- Alali, W.Q., &Hofacre, C.L. (2018). Preharvest food safety in broiler chicken production. Preharvest Food Safety, 69-86. https://doi.org/10.1128/9781555819644.ch4
- Aşık-Canbaz, E., Çömlekçi, S., & Can Seydim, A. (2022). Effect of moderate intensity pulsed electric field on shelf-life of chicken breast meat. British Poultry Science, 63(5), 641-649. https://doi.org/1080/00071668. 2022.2051431
- Bai, Y., Ding, X., Zhao, Q., Sun, H., Li, T., Li, Z., Wang, H., Zhang, L., Zhang, C., & Xu, S. (2022). Development of an organic acid compound disinfectant to control food-borne pathogens and its application in chicken slaughterhouses. Poultry Science, 101(6), 101842. https://doi.org/1016/j.psj.2022.101842
- Barroug, S., Chaple, S., & Bourke, P. (2021). Combination of natural compounds with novel non-thermal technologies for poultry products: a review. Frontiers in Nutrition, 8, 628723. https://doi.org/3389/fnut.2021. 628723
- Baptista, E., Borges, A., Aymerich, T., Alves, S.P., Gama, L.T., Fernandes, H., Fernandes, M.J., & Fraqueza, M.J. (2022). Pulsed light application for Campylobacter control on poultry meat and its effect on colour and volatile profile. Foods, 11(18), 2848. https://doi.org/10.3390/foods11182848
- Boubendir, S., Arsenault, J., Quessy, S., Thibodeau, A., Fravalo, P., Thériault, W.P., Fournaise, S., & Gaucher, M.L. (2021). Salmonella contamination of broiler chicken carcasses at critical steps of the slaughter process and in the environment of two slaughter plants: prevalence, genetic profiles, and association with the final carcass status. Journal of Food Protection, 84(2), 321-332. https://doi.org/10.4315/JFP-20-250
- Carvalho, D., Menezes, R., Chitolina, G.Z., Kunert-Filho, H.C., Wilsmann, D.E., Borges, K.A., Furian, T.Q., Salle, C.T.P., Moraes, H.L.D.S., & do Nascimento, V.P. (2022). Antibiofilm activity of the biosurfactant and organic acids against foodborne pathogens at different temperatures, times of contact, and concentrations. Brazilian Journal of Microbiology, 53(2), 1051-1064. https://doi.org/1007/s42770-022-00714-4
- Clemente, I., Condón-Abanto, S., Pedrós-Garrido, S., Whyte, P., & Lyng, J.G. (2020). Efficacy of pulsed electric fields and antimicrobial compounds used alone and in combination for the inactivation of Campylobacter jejuni in liquids and raw chicken. Food Control, 107, 106491. https://doi.org/10.1016/j.foodcont.2019.01.017
- Dantas, S.T., Camargo, C.H., Tiba-Casas, M.R., Vivian, R.C., Pinto, J.P., Pantoja, J.C., Hernandes, R.T., Júnior, A.F., & Rall, V.L. (2020). Environmental persistence and virulence of Salmonella Isolated from a poultry slaughterhouse. Food Research International, 129, 108835. https://doi.org/10.1016/j.foodres.2019.108835
- Djeffal, S., Mamache, B., Elgroud, R., Hireche, S., & Bouaziz, O. (2018). Prevalence and risk factors for Salmonella contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria. Veterinary World, 11(8), 1102. https://doi.org/10.14202/vetworld.2018.1102-1108
- El-Saadony, M.T., Salem, H.M., El-Tahan, A.M., Abd El-Mageed, T.A., Soliman, S.M., Khafaga, A.F., Swelum, A.A., Ahmed, A.E., Alshammari, F.A., & Abd El-Hack, M.E. (2022). The control of poultry salmonellosis using organic agents: an updated overview. Poultry Science, 101(4), 101716. https://doi.org/10.1016/j.psj.2022. 101716
- Golden, C.E., Rothrock Jr, M.J., & Mishra, A. (2021). Mapping foodborne pathogen contamination throughout the conventional and alternative poultry supply chains. Poultry Science, 100(7), 101157. https://doi.org/10.1016/j.psj. 2021.101157
