Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F., 2005. Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. International Journal of Earth Sciences, 94(11): 401–419. http://dx.doi.org/10.1007/s00531-005-0481-4
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B. and Wortel, R., 2011. Zagros orogeny: A subduction-dominated process. Geological Magazine, 148(5–6): 692–725. https://doi.org/10.1017/S001675681100046X
Ahmadian, J., Sarjoughian, F., Lentz, D., Esna-Ashari, A., Murata, M. and Ozawa, H., 2016. Eocene K-rich adakitic rocks in the Central Iran: implications for evaluating its Cu–Au–Mo metallogenic potential. Ore Geology Reviews, 72(Part 1): 323–342. https://doi.org/10.1016/j.oregeorev.2015.07.017
Alavi, M., 1994. Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics, 229(3–4): 211–238. https://doi.org/10.1016/0040-1951(94)90030-2
Amidi, S.M., Emami, M.H. and Michel, R., 1984. Alkaline character of Eocene volcanism in the middle part of Central Iran and its geodynamic situation. Geologische Rundschau, 73(1): 917–932. https://doi.org/10.1007/BF01820882
Asadi, S., 2018. Triggers for the generation of post–collisional porphyry Cu systems in the Kerman magmatic copper belt, Iran: New constraints from elemental and isotopic (Sr–Nd–Hf–O) data. Gondwana Research, 64: 97-121. https://doi.org/10.1016/j.gr.2018.06.008
Asadian, A., Amini Fazl, A. and Khodabandeh, A., 1993. 1:100000 Qara Chaman geological map. Geological Survey of Iran. (in Persian)
Asgharzadeh-asl, H., Tale Fazel, E., Mehrabi, B. and Masoudi, F., 2018. Geochemical-metallogenic evolution of Agh-Daragh igneous rocks (north of Ahar) links to Cu-Au±W occurrences. Petrological Journal, 8(32): 21-44. https://doi.org/10.22108/ijp.2017.100426.0
Audétat, A., and Simon, A.C., 2012. Magmatic controls on porphyry copper genesis. Society of Economic Geologists, Special Publication 16(2): 553–572. Retrieved October 17, 2025 from https://pubs.geoscienceworld.org/segweb/books/edited-volume/1385/chapter-abstract/107058307
Ballard, J.R., Palin, J.M. and Campbell, I.H., 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144(3): 347–364. https://doi.org/10.1007/s00410-002-0402-5
Bau, M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93(3–4): 219-230. https://doi.org/10.1016/0009-2541(91)90115-8
Berberian, F., Muir, I.D., Pankhurst, R.J. and Berberian, M., 1982. Late Cretaceous and Early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139(5): 605–614. https://doi.org/10.1144/gsjgs.139.5.0605
Blevin, P.L., 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold‐rich ore systems. Resource Geology, 54(3): 241–252. https://doi.org/10.1111/j.1751-3928.2004.tb00205.x
Blevin, P.L. and Chappell, B.W., 1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 83(1–2): 305–316. https://doi.org/10.1017/S0263593300007987
Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M. and Schmitt, A.K., 2013. Zircon saturation re-revisited. Chemical Geology, 351: 324–334. https://doi.org/10.1016/j.chemgeo.2013.05.028
Boynton, W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Developments in Geochemistry, 2: 63–114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3
Brenan, J.M., Shaw, H.F. anf Ryerson, F.J., 1995. Experimental evidence for the origin of lead enrichment in convergent-margin magmas. Nature 378(2): 54–56. https://doi.org/10.1038/378054a0
Chappell, B.W. and White, A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 83(1): 1–26. https://doi.org/10.1017/S0263593300007720
