- Abdollahpour, N., Soheili, V., Saberi, M.R., & Chamani, J. (2016). Investigation of the interaction between human serum albumin and two drugs as binary and ternary systems. European Journal of Drug Metabolism and Pharmacokinetics, 41(6), 705–721. https://doi.org/10.1007/s13318-015-0297-y
- Abioye, R.O., Obeme-Nmom, J.I., & Udenigwe, C.C. (2024). Pea protein–curcumin interactions and their effects on in vitro protein digestibility. ACS Food Science & Technology, 4(3), 711–718. https://doi.org/10.1021/acsfoodscitech.3c00614
- Allahdad, Z., Khammari, A., Karami, L., Ghasemi, A., Sirotkin, V.A., Haertlé, T., & Saboury, A.A. (2020). Binding studies of crocin to β-Lactoglobulin and its impacts on both components. Food Hydrocolloids, 108, 106003. https://doi.org/10.1016/j.foodhyd.2020.106003
- Allahdad, Z., Varidi, M., Zadmard, R., & Saboury, A.A. (2018). Spectroscopic and docking studies on the interaction between caseins and β-carotene. Food Chemistry, 255, 187–196. https://doi.org/10.1016/j.foodchem.2018.01.143
- Allahdad, Z., Varidi, M., Zadmard, R., Saboury, A.A., & Haertlé, T. (2019). Binding of β-carotene to whey proteins: Multi-spectroscopic techniques and docking studies. Food Chemistry, 277, 96–106. https://doi.org/10.1016/j.foodchem.2018.10.057
- Amani, N., Reza Saberi, M., & Khan Chamani, J. (2011). Investigation by fluorescence spectroscopy, resonance rayleigh scattering and zeta potential approaches of the separate and simultaneous binding effect of paclitaxel and estradiol with human serum albumin. Protein and Peptide Letters, 18(9), 935–951. https://doi.org/10.2174/092986611796011473
- Barakat, C., & Patra, D. (2013). Combining time‐resolved fluorescence with synchronous fluorescence spectroscopy to study bovine serum albumin‐curcumin complex during unfolding and refolding processes. Luminescence, 28(2), 149–155. https://doi.org/10.1002/bio.2354
- Brouillard, R. (1982). Chemical structure of anthocyanins. Anthocyanins as Food Colors. https://doi.org/1–401016/b978-0-12-472550-8.50005-6
- Cai, D., Li, X., Chen, J., Jiang, X., Ma, X., Sun, J., Tian, L., Vidyarthi, S.K., Xu, J., & Pan, Z. (2022). A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chemistry, 366, 130611. https://doi.org/10.1016/j.foodchem.2021.130611
- Cao, J., Li, F., Li, Y., Chen, H., Liao, X., & Zhang, Y. (2021). Hydrophobic interaction driving the binding of soybean protein isolate and chlorophyll: Improvements to the thermal stability of chlorophyll. Food Hydrocolloids, 113, 106465. https://doi.org/10.1016/j.foodhyd.2020.106465
- Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M.E., Rodríguez, J.A., & Galán-Vidal, C.A. (2009). Chemical studies of anthocyanins: A review. Food Chemistry, 113(4), 859–871. https://doi.org/10.1016/j.foodchem.2008.09.001
- Cheng, J., Ma, Y., Li, X., Yan, T., & Cui, J. (2015). Effects of milk protein-polysaccharide interactions on the stability of ice cream mix model systems. Food Hydrocolloids, 45, 327–336. https://doi.org/10.1016/j.foodhyd.2014.11.027
- Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D.J. (2015). Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation. Food Research International, 76, 761–768. https://doi.org/10.1016/j.foodres.2015.07.003
- Cortez, R., Luna‐Vital, D.A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 180-198. https://doi.org/10.1111/1541-4337.12244