- Gonzalez-Fandos, E., Maya, N., Martínez-Laorden, A., & Perez-Arnedo, I. (2020). Efficacy of lactic acid and modified atmosphere packaging against Campylobacter jejuni on chicken during refrigerated storage. Foods, 9(1), 109. https://doi.org/10.3390/foods9010109
- Habeeb, G.A.H. (2020). The effects of sodium lactate, lactic acid and acetic acid, alone or in combination, on improving the shelf life of chicken drumstick and the survival of Salmonella inoculated on the chicken drumstick (Master's thesis, Sağlık Bilimleri Enstitüsü). https://doi.org/10.26873/svr-955-2020
- Hilmi, M., Zuprizal, D.N., & Ariyadi, B. (2024). Silver nanoparticles as an antibacterial candidate for poultry: An alternative to synthetic antibiotics. Advances in Animal and Veterinary Sciences, 12(11), 2136-2143. https://doi.org/10.17582/journal.aavs/2024/12.11.2136.2143
- ISIRI-9661/1. (2006). Microbiology of food and animal feeding stuffs - Horizontal method for detection and enumeration of Campylobacter spp. In Detection method (Vol. 9661, pp. 30). Islamic Republic of Iran: Institute of Standards and Industrial Research of Iran .https://doi.org/10.3403/30112075
- ISIRI (2010). Microbiology of food and animal feeding stuffs — Method for detection of Salmonella spp. (Vol. 1810, p. 30). Tehran, Iran: Institute of Standards and Industrial Research of Iran. https://doi.org/10.3403/ 02663250u
- IVO. (2020). Animal Slaughterhouses Process Hygiene Criteria Self Control. Iran veterinary organization: IVO
- Kazemi Taskooh, N., Haddad Khodaparast, M.H., Varidi, M.J., & Tabatabaii Yazdi, F. (2016). The effect of combined aqueous ozone and lactic acid treatment for control of microbial contamination of poultry carcass in immersion chiller of slaughterhouse. Research and Innovation in Food Science and Technology, 5(2), 211-220. https://doi.org/10.22101/JRIFST.2016.09.17.528
- Lee, Y., & Yoon, Y. (2024). Principles and applications of non-thermal technologies for meat decontamination. Food Science of Animal Resources, 44(1), 19. https://doi.org/10.5851/kosfa.2023.e72
- Manzoor, A., Jaspal, M.H., Yaqub, T., Haq, A.U., Nasir, J., Avais, M., Asghar, B., Badar, I.H., Ahmad, S., & Yar, M.K. (2020). Effect of lactic acid spray on microbial and quality parameters of buffalo meat. Meat Science, 159, https://doi.org/10.1016/j.meatsci.2019.107923
- Megahed, A., Aldridge, B., & Lowe, J. (2020). Antimicrobial efficacy of aqueous ozone and ozone–lactic acid blend on Salmonella-contaminated chicken drumsticks using multiple sequential soaking and spraying approaches. Frontiers in Microbiology, 11, 593911. https://doi.org/10.3389/fmicb.2020.593911
- Monica, V., Rajan, A., & Mahendran, R. (2024). Novel disinfectant technologies applications for the food industries. In Non-Thermal Technologies for the Food Industry (pp. 300-315). CRC Press. https://doi.org/10.1201/9781003359302-19
- Novickij, V., Lastauskienė, E., Staigvila, G., Girkontaitė, I., Zinkevičienė, A., Švedienė, J., ... & Novickij, J. (2019). Low concentrations of acetic and formic acids enhance the inactivation of Staphylococcus aureus and Pseudomonas aeruginosa with pulsed electric fields. BMC Microbiology, 19, 1-7. https://doi.org/10.1186/s12866-019-1447-1
- Qian, J., Zhuang, H., Nasiru, M.M., Muhammad, U., Zhang, J., & Yan, W. (2019). Action of plasma-activated lactic acid on the inactivation of inoculated Salmonella Enteritidis and quality of beef. Innovative Food Science & Emerging Technologies, 57, 102196. https://doi.org/10.1016/j.ifset.2019.102196
- Rahimian, Y., Moeini, M., Kheiri, F., & Davoodi, S.M. (2019). The effect of cold water chilling, hydrogen peroxide solution and ozone therapy in reducing microbial load of poultry carcasses.