Chelle-Michou, C. and Chiaradia, M., 2017. Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contributions to Mineralogy and Petrology, 172: 105. https://doi.org/10.1007/s00410-017-1417-2
Clemens, J.D. Stevens, G. Farina, F. 2011. The enigmatic sources of I-type granites: The peritectic connexion. Lithos, 126(3–4): 174–181. https://doi.org/10.1016/j.lithos.2011.07.004
Cocherie, A., 1986. Systematic use of trace element distribution patterns in log-log diagrams for plutonic suites. Geochimica et Cosmochimica Acta, 50(11): 2517–2522. https://doi.org/10.1016/0016-7037(86)90034-7
Condie, K.C., 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, 79(3–4): 491–504. https://doi.org/10.1016/j.lithos.2004.09.014
Condie, K.C., Pisarevsky, S.A., Puetz, S.J., Roberts, N.M. and Spencer, C.J., 2023. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events. Earth and Planetary Science Letters, 610: 118125. https://doi.org/10.1016/j.epsl.2023.118125
Dastour, A., Tale Fazel, E. and Torkian, A., 2024. Whole-rock geochemistry and crystal chemistry of apatite at intrusive suites of the Qeynarjeh-Angouran district (west of Zanjan): an approach to the identification of skarn-causative granitoids and magmatic-metallogenic evolutions. Journal of Economic Geology, 16(3): 23–55. (in Persian with English abstract) https://doi.org/10.22067/econg.2024.1107
Debruyne, D., Hulsbosch, N. and Muchez, P., 2016. Unraveling rare earth element signatures in hydrothermal carbonate minerals using a source–sink system. Ore Geology Reviews, 72(Part 1): 232–252. https://doi.org/10.1016/j.oregeorev.2015.07.022
Defant, M.J. and Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of the subducted lithosphere. Nature, 347(2): 662–665. https://doi.org/10.1038/347662a0
Floyd, P.A. and Winchester, J.A., 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters, 27(2): 211–218. https://doi.org/10.1016/0012-821X(75)90031-X
Frost, B., 1991. Introduction to oxygen fugacity and its petrologic importance. In: D. Lindsley (Editor), Oxide minerals: Petrologic and magnetic significance. Berlin, Boston, De Gruyter, pp. 1–10. https://doi.org/10.1515/9781501508684-004
Genna, D., Gaboury, D. and Roy, G. 2014. Evolution of a volcanogenic hydrothermal system recorded by the behavior of LREE and Eu: Case study of the Key Tuffite at Bracemac-McLeod deposits, Matagami, Canada. Ore Geology Reviews, 63: 160–177. https://doi.org/10.1016/j.oregeorev.2014.04.019
Giese, U. and Bau, M., 1994. Trace element accessibility in mid-ocean ridge and ocean island basalt: an experimental approach. Mineralogical Magazine 58(1): 329–330. Retrieved October 17, 2025 from https://rruff.geo.arizona.edu/doclib/MinMag/Volume_58A/58A-1-329.pdf
Gorton, M.P. and Schandl, E.S., 2000. From continents to island arcs. A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. The Canadian Mineralogist, 38(5): 1065–1073. https://doi.org/10.2113/gscanmin.38.5.1065
Hart, C.J., Mair, J.L., Goldfarb, R.J. and Groves, D.I., 2004. Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory, Canada. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 95(1–2): 339–356. https://doi.org/10.1017/S0263593300001115
Irvine, T.N.J. and Baragar, W.R.A., 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523–548. https://doi.org/10.1139/e71-055
Jafari, 2016. Report on the detail exploration in the Bashmaq polymetallic area, East Azerbaijan, Hashtrod. Tavangaran Sahand Industrial Group, Tabriz, Report 8, 187 pp.