- de Carvalho Bertozo, L., Fernandes, A.J., Yoguim, M.I., Bolean, M., Ciancaglini, P., & Ximenes, V.F. (2020). Entropy‐driven binding of octyl gallate in albumin: failure in the application of temperature effect to distinguish dynamic and static fluorescence quenching. Journal of Molecular Recognition, 33(7), e2840. https://doi.org/10.1002/jmr.2840
- Fennema, O.R., Damodaran, S., & Parkin, K.L. (2017a). Introduction to food chemistry. In Fennema's food chemistry (fifth ed., pp. 290–291). CRC Press. https://doi.org/10.1201/9781420020526
- Fennema, O.R., Damodaran, S., & Parkin, K.L. (2017b). Introduction to food chemistry. In Fennema's food chemistry (pp. 272). CRC Press. https://doi.org/10.1201/9781420020526
- Fenner, K., Reynolds, G., & Basu, S. (2020). Fluorescence quenching of various indoles by nickel complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239, 118473. https://doi.org/10.1016/j.saa.2020.118473
- Feyzi, S., Milani, E., & Golimovahhed, Q.A. (2018). Grass pea (Lathyrus sativus ) protein isolate: The effect of extraction optimization and drying methods on the structure and functional properties. Food Hydrocolloids, 74, 187–196. https://doi.org/10.1016/j.foodhyd.2017.07.031
- Geng, S., Jiang, Z., Ma, H., Wang, Y., Liu, B., & Liang, G. (2020). Interaction mechanism of flavonoids and bovine β-lactoglobulin: Experimental and molecular modelling studies. Food Chemistry, 312, 126066. https://doi.org/10.1016/j.foodchem.2019.126066
- Guo, X., Yao, J., Zhang, J., Wu, Q., Liu, L., & Liu, L. (2025). The binding mechanisms of oat flavonoids and sodium caseinate and their anti-glycation effect: spectroscopy, chromatography, and molecular docking study. Food Bioscience, 107058. https://doi.org/10.1016/j.fbio.2025.107058
- Jahromi, S.H.R., Farhoosh, R., Hemmateenejad, B., & Varidi, M. (2020). Characterization of the binding of cyanidin-3-glucoside to bovine serum albumin and its stability in a beverage model system: A multispectroscopic and chemometrics study. Food Chemistry, 311, 126015. https://doi.org/10.1016/j.foodchem.2019.126015
- Joye, I.J., Davidov-Pardo, G., Ludescher, R.D., & McClements, D.J. (2015). Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chemistry, 185, 261-267. https://doi.org/10.1016/j.foodchem.2015.03.128
- Konczak, I., & Zhang, W. (2004). Anthocyanins—more than nature's colours. Journal of Biomedicine and Biotechnology, 2004(5), 239. https://doi.org/10.1155/S1110724304407013
- Li, K., Yuan, X., Zhao, J., Ren, J., Ma, L., Liao, X., Hu, X., Chen, F., & Ji, J. (2024). Covalent conjugate of pea protein induced by cyanidin-3-O-glucoside quinone: The structural formation and functional properties. Food Hydrocolloids, 153, 110047. https://doi.org/10.1016/j.foodhyd.2024.110047
- Li, T., Hu, P., Dai, T., Li, P., Ye, X., Chen, J., & Liu, C. (2018). Comparing the binding interaction between β-lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 201, 197–206. https://doi.org/10.1016/j.saa.2018.05.011
- Ma, Z., Cheng, J., Jiao, S., & Jing, P. (2022). Interaction of mulberry anthocyanins with soybean protein isolate: Effect on the stability of anthocyanins and protein in vitro digestion characteristics. International Journal of Food Science & Technology, 57(4), 2267–2276. https://doi.org/10.1111/ijfs.15576
- Mazza, G., & Miniati, E. (2018). Anthocyanins in fruits, vegetables, and grains. CRC press. https://doi.org/10.1201/9781351069700-1
- Mehr, H.M., & Koocheki, A. (2021). Physicochemical properties of Grass pea (Lathyrus sativus) protein nanoparticles fabricated by cold atmospheric-pressure plasma. Food Hydrocolloids, 112, 106328. https://doi.org/10.1016/j.foodhyd.2020.106328
