence, by Lemma 7 the function

v ([ e300~ i)t

is discrete convex. Since the random function x s ((x —Np(u))™) is also discrete convex and h— §cger > 0
it follows from relation (13) that the function x — C(x, 7) is discrete convex again. Finally, the discrete
convexity of ¢ completes the proof. O
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Proof of Lemma 9. For any x € Z, using ¢, decreasing it follows immediately due to ¢,(0) < c¢5 +
gcre — (1 — q)cser and relation (26) that optimization problem (Q(x)) has optimal solution T = 0. This
shows using x — ¢(x) + ¢yerx is increasing that it is optimal in optimization problem (Q) not to order and
immediately start with the alternative policy with objective value fOT e %X (u)cy(u)du. O

Proof of Lemvma 10. For the selected arrival rate and alternative policy cost function in (30) and (29)
it is clear for every x € Zy that the function T — c(x) +C(x A oy) with C(x A o,) listed in relation (26) is
continuous on (0,7) satisfying both ¢(x) +C(x,0 A 6y) = limgjgc(x) +C(x,T A 0y) and ¢(x) +C(x,T Aoy) =
limzy7 ¢(x) +C(x,7 A 0y). This shows y(x) = min,—; _, Wi(x). By relation (26) it follows for every x € Z,
that the derivative of the function c(x) +C(x, T A 6y) with respect to 7 for any a; < T < ajy1,i=1,...,n is
given by

%(x, TAGY) =e %F (Ailcse +gcre — (1= q)cser — ci]P(No(T) < x) + (h — Scser)E((x — No(7)) ™)) -

Clearly for ¢; < ¢ge +qcre — (1 — g)cger it follows that g—g (x,TA0y) >0 and so we may immediately conclude
using ¢ > ¢ > ... > ¢, that the continuous function 7 — ¢(x) +C(x,T A 0y) is increasing on [a,+41,T] for
every x. This shows y(x) = min;—;,__,- W;(x) and we have shown the result. O

Proof of Lemma 11. For every x € N we obtain by writing out the expectation

E((x—N(1))") = xP(N(t) < x) = Y.\ nP(N(r) = n)

n=1

that
E((x=N(@)") L1 nP(N (1) = n)
PN <0 PN@ <®) (81)
Since the random variable N(r) has a Poisson cdf with parameter 0(¢) (cf.Ross (1997)) it follows
L DN() =n) Lo S@n!
Zn[p]v(]v((t) (<)x) ) _ Z’%_l(l)(@’(f!;r)' =0(@)(1-B(x—1,0(t)))
and substituting this into relation (81) the result follows. O

Proof of Lemma 12. By the interpretation of B(x,t) and expected service time equals 1 it follows by
the formula of Little (cf.?) that (1 —B(x,)) denotes the long run average number of busy serves in the
system in a pure Markovian loss system with arrival rate A =¢ > 0 and departure rate g = 1. Since each
server serves exactly one customer and we consider a pure loss system the long run average number of
busy servers equals the long run average number of customers in the system and so

1(1=B(x,1)) = E(Z") () (82)
with 1 rs
2 (0) := limyyo, — / 29 (v)dv
§Jo
denoting the longrun average number of customers in the Markovian loss system in the equilibrium

situation having arrival rate ¢ and departure rate 1. Since the Markovian loss system is a birth-death
process we obtain by Proposition 4.2.10 of Stoyan and Daley (1983) that

20)(20) 24 20 ()

for ¢ > s with >, denoting first order dominance and this shows that E(Z()(e)) > E(Z®)(s)). Hence by
(82) it follows that the function ¢(1 — B(x,#) is increasing in ¢. Since #(1 — B(x,t)) represents the number
of busy servers and so for the arrival rate going to infinity on average all x servers will be busy it follows
that limye7(1 — B(t,x)) = x. O
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s Proof of Lemma 13. Applying relation (42) it is sufficient to verify for any i < nj that
1207 y;(x) = min{c(x) + C(x,a; A 0y),c(x) + C(x,ai+1 A\ Ox) }.

2os By Lemma 12 and using h— 8¢y > 0 and Ag increasing it follows that the function k; listed in (35) is
o decreasing. This shows for &;(x,a;) <0 that by (36) the partial derivative 2 9z €(x,TA0y) is non-positive on
v (aj,a;41) and hence the minimum is attained at a;1. Similar for k;(x,a;) >0 we distinguish the mutually
v exclusive cases K;(x,a;11) > 0 and x;(x,a;4+1) < 0. For the first subcase the partial derivative %(x,‘c/\ oy)
vz is non-negative on (a;,a;41) and so the minimum is attained at a;. For the second subcase we conclude
213 using again a standard calculus argument as before that the minimum is either attained at a; or a;|
1214 showing the desired result. O

s Proof of Lemma 14. Forx=0andi=1,...,n+1 it follows by relation (26) that C(0,a; Acp) = fOT e~ %N (u)cy(u)du
s and we obtain the result in relation (46) using (29) and (30). To verify relation (47) we first observe for
w217 every x € Z4 that

1218 E((x+1-No(u))") —E(x—No(u)) ) =P(No(u) < x)
ms  Applying again relation (26) this implies for i=2,....n+1 and x € Z,

Cser + fal 76141( Mese +qcre — (1= q)cser — ca(u)[P(No(u) = x)du
1220 AC(x,ai AN O'x) = (83)
+(h—8¢ser) f§ € O“P(No(u) < x)du.

2 Substituting now into relation (83) the particular choice of the arrival rate and the alternative policy cost
22 function given in (29) and (30) yields

Csor + L) (Cse +qere — (1 = q)cser — ) Aj fa) ™ e P(No (1) = x)du
1223 AC()C, a; \ Gx) = (84)
+(h—bcger) Z’ - fa’“ e~ SUP(No(u) < x)du.