Jahangiri, A., Farzaneh, M., Cousens, B. and Moazzen, M., 2024. Post-collisional calc alkaline-adakites from a metasomatized subcontinental lithospheric mantle: Sr-Nd isotopes and bulk-rock geochemistry of Miocene volcanic rocks from the Varzaghan area, NW Iran. International Geology Review, 66(20): 3568–3586. https://doi.org/10.1080/00206814.2024.2346788
Jamali, H., 2017. The behavior of rare-earth elements, zirconium and hafnium during magma evolution and their application in determining mineralized magmatic suites in subduction zones: constraints from the Cenozoic belts of Iran. Ore Geology Reviews, 81(Part 1): 270–279. https://doi.org/10.1016/j.oregeorev.2016.10.006
Karimpour, M.H., Malekzadeh Shafaroudi, A.., Mohammadi, F., Askari, A., Sadeghi, M., Santos, J.F. and Stern, C.R., 2021. Comparison of petrological and geochemical characteristics of three different types of Eocene copper-gold mineralization in eastern Iran. Ore Geology Reviews, 138: 104335. https://doi.org/10.1016/j.oregeorev.2021.104335
Kepezhinskas, P., McDermott, F., Defant, M.J., Hochstaedter, A., Drummond, M.S., Hawkesworth, C.J., Koloskov, A., Maury, R.C. and Bellon, H., 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577–600. https://doi.org/10.1016/S0016-7037(96)00349-3
Keppler, H., 1996. Constraints from partitioning experiments on the composition of subduction zone fluids. Nature, 380(2): 237–240. https://doi.org/10.1038/380237a0
Klinkhammer, G.P., Elderfield, H., Edmond, J.M. and Mitra, A., 1994. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges. Geochimica et Cosmochimica Acta, 58(23): 5105–5113. https://doi.org/10.1016/0016-7037(94)90297-6
Kouhestani, H., Mokhtari, M.A.A., Chang, Z., Stein, H.J. and Johnson, A.C., 2018. Timing and genesis of ore formation in the Qarachilar Cu-Mo-Au deposit, Ahar-Arasbaran metallogenic zone, NW Iran: Evidence from geology, fluid inclusions, O-S isotopes and Re-Os geochronology. Ore Geology Reviews, 102: 757–775. https://doi.org/10.1016/j.oregeorev.2018.10.007
Kress, V.C. and Carmichael, I.S., 1991. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contributions to Mineralogy and Petrology, 108(2): 82–92. https://doi.org/10.1007/BF00307328
Le Maitre, R.W., 1976. Some problems of the projection of chemical data into mineralogical classifications. Contributions to Mineralogy and Petrology, 56(2): 181–189. https://doi.org/10.1007/BF00399603
Le Maitre, R.W., 1989. A classification of igneous rocks and glossary of terms. Blackwell Scientific, Oxford, 193 pp.
Liang, H.Y., Sun, W., Su, W.C. and Zartman, R.E., 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104(4): 587–596. https://doi.org/10.2113/gsecongeo.104.4.587
Lottermoser, B.G., 1992. Rare earth elements and hydrothermal ore formation processes. Ore Geology Reviews, 7(1): 25–41. https://doi.org/10.1016/0169-1368(92)90017-F
Loucks, R.R., Henríquez, G.J. and Fiorentini, M.L., 2024. Zircon and whole-rock trace element indicators of magmatic hydration state and oxidation state discriminate copper ore-forming from barren arc magmas. Economic Geology, 119(3): 511–23. https://doi.org/10.5382/econgeo.5071
Loucks, R.R., 2014. Distinctive composition of copper-ore-forming arc magmas. Australian Journal of Earth Sciences, 61(4): 5–16. https://doi.org/10.1080/08120099.2013.865676
Maniar, P.D. and Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0
Meinert, L.D., Dipple, G.M. and Nicolescu, S., 2005. World skarn deposits. In: J.W. Hedenquist, J.F.H. Thompson, R.J. Goldfarb and J.P. Richards (Editors), Economic Geology, One Hundredth Anniversary. Society of Economic Geologists, pp. 299–336. Retrieved October 17, 2025 from https://doi.org/10.5382/AV100.11
Middlemost, E.A., 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4): 215–224. http://dx.doi.org/10.1016/0012-8252(94)90029-9
Moghaddam, M.J. and Karimpour, M.H., 2023. Eocene non-mineralization to Miocene porphyry copper mineralization-related magmatism in the Urumieh–Dokhtar magmatic arc, Iran. Journal of Geochemical Exploration, 225: 107338. https://doi.org/10.1016/j.gexplo.2023.107338
Mungall, J.E., 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30 (10): 915–918. https://doi.org/10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
Nevolko, P.A., Svetlitskaya, T.V., Nguyen, T.H., Pham, T.D., Fominykh, P.A., Tran, T.H., Tran, T.A. and Shelepaev, R.A., 2022. Genesis of the Thien Ke tungsten deposit, Northeast Vietnam: Evidence from mineral composition, fluid inclusions, S-O isotope systematics and U-Pb zircon ages. Ore Geology Reviews, 143: 104791. https://doi.org/10.1016/j.oregeorev.2022.104791
Ohmoto, H. and Goldhaber, M.B., 1997. Sulfur and carbon isotopes. In: H.L. Barnes (Editor), Geochemistry of hydrothermal ore deposits. Wiley, New York, pp. 517–611.
