- Adame, D., & Beall, G.W. (2009). Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science, 42(3-4), 545-552. https://doi.org/10.1016/j.clay.2008.03.005
- Ahmed, S., Ahmad, M., Swami, B.L., & Ikram, S. (2016).Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences, 9(1), 1-7. https://doi.org/10.1016/j.jrras.2015.06.006
- Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana ) essential oil. Food Hydrocolloids, 99, 105338. https://doi.org/10.1016/j.foodhyd.2019.105338
- Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D.M., & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15, 100223. https://doi.org/10.1016/j.scp.2020.100223
- Dash, K.K., Ali, N.A., Das, D., & Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. International Journal of Biological Macromolecules, 139, 449-458. https://doi.org/10.1016/j.ijbiomac. 2019.07.193
- Dwi Ajeng, P.D., Plashintania, D.R., Putri, R.M., Wibowo, I., Ramli, Y., & Herdianto, S. (2023). Synthesis of zinc oxide nanoparticles using methanol propolis extract (Pro-ZnO NPs) as antidiabetic and antioxidant. PLoS ONE, 18(7), e0289125. https://doi.org/10.1371/journal. pone.0289125
- Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-Zad, S. (2011). Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22(3-4), 408-413. https://doi.org/10.1016/j.foodcont.2010.09.011
- Fernandes, F.F., Dias, A.L.T., Ramos, C.L., Ikegaki, M., Siqueira, A.M.D., & Franco, M.C. (2007). The" in vitro" antifungal activity evaluation of propolis G12 ethanol extract on Cryptococcus neoformans. Revista do Instituto de Medicina Tropical de São Paulo, 49, 93-95. https://doi.org/10.1590/S0036-46652007000200005
- Ghadetaj, A., Almasi, H., & Mehryar, L. (2018). Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum essential oil. Food Packaging and Shelf Life, 16, 31-40. https://doi.org/10.1016/j.fpsl.2018.01.012
- Ghafoori Ahangar, Z., Pourashouri, P., Ojagh, S.M., & Shabanpour, B. (2018). The assessment of of bilayer agar-sodium caseinat film properties containing ZnO nanoparticles. Journal of Utilization and Cultivation of Aquatics, 7(2), 41-51. (In Persian with English abstract)
- Ghanbarzadeh, B., Pezeshki Najafabadi, A., & Almasi, H. (2011). Antimicrobial edible films for food packaging. (In Persian with English abstract)
- Ghramh, H.A., Khan, K.A., Ibrahim, E.H., & Ansari, M.J. (2019). Biogenic synthesis of silver nanoparticles using propolis extract, their characterization, and biological activities. Science of Advanced Materials, 11(6), 876-883. https://doi.org/10.1166/sam.2019.3571
- Jafari, H., Pirouzifard, M., Khaledabad, M.A., & Almasi, H. (2016). Effect of chitin nanofiber on the morphological and physical properties of chitosan/silver nanoparticle bionanocomposite films. International Journal of Biological Macromolecules, 92, 461-466. https://doi.org/10.1016/j.ijbiomac.2016.07.051
- Kanmani, P., & Rhim, J.-W. (2014). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190-199. https://doi.org/10.1016/j.carbpol.2014.02.007
- Li, H., Li, F., Wang, L., Sheng, J., Xin, Z., Zhao, L., Hu, Q. (2009). Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba var. inermis (Bunge) Rehd). Food Chemistry, 114(2), 547-552. https://doi.org/10.1016/j.foodchem.2008.09.085
- Li, X., Zhang, F., Ma, C., Deng, Y., Wang, Z., Elingarami, S., & He, N. (2012). Controllable synthesis of ZnO with various morphologies by hydrothermal method. Journal of Nanoscience and Nanotechnology, 12(3), 2028-2036. https://doi.org/10.1166/jnn.2012.5177