1224 To simplify the above expression we observe, since the non-homogenous Poisson process Ny has the
125 constant arrival rate (1 —g)A; on the interval (aj,aj41), that by Lemma 21 using p () = e~ % and applying
s relation (84) that for i=2,...,n+1

Coor + ;;11(L‘se+l]Cre*1<1;‘I)cscr*Cj)[efﬁuj]p(NO(aj) S X) _ e—5aj+IIF)(NO(aj+1) S x)]
1227 AC(X,(I[ A Gx) = (85)

[h+6(LJ Cse— ‘[Cre)]faﬁ—l —EM]P)(NO( )<X)dl/t
1228 and this shows the desired result. O

120 Proof of Lemma 15. To give a proof of Lemma 15 we first show by induction that the sequence
1230 Otkj,k € Z given by

a
1231 Oj = / " E_SM]P(N()(M) = k)du (86)
aj

2 satisfies

B 1 Lo (l—ga \"
1233 akj6+(]—q>)~jmgo(5—|—(l—q)]lj> G.I(kfm) (87)

13 with

1235 Gj(k) = E_sa-fP(N()(aj) = k) — e_6aj+lP(N0(aj+1) = k),k €Zy
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Introducing the functions f: (0,7] = R and g : (0,7] = R, k € Z, given by f(u) := e~ Out(1=0)AW) and

gr(u) = ((lfq,zif\("))k it follows for every k € Z, and aj <u < aji; that

(f2r) () = e *“P(No(u) = k), (f&is1) () = (1= q) A~ *B(No(u) = k) (88)
Since
f(u)=—(8+(1-q)A;)f(u) (89)
for every a; <u < aji1 we obtain
@t _ flaj) = flajy1) _ 6,(0)
[, = Sk, ~ 5 (-ak

and this verifies relation (87) for k =0. To show relation (87) for k+ 1 we assume that relation (87) holds
for k. By partial integration and relations (88) and (89) we conclude

J

aj+1

~(8+ (1 =@ osty = —E+(1=a2) [ Fgrsiwdu=—6;(k+ 1)~ (1 - )04,
aj

This shows that

(1-q)4; 0;(k+1)
S -g)% % 55—,

Olt1j

@2, \"t! i (k+1)
= 1 % T (5+1 q)?L) 6;(k— )+3+<1 Ok

k+1 (1-q)4;
= s I (75“ qm) 0;(k+1—m)

and we have verified relation (87). Using this result we obtain
Jai ' e P P(No(u) < x)du = Lo

(1-q)A;
= 1 SH(1-9)%; Yi- o):m o(m) 6;(k—m)

(1-g)4; \™
= S Do T (i) 05k m)
(1-9)A;
= lq/lz (5+1q )2/1:?)16()
and this completes the proof. O

Proof of Lemma 16. Introduce for every T € F the stopping time Tg = dg(7) with

N-2
do(r) =Y ,_o vt L) (1) +T gy 7y(1).

By its definition we obtain 7@ > 7, Tg € Fg and E(7g — 7) < A(®). Applying relation (13) it follows by some
standard upper bound arguments applied to each separate term in this relation that for every x € Z

| C(x,70) —C(x,7) [< fo(x)A(O)

This shows
V(Po) — V(P) < sup,, fo(x)A(®) = fo(xu)A(®)

and we have verified the result. O
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Proof of Lemma 18. By the definition of Wy and Wy_; in relation (59) and (60) it is obvious that
Wr_1(x) < cgerx = Wy(x) and so the result is verified for k =N —1. Assume now that Wi (x) < Wi (x)
for every x < xy and k < N —2. Since the arrival process Ny is a homogeneous Poisson process it follows

that Nék) 5 NékH) and this shows using Wy 1(x) < Wi (x) that
k k+1
E(Ween (s Ny (8))") < EWhga((x =N (4)) ).
If it can be shown that By(x) < Biy1(x) we obtain by relation (60) that

W) = min{ex,By(x) +e PEWi ((x— Ny (A)")

IN

min{cyer®, B 1 (x) + e S E(Wey 1 ((x— N2 (A)) )}

= Wi(x)

and this shows the result. Hence it is sufficient to verify that By(x) < By, (x) and using relation (66) and
¢q & decreasing function this is easy to verify for penalty costs being constant on [0,T]. O

Proof of Lemma 19. It follows for x € Sy that Wi (x) = csrx. Applying Lemma 18 we obtain

Cserx = Wi (x) < Wiy (x) = min {cmx,EkH (x) + e 2B (Wipo ((x —NékH) (A))+)} < CyerX.

This shows Wi (x) = csr and we have verified the desired result. O

Lemma 21. Let N be a non-homogeneous Poisson process with a continuous arrival intensity function
w and p some differentiable function. Then it follows for every x € Z4 and 1 < j <n that

ajyl aj+1

[ PO @) = vdu= [ p' (WP (W) < x)du-+ pla) BV (a)) <) plazs) P(N(aji1) < )
aj aj

Proof of Lemma 21. It is well known for every x € Z, (Ross (1997)) that the function yx(u) :=P(N(u) <

x) is differentiable and satisfies x'(u) = u(u)P(N(u) = x). This shows that

ajt1

plajs)P(N(aji1) <)~ plaP(N(azs) <x) = [ (o) (widu

ilj+l , aj+] ’
= [P wxtwdut [ plu) (w)du
aj aj

aj+1

= [ pdu [ pla
B / p'(u)P(N(u) < x)du
[ Pl POV ) = x)du

and we obtain the desired result. O
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