Pearce, J.A., Harris, N.B. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956–983. https://doi.org/10.1093/petrology/25.4.956
Pe-Piper, G., Piper, D.J.W. and Matarangas, D., 2002. Regional implications of geochemistry and style of emplacement of Miocene I-type diorite and granite, Delos, Cyclades, Greece. Lithos 60(1–2): 47–66. https://doi.org/10.1016/S0024-4937(01)00068-8
Rabiee, A., Rossetti, F., Asahara, Y., Azizi, H., Lucci, F., Lustrino, M. and Nozaem, R., 2020. Long-lived, Eocene-Miocene stationary magmatism in NW Iran along a transform plate boundary. Gondwana Research, 85: 237–262. https://doi.org/10.1016/j.gr.2020.03.014
Rabiee, A., Rossetti, F., Asahara, Y., Azizi, H., Rajabinasab, B., Brilli, M., Atudorei, N.V. and Lucci, F., 2023. Carbonatisation and overprinting mineralisation in Siah-Kamar porphyry molybdenum deposit, NW Iran. Journal of Geochemical Exploration, 251: 107230. https://doi.org/10.1016/j.gexplo.2023.107230
Rabiee, A., Rossetti, F., Lustrino, M., Azizi, H., Asahara, Y., Alipour, S. and Selby, D., 2024. Formation and degradation of a porphyry occurrence: The Oligocene Khatoon-Abad porphyry Mo-Cu system, NW Iran. Ore Geology Reviews, 174: 106330. https://doi.org/10.1016/j.oregeorev.2024.106330
Richards, J.P. and Mumin, A.H., 2013. Lithospheric fertilization and mineralization by arc magmas: genetic links and secular differences between porphyry copper±molybdenum±gold and magmatic-hydrothermal iron oxide copper-gold deposits. In: M. Colpron, T. Bissig, B.G. Rusk and J.F.H. Thompson (Editors), Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings. Society of Economic Geologists, Special Publication, V. 17, pp. 277–299. https://doi.org/10.5382/SP.17.09
Richards, J., 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515–1533. https://doi.org/10.2113/gsecongeo.98.8.1515
Richards, J., Spell, T., Rameh, E., Razique, A. and Flectcher, T., 2012. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu±Mo±Au potential. Examples from the Tethyan arcs of central and eastern Iran and western Pakistan. Economic Geology, 107(2): 295–332. https://doi.org/10.2113/econgeo.107.2.295
Richards, J.P. and Kerrich, R., 2007. Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology, 102(4): 537–576. https://doi.org/10.2113/gsecongeo.102.4.537
Richards, J.P., 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Reviews, 40(1): 1–26. https://doi.org/10.1016/j.oregeorev.2011.05.006
Richards, J.P., 2015. The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos, 233: 27-45. https://doi.org/10.1016/j.lithos.2014.12.011
Riou, R., Dupuy, C. and Dostal, J., 1981. Geochemistry of coexisting alkaline and calk-alkaline volcanic rocks from Northern Azarbaijan (NW Iran). Journal of Volcanology and Geothermal Research 11(2–4): 253–275. https://doi.org/10.1016/0377-0273(81)90026-3
Rollinson, H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Routledge, London, 384 pp. https://doi.org/10.4324/9781315845548
Shafaii Moghadam, H., Griffin, W., Kirchenbaur, M., Garbe-Schönberg, D., Khedr, M., Kimura, J.-I., Stern, B., Ghorbani, G., Murphy, R.Y., O’Reilly, S., Arai, S. and Maghdour-Mashhour, R., 2018. Roll-back, extension and mantle upwelling triggered Eocene potassic magmatism in NW Iran. Journal of Petrology, 59(7): 1417–1465. https://doi.org/10.1093/petrology/egy067
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3): 265–283. https://doi.org/10.1007/s00126-008-0216-0