- Manjamadha, V., & Muthukumar, K. (2016). Ultrasound assisted green synthesis of silver nanoparticles using weed plant. Bioprocess and Biosystems Engineering, 39(3), 401-411. https://doi.org/10.1007/s00449-015-1523-3
- Marvizadeh, M.M., Mohammadi Nafchi, A., & Jokar, M. (2014). Improved physicochemical properties of tapioca starch/bovine gelatin biodegradable films with zinc oxide nanorod. Journal of Chemical Health Risks, 4(4), 25-31. (In Persian with English abstract). https://doi.org/10.1016/j.ijbiomac.2017.02.067
- Mocanu, A., Isopencu, G., Busuioc, C., Popa, -M., Dietrich, P., & Socaciu-Siebert, L. (2019). Bacterial cellulose films with ZnO nanoparticles and propolis extracts: Synergistic antimicrobial effect. Scientific Reports, 9(1), 17687. https://doi.org/10.1038/s41598-019-54118-w
- Munoz, V.A., Ferrari, G.V., Sancho, M.I., & Montaña, M.P. (2016). Spectroscopic and thermodynamic study of chrysin and quercetin complexes with Cu (II). Journal of Chemical & Engineering Data, 61(2), 987-995. https://doi.org/10.1021/acs.jced.5b00837
- Nabavi, M., Esmaiili, M., & Ghaitaranpour, A. (2025). Lallemantia royleana seed mucilage-based active edible films: The effects of zinc oxide nanoparticles and zoulang plant’s essential oil. Journal of Food Science & Technology (2008-8787), 21(160). (In Persian with English abstract). https://doi.org/10.22034/FSCT.22.160.110
- Nafchi, A.M., Mahmud, S., & Robal, M. (2012). Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. Journal of Food Engineering, 113(4), 511-519. https://doi.org/10.1016/j.jfoodeng.2012.07.017
- Ojagh, S.M., Adeli, A., Abdollahi, M., Kazemi, M., & Habibi, M. (2017). Effect of ZnO nanoparticles on the physico-mechanical properties of agar/kappa carrageenan bilayer film. Innovative Food Technologies, 5(1), 13-23. (In Persian with English abstract). https://doi.org/10.1016/j.lwt.2016.03.011
- Osman, M.S., Al-qubati, M., Saeed, M., Abdulqawi, N., Algradee, M.A., Alwan, A., & Sultan, A.M. (2023). Effective inhibition of waterborne and fungal pathogens using ZnO nanoparticles prepared from an aqueous extract of propolis: Optimum biosynthesis, characterization, and antimicrobial activity. Applied Nanoscience, 13(6), 4515-4526. https://doi.org/10.1007/s13204-022-02726-w
- PP, V. (2020). In vitro biocompatibility and antimicrobial activities of zinc oxide nanoparticles (ZnO NPs) prepared by chemical and green synthetic route—a comparative study. BioNanoScience, 10(1), 112-121. https://doi.org/10.1007/s12668-019-00698-w
- Rafiee, B., Ghani, S., Sadeghi, D., & Ahsani, M. (2018). Green synthesis of zinc oxide nanoparticles using eucalyptus mellidora leaf extract and evaluation of its antimicrobial effects. Journal of Babol University of Medical Sciences, 20(10), 28-35. (In Persian with English abstract)
- Rajakumar, G., Thiruvengadam, M., Mydhili, G., Gomathi, T., & Chung, I.-M. (2018). Green approach for synthesis of zinc oxide nanoparticles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess and Biosystems Engineering, 41, 21-30. https://doi.org/10.1007/s00449-017-1840-9
- Rešček, A., Kratofil Krehula, L., Katančić, Z., & Hrnjak-Murgić, Z. (2015). Active bilayer PE/PCL films for food packaging modified with zinc oxide and casein. Croatica Chemica Acta, 88(4), 461-473. https://doi.org/10.5562/cca2768
- Rezaei, M., Pirsa, S., & Chavoshizadeh, S. (2020). Photocatalytic/antimicrobial active film based on wheat gluten/ZnO nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 30(7), 2654-2665. https://doi.org/10.1007/s10904-019-01407-6
- Sabet, B.J.P., Mahdavi-Ourtakand, M., & Baghbani-Arani, F. (2022). Green synthesis of zinc oxide nanoparticles by Zataria multiflora extract and evaluation of its antimicrobial, cytotoxic and apoptotic effects on HT-29 cell line. (In Persian with English abstract). https://doi.org/10.1007/s42247-022-00413-8