- Ramirez-Hernandez, A., Brashears, M.M., & Sanchez-Plata, M.X. (2018). Efficacy of lactic acid, lactic acid–acetic acid blends, and peracetic acid to reduce Salmonella on chicken parts under simulated commercial processing conditions. Journal of Food Protection, 81(1), 17-24. https://doi.org/10.4315/0362-028X.JFP-17-087
- Roobab, U., Madni, G.M., Ranjha, M.M.A.N., Khan, A.W., Selim, S., Almuhayawi, M.S., Samy, M., Zeng, X.A., & Aadil, R.M. (2023). Applications of water activated by ozone, electrolysis, or gas plasma for microbial decontamination of raw and processed meat. Frontiers in Sustainable Food Systems, 7, 1007967.
- Song, X., Wang, H., & Xu, X. (2021). Investigation of microbial contamination in a chicken slaughterhouse environment. Journal of Food Science, 86(8), 3598-3610. https://doi.org/10.1111/1750-3841.15842
- Stęczny, K., & Kokoszyński, D. (2021). Effect of probiotic preparations (EM) on productive characteristics, carcass composition, and microbial contamination in a commercial broiler chicken farm. Animal Biotechnology, 32(6), 758-765. https://doi.org/10.1080/10495398.2020.1754841
- Thomas, C., Schönknecht, A., Püning, C., Alter, T., Martin, A., & Bandick, N. (2020). Effect of peracetic acid solutions and lactic acid on microorganisms in on-line reprocessing systems for chicken slaughter plants. Journal of Food Protection, 83(4), 615-620. https://doi.org/10.4315/0362-028X.JFP-19-350
- Vargas, D.A., Casas, D.E., Chávez-Velado, D.R., Jiménez, R.L., Betancourt-Barszcz, G.K., Randazzo, E., Lynn, D., Echeverry, A., Brashears, M.M., Sánchez-Plata, M.X., & Miller, M.F. (2021).In-plant intervention validation of a novel ozone generation technology (Bio-safe) compared to lactic acid in variety meats. Foods, 10(9), 2106. https://doi.org/10.3390/foods10092106
- Wang, J., Wang, S., Sun, Y., Li, C., Li, Y., Zhang, Q., & Wu, Z. (2019). Reduction of Escherichia coli O157: H7 and naturally present microbes on fresh-cut lettuce using lactic acid and aqueous ozone. RSC advances, 9(39), 22636-22643. https://doi.org/10.1039/C9RA03544C
- Werlang, G.O., Kich, J.D., Lopes, G.V., Coldebella, A., Feddern, V., & Cardoso, M. (2022). Effect of gaseous ozone application during chilling on microbial and quality attributes of pig carcasses. Food Science and Technology International, 28(4), 366-376. https://doi.org/10.1177/10820132211014985
- Zhang, H., Tikekar, R.V., Ding, Q., Gilbert, A.R., & Wimsatt, S.T. (2020). Inactivation of foodborne pathogens by the synergistic combinations of food processing technologies and food‐grade compounds. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2110-2138. https://doi.org/10.1111/1541-4337.12582
- Zhang, C., Zhao, W., & Yang, R. (2022). Response of foodborne pathogens to pulse electric fields. In Stress Responses of Foodborne Pathogens (pp. 251-280). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-90578-1_9
|