Shen, P. and Pan, H.D., 2013. Country-rock contamination of magmas associated with the Baogutu porphyry Cu deposit, Xinjiang, China. Lithos 177: 451–469. https://doi.org/10.1016/j.lithos.2013.07.019
Shiva, A.N., Yann, R., Magali, R., Delphine, B., Philippe, M., Arthur, L., Olivier, B. and Rahgoshay, M., 2025. Geochronological, isotopic and petrogenetic investigations of Cenozoic volcanic rocks in the Talysh Massif, NW Iran: Insights for the Eocene magmatic flare-up. Lithos, 496–497: 107954. https://doi.org/10.1016/j.lithos.2025.107954
Sillitoe, R.H., 2010. Porphyry copper systems. Economic Geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
Simmonds, V., Calagari, A.A., Moayyed, M. and Jahangiri, A., 2011. Study of the porphyry-type alteration zones and geochemical behavior of trace and rare earth elements within them in Kighal, north of Varzeghan, East-Azarbaidjan, Iran. Iranian Journal of Crystallography and Mineralogy 19(4): 565–575. (in Persian)
Smith, C.M., Canil, D., Rowins, S.M. and Friedman, R., 2012. Reduced granitic magmas in an arc setting: the Catface porphyry Cu–Mo deposit of the Paleogene Cascade Arc. Lithos, 154: 361–373. https://doi.org/10.1016/j.lithos.2012.08.001
Stepanov, A.S., Hermann, J., Rubatto, D. and Rapp, R.P., 2012. Experimental study of monazite/melt partitioning with implications for the REE, Th and U geochemistry of crustal rocks. Chemical Geology, 300–301: 200–220. https://doi.org/10.1016/j.chemgeo.2012.01.007
Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematic of oceanic basalts. Implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry, (Editors), Magmatism in the Ocean Basins. Geological Society, London, pp. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
Sun, W., Huang, R.F., Li, H., Hu, Y.B., Zhang, C.C., Sun, S.J., Zhang, L.P., Ding, X., Li, C.Y., Zartman, R.E. and Ling, M.X., 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65(Part 1): 97–131. https://doi.org/10.1016/j.oregeorev.2014.09.004
Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., Yang, X.Y., Li, Y.L., Ireland, T.R., Wei, Q.R. and Fan, W.M., 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263–275. https://doi.org/10.1016/j.gca.2012.10.054
Sverjensky, D.A., 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67(1): 70–78. https://doi.org/10.1016/0012-821X(84)90039-6
Svetlitskaya, T.V. and Nevolko, P.A., 2022. New whole-rock skarn and porphyry fertility indicators: Insights from Cu-Au-Fe skarn and Cu-Mo-Au porphyry deposits in Eastern Transbaikalia, Russia. Ore Geology Reviews, 149: 105108. https://doi.org/10.1016/j.oregeorev.2022.105108
Tale Fazel, E., Nevolko, P.A., Pašava, J., Xie, Y., Alaei, N. and Oroji, A., 2023. Geology, geochemistry, fluid inclusions, and H–O–C–S–Pb isotope constraints on the genesis of the Atash-Anbar epithermal gold deposit, Urumieh–Dokhtar magmatic arc, central-northern Iran. Ore Geology Reviews, 153: 105285. https://doi.org/10.1016/j.oregeorev.2022.105285
Thompson, J.F.H., Sillitoe, R.H., Baker, T., Lang, J.R. and Mortensen, J.K., 1999. Intrusion-relate gold deposits associated with tungsten–tin provinces. Mineralium Deposita 34(2): 323–334. https://doi.org/10.1007/s001260050207
Verdel, C., Wernicke, B.P., Hassanzadeh, J. and Guest, B., 2011. A Paleogene extensional arc flare-up in Iran. Tectonics 30(3): TC3008, https://doi.org/10.1029/2010TC002809