- Meng, Y., Hao, L., Tan, Y., Yang, Y., Liu, L., Li, C., & Du, P. (2021). Noncovalent interaction of cyanidin-3-O-glucoside with whey protein isolate and β-lactoglobulin: Focus on fluorescence quenching and antioxidant properties. LWT, 137, 110386. https://doi.org/10.1016/j.lwt.2020.110386
- Mohseni-Shahri, F.S., Housaindokht, M.R., Bozorgmehr, M.R., & Moosavi-Movahedi, A.A. (2014). The influence of the flavonoid quercetin on the interaction of propranolol with human serum albumin: Experimental and theoretical approaches. Journal of Luminescence, 154, 229-240. https://doi.org/10.1016/j.jlumin. 2014.04.033
- Mozo-Villarıas, A. (2002). Second derivative fluorescence spectroscopy of tryptophan in proteins. Journal of Biochemical and Biophysical Methods, 50(2-3), 163–178. https://doi.org/10.1016/S0165-022X(01)00181-6
- Ni, Y., Zhu, R., & Kokot, S. (2011). Competitive binding of small molecules with biopolymers: a fluorescence spectroscopy and chemometrics study of the interaction of aspirin and ibuprofen with BSA. Analyst, 136(22), 4794–4801. https://doi.org/10.1039/C1AN15550D
- Nichenametla, S.N., Taruscio, T.G., Barney, D.L., & Exon, J.H. (2006). A review of the effects and mechanisms of polyphenolics in cancer. Critical Reviews in Food Science and Nutrition, 46(2), 161–183. https://doi.org/10.1080/10408390591000541
- Pasternack, R.F., & Collings, P.J. (1995). Resonance light scattering: a new technique for studying chromophore aggregation. Science, 269(5226), 935–939. https://doi.org/1126/science.7638615
- Peng, X., Wang, X., Qi, W., Su, R., & He, Z. (2016). Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability. Food Chemistry, 192, 178–187. https://doi.org/10.1016/j.foodchem. 2015.06.109
- Rahnama, E., Mahmoodian-Moghaddam, M., Khorsand-Ahmadi, S., Saberi, M.R., & Chamani, J. (2015). Binding site identification of metformin to human serum albumin and glycated human serum albumin by spectroscopic and molecular modeling techniques: a comparison study. Journal of Biomolecular Structure and Dynamics, 33(3), 513-533. https://doi.org/10.1080/07391102.2014.893540
- Rampon, V., Genot, C., Riaublanc, A., Anton, M., Axelos, M., & McClements, D. (2003). Front-face fluorescence spectroscopy study of globular proteins in emulsions: displacement of BSA by a nonionic surfactant. Journal of Agricultural and Food Chemistry, 51(9), 2482–2489. https://doi.org/10.1021/jf026168g
- Ross, P.D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
- Royer, C.A. (2006). Probing protein folding and conformational transitions with fluorescence. Chemical Reviews, 106(5), 1769–1784. https://doi.org/10.1021/cr0404390
- Sarzehi, S., & Chamani, J. (2010). Investigation on the interaction between tamoxifen and human holo-transferrin: determination of the binding mechanism by fluorescence quenching, resonance light scattering and circular dichroism methods. International Journal of Biological Macromolecules, 47(4), 558–569. https://doi.org/10.1016/j.ijbiomac.2010.08.002
- Sattar, Z., Iranfar, H., Asoodeh, A., Saberi, M.R., Mazhari, M., & Chamani, J. (2012). Interaction between holo transferrin and HSA–PPIX complex in the presence of lomefloxacin: An evaluation of PPIX aggregation in protein–protein interactions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 1089–1100. https://doi.org/10.1016/j.saa.2012.07.034