- Saha, S.K., Chowdhury, P., Saini, P., & Babu, S.P.S. (2014). Ultrasound assisted green synthesis of poly (vinyl alcohol) capped silver nanoparticles for the study of its antifilarial efficacy. Applied Surface Science, 288, 625-632. https://doi.org/10.1016/j.apsusc.2013.10.085
- Salama, S.A., Essam, D., Tagyan, A.I., Farghali, A.A., Khalil, E.M., Abdelaleim, Y.F., Eweis, A.A. (2024). Novel composite of nano zinc oxide and nano propolis as antibiotic for antibiotic-resistant bacteria: a promising approach. Scientific Reports, 14(1), 20894. https://doi.org/10.1038/s41598-024-70490-8
- Sanaeimehr, Z., Javadi, I., & Namvar, F. (2018). Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnology, 9(1), 3. https://doi.org/10.1186/s12645-018-0037-5
- Shah, M., Fawcett, D., Sharma, S., Tripathy, S.K., & Poinern, G.E.J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308. https://doi.org/10.3390/ma8115377
- Shahab-Navaei, F., & Asoodeh, A. (2023). Synthesis of optimized propolis solid lipid nanoparticles with desirable antimicrobial, antioxidant, and anti-cancer properties. Scientific Reports, 13(1), 18290. https://doi.org/10.1038/s41598-023-45768-y
- Shankar, S.S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275(2), 496-502. https://doi.org/10.1016/j.jcis.2004.03.003
- Sharma, N., Jandaik, S., & Kumar, S. (2016). Synergistic activity of doped zinc oxide nanoparticles with antibiotics: ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. Anais da Academia Brasileira de Ciências, 88(3 Suppl), 1689-1698. https://doi.org/10.1590/0001-3765201620150713
- Sherafatkhah Azari, S., Alizadeh, A., Asefi, N., & Hamishehkar, H. (2021). Investigation the effect of ZnO and β-glucan on chemical and microbial characteristic of gelatin based biodegradable film over storage of chicken fillet. Journal of Food Science and Technology (Iran), 18(114), 169-180. (In Persian with English abstract). https://org/10.52547/fsct.18.114.169
- Soleimani-Gorgani, A., & Alborz, R. (2020). Green synthesis of nanoparticles for using as antibacterial materials. Journal of Biosafety, 13(1), 23-44. (In Persian). DOR: 20.1001.1.27170632.1399.13.1.3.3
- Sulaiman, A.Z., Ajit, A., Yunus, R.M., & Chisti, Y. (2011). Ultrasound-assisted fermentation enhances bioethanol productivity. Biochemical Engineering Journal, 54(3), 141-150. https://doi.org/10.1016/j.bej. 2011.01.006
- Taherian, S.M.R., Hosseini, S.A., Jafari, A., & Etminan, A. (2019). The green synthesis and characterization of Zinc Oxide nanoparticles from the leaf extracts of Satureja hortensis. Herbal Medicines Journal, 3(4), 147-153. https://doi.org/10.4194/1303-2712-v20_6_06
- Tunç, S., & Duman, O. (2010). Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Applied Clay Science, 48(3), 414-424. https://doi.org/10.1016/j.clay.2010.01.016
- Yu, J., Yang, J., Liu, B., & Ma, X. (2009). Preparation and characterization of glycerol plasticized-pea starch/ZnO–carboxymethylcellulose sodium nanocomposites. Bioresource Technology, 100(11), 2832-2841. https://doi.org/10.1016/j.biortech.2008.12.045
- Zhang, L., Jiang, Y., Ding, Y., Daskalakis, N., Jeuken, L., Povey, M., York, D.W. (2010). Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against coli. Journal of Nanoparticle Research, 12(5), 1625-1636. https://doi.org/10.1007/s11051-009-9711-1
- Zhang, L., Jiang, Y., Ding, Y., Povey, M., & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9, 479-489. https://doi.org/10.1007/s11051-006-9150-1
|