Wang, D.Z., Zhu, J.J., Hu, R., Chiaradia, M., Bi, X. and Huang, M.L., 2025. Optimal magmatic oxidation conditions for giant porphyry copper deposits. Science Bulletin, 70(6): 960–969. https://doi.org/10.1016/j.scib.2024.12.048
Wang, L., Chiaradia, M., Qin, K.Z., Hui, K.X., Li, Z.Z., Cao, M.J., Song, G.X., Pang, X.Y., Shan, P.F. and Li, G.M., 2024. Magmatic Controls on Au-and Ag-Rich Intermediate-Sulfidation Epithermal Deposits from Northeast China. Economic Geology, 119(8): 1913–1936. https://doi.org/10.5382/econgeo.5118
Warr, L.N., 2021. IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3): 291–320. https://doi.org/10.1180/mgm.2021.43
Whalen, J.B., Currie, K.L. and Chappell, B.W., 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(2): 407–419. https://doi.org/10.1007/BF00402202
Whalen, J.B. and Hildebrand, R.S., 2019. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos, 348-349: 105179. https://doi.org/10.1016/j.lithos.2019.105179
Wu, C., Chen, G. and Chen, H., 2025. Unraveling the link between worldwide adakite-like rocks and porphyry Cu deposits. Chemical Geology, 673: 122521. https://doi.org/10.1016/j.chemgeo.2024.122521
Wu, F.Y., Liu, X.C., Ji, W.Q., Wang, J.M. and Yang, L., 2017. Highly fractionated granites: Recognition and research. Science China Earth Sciences, 60(70): 1201–1219. https://doi.org/10.1007/s11430-016-5139-1
Yang, W. and Li, Sh., 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos, 102(1–2): 88–117. https://doi.org/10.1016/j.lithos.2007.09.018
Yang, X.M., Lentz, D.R. and Sylvester, P.J., 2006. Gold contents of sulfide minerals in granitoids from southwestern New Brunswick, Canada. Mineralium Deposita, 41(4): 369–386. https://doi.org/10.1007/s00126-006-0065-7
Yang, Z., Yang, L.Q., He, W.Y., Gao, X., Liu, X.D., Bao, X.S. and Lu, Y.G., 2017. Control of magmatic oxidation state in intracontinental porphyry mineralization: a case from Cu (Mo–Au) deposits in the Jinshajiang–Red River metallogenic belt, SW China. Ore Geology Reviews, 90: 827–846. https://doi.org/10.1016/j.oregeorev.2016.11.026
You, C.F., Catillo, P.R., Gieskes, J.M., Chan, L.H. and Spivack, A.J., 1996. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depth in subduction zones. Earth and Planetary Science Letters, 140(1–4): 41–52. https://doi.org/10.1016/0012-821X(96)00049-0
Yousefi, F., White, T., Lentz, D.R., McFarlane, C.R. and Thorne, K.G., 2023. Middle Devonian Evandale porphyry Cu-Mo (Au) deposit, southwestern New Brunswick, Canada: analysis of petrogenesis to potential as a source for distal intrusion-related epithermal gold mineralization. Ore Geology Reviews, 162: 105716. https://doi.org/10.1016/j.oregeorev.2023.105716
Zhang, L., Li, S. and Zhao, Q., 2021. A review of research on adakites. International Geology Review, 63(1): 1–18. https://doi.org/10.1080/00206814.2019.1702592
Zhao, X., Zheng, Y., Liu, C., Yang, Z., Dong, Y. and Liu, J., 2025. Magmatic characteristics and oxygen fugacity variations in the Eocene Yulong porphyry copper belt. Ore Geology Reviews, 178: 106459. https://doi.org/10.1016/j.oregeorev.2025.106459
Zhu, Z., Campbell, I.H., Allen, C.M. and Burnham, A.D., 2020. S-type granites: Their origin and distribution through time as determined from detrital zircons. Earth and Planetary Science Letters, 536: 116140. https://doi.org/10.1016/j.epsl.2020.116140