- Shahsavani, M.B., Ahmadi, S., Aseman, M.D., Nabavizadeh, S.M., Alavianmehr, M.M., & Yousefi, R. (2016). Comparative study on the interaction of two binuclear Pt (II) complexes with human serum albumin: Spectroscopic and docking simulation assessments. Journal of Photochemistry and Photobiology B: Biology, 164, 323–334. https://doi.org/10.1016/j.jphotobiol.2016.09.035
- Shi, J.H., Wang, J., Zhu, Y.Y., & Chen, J. (2014). Characterization of intermolecular interaction between cyanidin‐3‐glucoside and bovine serum albumin: Spectroscopic and molecular docking methods. Luminescence, 29(5), 522–530. https://doi.org/10.1002/bio.2579
- Tabasi, M., Maghami, , Amiri-Tehranizadeh, Z., Saberi, M.R., & Chamani, J. (2023). New perspective of the ternary complex of nano-curcumin with β-lactoglobulin in the presence of α-lactalbumin: Spectroscopic and molecular dynamic investigations. Journal of Molecular Liquids, 392, 123472. https://doi.org/10.1016/j.molliq.2023.123472
- Tamburino, R., Guida, V., Pacifico, S., Rocco, M., Zarelli, A., Parente, A., & Di Maro, A. (2012). Nutritional values and radical scavenging capacities of grass pea ('Lathyrus sativus' L.) seeds in Valle Agricola district, Italy. Australian Journal of Crop Science, 6(1), 149–156. https://search.informit.org/doi/abs/10.3316/informit. 053932061026241
- Tang, L., Li, S., Bi, H., & Gao, X. (2016). Interaction of cyanidin-3-O-glucoside with three proteins. Food Chemistry, 196, 550–559. https://doi.org/10.1016/j.foodchem.2015.09.089
- Tian, F.-F., Li, J.-H., Jiang, F.-L., Han, X.-L., Xiang, C., Ge, Y.-S., Li, -L., & Liu, Y. (2012). The adsorption of an anticancer hydrazone by protein: an unusual static quenching mechanism. RSC Advances, 2(2), 501–513. https://doi.org/10.1039/C1RA00521A
- Tsuda, T., Horio, F., Uchida, K., Aoki, H., & Osawa, T. (2003). Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. The Journal of Nutrition, 133(7), 2125–2130. https://doi.org/10.1093/jn/133.7.2125
- Van de Weert, M., & Stella, L. (2011). Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. Journal of Molecular Structure, 998(1-3), 144–150. https://doi.org/10.1016/j. molstruc.2011.05.023
- Wei, J., Xu, D., Zhang, X., Yang, J., & Wang, Q. (2018). Evaluation of anthocyanins in Aronia melanocarpa/BSA binding by spectroscopic studies. Amb Express, 8(1), 72. https://doi.org/10.1186/s13568-018-0604-5
- Wu, H., Oliveira, G., & Lila, M.A.(2023). Protein‐binding approaches for improving bioaccessibility and bioavailability of anthocyanins. Comprehensive Reviews in Food Science and Food Safety, 22(1), 333–354. https://doi.org/10.1111/1541-4337.13070
- Yang, P., Wang, W., Xu, Z., Rao, L., Zhao, L., Wang, Y., & Liao, X. (2023). New insights into the pH dependence of anthocyanin-protein interactions by a case study of cyanidin-3-O-glucoside and bovine serum albumin. Food Hydrocolloids, 140, 108649. https://doi.org/10.1016/j.foodhyd.2023.108649
- Zhang, L., Liang, R., & Li, L. (2022). The interaction between anionic polysaccharides and legume protein and their influence mechanism on emulsion stability. Food Hydrocolloids, 131, 107814. https://doi.org/10.1016/j.foodhyd.2022.107814
- Zheng, J., Zheng, X., Zhao, L., Yi, J., & Cai, S. (2021). Effects and interaction mechanism of soybean 7S and 11S globulins on anthocyanin stability and antioxidant activity during in vitro simulated digestion. Current Research in Food Science, 4, 543–550. https://doi.org/10.1016/j.crfs.2021.08.003
|